JPH0910551A - Treatment of volatile organic compound - Google Patents
Treatment of volatile organic compoundInfo
- Publication number
- JPH0910551A JPH0910551A JP7164079A JP16407995A JPH0910551A JP H0910551 A JPH0910551 A JP H0910551A JP 7164079 A JP7164079 A JP 7164079A JP 16407995 A JP16407995 A JP 16407995A JP H0910551 A JPH0910551 A JP H0910551A
- Authority
- JP
- Japan
- Prior art keywords
- water
- volatile organic
- tank
- organic compound
- product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Treating Waste Gases (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、土中、水中に含有され
る揮発性有機化合物を抽出して分解する揮発性有機化合
物の処理方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating a volatile organic compound which extracts and decomposes a volatile organic compound contained in soil or water.
【0002】[0002]
【従来の技術】従来、トリクロルエチレン(CHCl=
CCl2 )やテトラクロルエチレン(CCl2 =CCl
2 )などの塩素基を有する揮発性有機化合物の処理方法
としては、例えば特開平2−184393号公報または
特開平2−115096号公報に記載の構成が知られて
いる。2. Description of the Related Art Conventionally, trichloroethylene (CHCl =
CCl 2 ) and tetrachloroethylene (CCl 2 = CCl
As a method for treating a volatile organic compound having a chlorine group such as 2 ), the constitution described in, for example, JP-A-2-184393 or JP-A2-115096 is known.
【0003】そして、特開平2−184393号公報に
記載の揮発性有機化合物の処理方法は、揮発性有機化合
物を含有する水溶液にオゾンおよび過酸化水素を導入す
るとともに、紫外線を30分から1時間程度照射して揮
発性有機化合物を酸化分解するものである。In the method for treating a volatile organic compound described in JP-A-2-184393, ozone and hydrogen peroxide are introduced into an aqueous solution containing the volatile organic compound, and ultraviolet rays are applied for about 30 minutes to 1 hour. Irradiation decomposes volatile organic compounds by oxidation.
【0004】ところで、この特開平2−184393号
公報に記載の方法では、オゾンの導入および紫外線の照
射とともに、過酸化水素を使用している。しかしなが
ら、過酸化水素を使用しなければ、水溶液中に含有され
た揮発性有機化合物はほとんど分解されないことが知ら
れている。このため、水溶液中の揮発性有機化合物を酸
化分解するには、高価で運用が煩雑な過酸化水素を必要
とし、処理装置が複雑化するとともに処理コストが増大
する問題がある。By the way, in the method described in Japanese Patent Laid-Open No. 2-184393, hydrogen peroxide is used together with the introduction of ozone and the irradiation of ultraviolet rays. However, it is known that the volatile organic compounds contained in the aqueous solution are hardly decomposed unless hydrogen peroxide is used. Therefore, in order to oxidatively decompose the volatile organic compound in the aqueous solution, hydrogen peroxide which is expensive and complicated to operate is required, and there is a problem that the processing apparatus becomes complicated and the processing cost increases.
【0005】また、紫外線が水溶液中を通過する際、相
当量の紫外線が遮断されるため、紫外線の照射による揮
発性有機化合物の分解効率が低下するので、水溶液中に
未分解の揮発性有機化合物が残留せず、確実に分解させ
るには、紫外線を少なくとも30分から1時間以上の長
時間で照射しなければならず、処理効率が低下するとと
もに処理コストが増大する問題がある。Further, when the ultraviolet rays pass through the aqueous solution, a considerable amount of the ultraviolet rays are blocked, so that the efficiency of decomposing the volatile organic compounds by the irradiation of the ultraviolet rays is lowered, so that the volatile organic compounds not decomposed in the aqueous solution are reduced. However, in order to surely decompose it without leaving it, it is necessary to irradiate it with ultraviolet rays for a long time of at least 30 minutes to 1 hour or more, and there is a problem that processing efficiency decreases and processing cost increases.
【0006】一方、特開平2−115096号公報に記
載の揮発性有機化合物の処理方法は、水溶液中に含有さ
れる揮発性有機化合物を揮発させ、この揮発した揮発性
有機化合物をオゾンとともに多孔質吸着物に吸着させ、
この多孔質吸着物に紫外線を照射して揮発性有機化合物
を酸化分解するものである。On the other hand, in the method for treating a volatile organic compound disclosed in Japanese Patent Laid-Open No. 2-115096, the volatile organic compound contained in the aqueous solution is volatilized, and the volatilized volatile organic compound is porous together with ozone. Adsorb to the adsorbate,
This porous adsorbate is irradiated with ultraviolet rays to oxidize and decompose volatile organic compounds.
【0007】そして、この特開平2−115096号公
報に記載の方法では、水溶液より抽出された気体中の揮
発性有機化合物をオゾンとともに多孔質吸着物に吸着さ
せ、紫外線を照射するため、水により紫外線が遮断され
ることがないので効率よく酸化分解できる。しかしなが
ら、この酸化分解により、塩化カルボニル(COC
l2 )やジクロルアセチルクロリド(Cl2 CHCOC
l)などの別の有機塩素化合物を生成する。したがっ
て、これらをさらに酸化分解し、最終分解物の塩化水素
および二酸化炭素に酸化分解するには、紫外線を非常に
長時間照射しなければならず、処理効率が低下するとと
もに処理コストが増大する問題がある。また、揮発性有
機化合物をオゾンとともに吸着させる多孔質吸着物を必
要とし、装置が複雑化し装置価格が上昇する問題もあ
る。さらに、未分解の揮発性有機化合物や副生成物が、
多孔質吸着物に確実に吸着されず、そのまま排気される
おそれがあるとともに、副生成物が吸着する多孔質吸着
物を無害に処理するには、多大な労力と費用とが必要と
なる。In the method described in Japanese Patent Application Laid-Open No. 2-115096, the volatile organic compound in the gas extracted from the aqueous solution is adsorbed to the porous adsorbate together with ozone and is irradiated with ultraviolet rays. Since it does not block ultraviolet rays, it can be efficiently oxidized and decomposed. However, due to this oxidative decomposition, carbonyl chloride (COC
l 2 ) and dichloroacetyl chloride (Cl 2 CHCOC
generate other organochlorine compounds such as l). Therefore, in order to oxidize and decompose these into hydrogen chloride and carbon dioxide, which are the final decomposed products, it is necessary to irradiate ultraviolet rays for a very long time, resulting in a decrease in processing efficiency and an increase in processing cost. There is. Further, a porous adsorbate for adsorbing a volatile organic compound together with ozone is required, which causes a problem that the device becomes complicated and the device price increases. In addition, undecomposed volatile organic compounds and by-products
The porous adsorbate is not surely adsorbed and may be exhausted as it is, and a great deal of labor and cost are required to treat the porous adsorbate on which the by-product is adsorbed harmlessly.
【0008】また、特開平2−184393号公報およ
び特開平2−115096号公報に記載の方法におい
て、水溶液が下水などの汚水の場合、揮発性有機化合物
の分解処理の他に、別途汚水の浄化処理を行う必要があ
り、揮発性有機化合物を含有する下水の浄化処理が煩雑
で、処理効率が低下する問題も有している。Further, in the methods described in JP-A-2-184393 and JP-A-2-1-115096, when the aqueous solution is sewage or other sewage, in addition to the decomposition treatment of the volatile organic compounds, the sewage is separately purified. It is necessary to perform treatment, and the purification treatment of sewage containing a volatile organic compound is complicated, and there is also a problem of reduction in treatment efficiency.
【0009】[0009]
【発明が解決しようとする課題】上述したように、上記
特開平2−184393号公報に記載の方法では、水溶
液中の揮発性有機化合物を酸化分解するため、高価で運
用が煩雑な過酸化水素を必要とし、処理装置の複雑化、
処理コストの増大が生じ、また、水溶液による紫外線の
照射量の低減により、揮発性有機化合物の分解効率が低
下し、処理効率の低下、処理コストの増大が生じる問題
がある。As described above, in the method described in JP-A-2-184393, the volatile organic compounds in the aqueous solution are oxidatively decomposed, so that the hydrogen peroxide is expensive and complicated to operate. Requires complicated processing equipment,
There is a problem that the treatment cost increases, and the reduction of the irradiation amount of the ultraviolet rays by the aqueous solution lowers the decomposition efficiency of the volatile organic compound, lowering the treatment efficiency and increasing the treatment cost.
【0010】また、特開平2−115096号公報に記
載の方法では、紫外線の照射による酸化分解された副生
成物である別の有機塩素化合物が生成し、最終分解物へ
の酸化分解には、紫外線の長時間照射が必要で、処理効
率の低下、処理コストの増大が生じ、また、多孔質吸着
物を必要とし、装置が複雑化する問題がある。Further, in the method described in Japanese Patent Application Laid-Open No. 2-115096, another organochlorine compound, which is a by-product oxidatively decomposed by irradiation of ultraviolet rays, is produced, and the oxidative decomposition to the final decomposed product is There is a problem that irradiation with ultraviolet rays is required for a long time, treatment efficiency is lowered, treatment cost is increased, and a porous adsorbate is required, which complicates the apparatus.
【0011】さらに、下水などの汚水の場合には、揮発
性有機化合物の分解処理、汚水の浄化処理の別工程を行
わなければならず、浄化処理の煩雑化、処理効率の低下
を生じる問題がある。Furthermore, in the case of sewage such as sewage, separate steps of decomposing the volatile organic compounds and purifying the sewage must be carried out, which complicates the purifying process and lowers the treatment efficiency. is there.
【0012】本発明は、上記の問題点に鑑みなされたも
ので、土中または水中に含有される揮発性有機化合物を
効率よく確実に処理して無害化する揮発性有機化合物の
処理方法を提供することを目的とする。The present invention has been made in view of the above problems and provides a method for treating a volatile organic compound contained in soil or water efficiently and surely to render it harmless. The purpose is to do.
【0013】[0013]
【課題を解決するための手段】請求項1記載の揮発性有
機化合物の処理方法は、土中および水中の少なくともい
ずれか一方に含有される揮発性有機化合物を真空または
曝気により抽出し、この抽出した前記揮発性有機化合物
が含有される気体に酸素存在下で紫外線を照射して前記
揮発性有機化合物を酸化し、この酸化により生成された
第1次副生成物を含有する気体をアルカリ性の水と接触
させて易分解性の第2次副生成物を生成するものであ
る。A method for treating a volatile organic compound according to claim 1 extracts a volatile organic compound contained in at least one of soil and water by vacuum or aeration, and extracts this. The gas containing the volatile organic compound is irradiated with ultraviolet rays in the presence of oxygen to oxidize the volatile organic compound, and the gas containing the primary by-product generated by this oxidation is treated with alkaline water. And a secondary by-product that is easily decomposable.
【0014】請求項2記載の揮発性有機化合物の処理方
法は、請求項1記載の揮発性有機化合物の処理方法にお
いて、アルカリ性の水は、pHが8以上であるものであ
る。The method of treating a volatile organic compound according to a second aspect is the method of treating a volatile organic compound according to the first aspect, wherein the alkaline water has a pH of 8 or more.
【0015】請求項3記載の揮発性有機化合物の処理方
法は、請求項1または2記載の揮発性有機化合物の処理
方法において、第1次副生成物とアルカリ性の水との接
触の際に循環手段にて前記アルカリ性の水を循環させて
生成する第2次副生成物を濃縮する閉鎖循環回路を形成
するものである。A method for treating a volatile organic compound according to a third aspect is the method for treating a volatile organic compound according to the first or second aspect, in which the first by-product is circulated when contacting with alkaline water. The means forms a closed circulation circuit for concentrating the secondary by-product produced by circulating the alkaline water by means.
【0016】請求項4記載の揮発性有機化合物の処理方
法は、請求項1ないし3いずれか記載の揮発性有機化合
物の処理方法において、第1次副生成物とアルカリ性の
水との接触により生成された第2次副生成物を好気性生
物にて分解するものである。A method for treating a volatile organic compound according to a fourth aspect is the method for treating a volatile organic compound according to any one of the first to third aspects, in which the primary by-product is formed by contact with alkaline water. The secondary by-products are decomposed by aerobic organisms.
【0017】請求項5記載の揮発性有機化合物の処理方
法は、請求項4記載の揮発性有機化合物の処理方法にお
いて、第2次副生成物を好気性生物にて分解した水を返
送手段にて返送し第1次副生成物と接触させて閉鎖還流
回路を形成するものである。A method for treating a volatile organic compound according to a fifth aspect is the method for treating a volatile organic compound according to the fourth aspect, wherein water obtained by decomposing the secondary by-product by an aerobic organism is used as a returning means. It is then returned and brought into contact with the primary by-product to form a closed reflux circuit.
【0018】請求項6記載の揮発性有機化合物の処理方
法は、請求項1ないし5いずれか記載の揮発性有機化合
物の処理方法において、波長が200nm以下の紫外線を
50%以上透過するガラス管を有する紫外線ランプを用
いるものである。A method for treating a volatile organic compound according to a sixth aspect is the method for treating a volatile organic compound according to any one of the first to fifth aspects, wherein a glass tube that transmits 50% or more of ultraviolet rays having a wavelength of 200 nm or less is used. It uses the ultraviolet lamp that it has.
【0019】[0019]
【作用】請求項1記載の揮発性有機化合物の処理方法
は、真空または曝気により土中または水中に含有される
揮発性有機化合物を抽出して、酸素存在下で紫外線を照
射して揮発性有機化合物を第1次副生成物に酸化するの
で、紫外線の照射率が向上して紫外線による酸化分解効
率が向上し、この第1次副生成物をアルカリ性の水と接
触させて易分解性の第2次副生成物を効率よく生成させ
てアルカリ性の水に含有させるため、取り扱いが容易な
アルカリ性の水が有害な揮発性有機化合物から分解され
た第2次副生成物のキャリヤとなり、第2次副生成物の
処理が容易となる。The method for treating a volatile organic compound according to claim 1 extracts a volatile organic compound contained in soil or water by vacuuming or aeration, and irradiates ultraviolet rays in the presence of oxygen to the volatile organic compound. Since the compound is oxidized into the primary by-product, the irradiation rate of ultraviolet rays is improved and the efficiency of oxidative decomposition by ultraviolet rays is improved, and the primary by-product is contacted with alkaline water to easily decompose the primary by-products. Since the secondary by-product is efficiently generated and contained in the alkaline water, the alkaline water, which is easy to handle, serves as a carrier for the secondary by-product decomposed from harmful volatile organic compounds, and Processing of by-products becomes easy.
【0020】請求項2記載の揮発性有機化合物の処理方
法は、請求項1記載の揮発性有機化合物の処理方法にお
いて、アルカリ性の水のpHを8以上としたため、第1
次副生成物がアルカリ性の水との接触により易分解性の
第2次副生成物に非常に効率よく分解される。The method for treating a volatile organic compound according to claim 2 is the method for treating a volatile organic compound according to claim 1, wherein the pH of the alkaline water is set to 8 or more.
The secondary by-product is decomposed into a readily decomposable secondary by-product by contact with alkaline water very efficiently.
【0021】請求項3記載の揮発性有機化合物の処理方
法は、請求項1または2記載の揮発性有機化合物の処理
方法において、第1次副生成物とアルカリ性の水との接
触の際に循環手段にてアルカリ性の水を循環させて閉鎖
循環回路を形成し、生成する第2次副生成物を濃縮する
ため、第2次副生成物の処理効率が向上するとともに、
第2次副生成物の処理コストが低減する。A method for treating a volatile organic compound according to a third aspect is the method for treating a volatile organic compound according to the first or second aspect, in which the primary by-product is circulated when contacting with alkaline water. By means of which the alkaline water is circulated by means to form a closed circulation circuit and the secondary by-product produced is concentrated, the processing efficiency of the secondary by-product is improved, and
The processing cost of the secondary by-product is reduced.
【0022】請求項4記載の揮発性有機化合物の処理方
法は、請求項1ないし3いずれか記載の揮発性有機化合
物の処理方法において、第1次副生成物とアルカリ性の
水との接触により生成された易分解性の第2次副生成物
を好気性生物にて分解するので、揮発性有機化合物が無
害な最終生成物に確実に処理される。A method for treating a volatile organic compound according to a fourth aspect is the method for treating a volatile organic compound according to any one of the first to third aspects, in which the primary by-product is formed by contact with alkaline water. Since the easily decomposable secondary by-products thus decomposed are decomposed by aerobic organisms, volatile organic compounds are reliably processed into harmless end products.
【0023】請求項5記載の揮発性有機化合物の処理方
法は、請求項4記載の揮発性有機化合物の処理方法にお
いて、第2次副生成物を好気性生物にて分解した水を返
送手段にて返送して再び第1次副生成物と接触させる閉
鎖還流回路を形成するため、副生成物が系外に漏洩する
ことなく確実に処理されるとともに、第2次副生成物の
処理効率が向上し、第2次副生成物の処理コストが低減
する。The method for treating a volatile organic compound according to a fifth aspect is the method for treating a volatile organic compound according to the fourth aspect, wherein water obtained by decomposing the secondary by-product with an aerobic organism is used as a returning means. Since it forms a closed reflux circuit in which the by-product is returned and brought into contact with the primary by-product again, the by-product is reliably processed without leaking out of the system, and the processing efficiency of the secondary by-product is improved. Improved and the processing cost of secondary by-products is reduced.
【0024】請求項6記載の揮発性有機化合物の処理方
法は、請求項1ないし5いずれか記載の揮発性有機化合
物の処理方法において、波長が200nm以下の紫外線を
50%以上透過するガラス管を有する紫外線ランプに
て、揮発性有機化合物が含有される気体に紫外線を照射
するため、揮発性有機化合物が第1次副生成物に短時間
で酸化分解される。The method for treating a volatile organic compound according to claim 6 is the method for treating a volatile organic compound according to any one of claims 1 to 5, wherein a glass tube that transmits 50% or more of ultraviolet rays having a wavelength of 200 nm or less is used. Since the gas containing the volatile organic compound is irradiated with ultraviolet rays by the ultraviolet lamp that it has, the volatile organic compound is oxidatively decomposed into primary by-products in a short time.
【0025】[0025]
【実施例】本発明の揮発性有機化合物の処理方法を実施
する装置の一実施例の構成を図面を参照して説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The construction of an embodiment of an apparatus for carrying out the method for treating a volatile organic compound of the present invention will be described with reference to the drawings.
【0026】図1において、1は照射槽で、この照射槽
1は、気密構造に形成され、キセノンランプ、低圧水銀
ランプ、高圧水銀ランプなどの紫外線を照光する図示し
ない紫外線ランプを配設している。そして、この紫外線
ランプは、例えば不純物が0.001%以下の合成石英
ガラスにて形成され、波長が200nm以下の紫外線を5
0%以上透過する図示しないガラス管にて構成されてい
る。In FIG. 1, reference numeral 1 denotes an irradiation tank. The irradiation tank 1 is formed in an airtight structure and is provided with an ultraviolet lamp (not shown) such as a xenon lamp, a low-pressure mercury lamp, a high-pressure mercury lamp or the like for irradiating ultraviolet rays. There is. This UV lamp is made of, for example, synthetic quartz glass with 0.001% or less of impurities, and emits UV light with a wavelength of 200 nm or less.
It is composed of a glass tube (not shown) that transmits 0% or more.
【0027】また、この照射槽1には、真空および曝気
により土中および水中の揮発性有機化合物を空気ととも
に抽出する抽出装置2が接続されている。さらに、照射
槽1には、揮発性有機化合物が紫外線ランプの紫外線照
射により分解された第1副生成物、例えば揮発性有機化
合物としてトリクロルエチレン(CHCl=CCl2)
を使用した場合、塩化カルボニル(COCl2 )やジク
ロルアセチルクロリド(Cl2 CHCOCl)などを排
出する送気管4が接続されている。Further, the irradiation tank 1 is connected with an extraction device 2 for extracting volatile organic compounds in soil and water together with air by vacuum and aeration. Further, in the irradiation tank 1, a first by-product obtained by decomposing a volatile organic compound by ultraviolet irradiation of an ultraviolet lamp, for example, trichloroethylene (CHCl = CCl 2 ) as a volatile organic compound.
Is used, an air supply pipe 4 for discharging carbonyl chloride (COCl 2 ) or dichloroacetyl chloride (Cl 2 CHCOCl) is connected.
【0028】また、送気管4には原水槽6が接続され、
この原水槽6は、気密構造に形成されているとともに、
酸性水などにより腐食されないように耐腐食構造に形成
されている。そして、この原水槽6には、水が流入され
る図示しない流水口が形成されているとともに、この導
入された水を攪拌する図示しない攪拌手段が設けられて
いる。A raw water tank 6 is connected to the air supply pipe 4,
This raw water tank 6 is formed in an airtight structure,
It has a corrosion-resistant structure so that it will not be corroded by acidic water. The raw water tank 6 is provided with a not-shown water inlet into which water flows, and a not-shown stirring means for stirring the introduced water.
【0029】さらに、原水槽6の底部には、送気管4に
連通された散気装置7が形成され、この散気装置7から
照射槽1より送気管4を介して搬送される第1次副生成
物を含有する空気が、流水口から流入された水に散気さ
れる。また、原水槽6には、散気された水のpH値を検
出し、流水口から流入した水をアルカリ性、例えばpH
8以上のアルカリ性、好ましくはpH10以上のアルカ
リ性に制御するpH制御装置8が接続されている。さら
に、原水槽6の底部には、搬送ポンプ9を設けた搬送管
10が接続され、原水槽6内のアルカリ性の水が送出され
る。Further, at the bottom of the raw water tank 6, an air diffuser 7 communicating with the air supply pipe 4 is formed, and the primary air is conveyed from the air diffuser 7 from the irradiation tank 1 through the air supply pipe 4. Air containing by-products is diffused into the water introduced from the water outlet. Further, in the raw water tank 6, the pH value of the diffused water is detected, and the water flowing from the water outlet is alkaline, for example, pH.
A pH controller 8 for controlling the alkalinity of 8 or more, preferably the alkalinity of 10 or more is connected. Further, at the bottom of the raw water tank 6, a transport pipe provided with a transport pump 9
10 is connected and the alkaline water in the raw water tank 6 is sent out.
【0030】なお、原水槽6に、散気装置7から散気し
た気体を、原水槽6の上部に設けた吸気手段にて吸気
し、この気体を空気などの酸素含有ガスとともに再び照
射槽1に返送し、再び紫外線照射させてもよい。この吸
気手段により、確実に揮発性有機物を第1次副生成物に
分解でき、系外へ有毒な揮発性有機物を漏洩することを
防止でき、確実に処理できる。The air diffused from the air diffuser 7 is sucked into the raw water tank 6 by the suction means provided at the upper part of the raw water tank 6, and this gas is again irradiated with the oxygen-containing gas such as air into the irradiation tank 1. It may be returned to and irradiated with ultraviolet rays again. By this suction means, the volatile organic substances can be surely decomposed into the primary by-products, the toxic volatile organic substances can be prevented from leaking out of the system, and the treatment can be surely performed.
【0031】そして、搬送管10には、曝気槽12が接続さ
れ、この曝気槽12には、有機物質や窒素化合物などの汚
染物質が含まれる汚水13が流入される図示しない原水管
が接続されている。さらに、曝気槽12の上部には、原水
槽6から搬送ポンプ9により搬送管10を介して搬送され
るアルカリ性の水が吐出される吐出部14が設けられてい
る。An aeration tank 12 is connected to the carrier pipe 10, and a raw water pipe (not shown) into which a sewage 13 containing pollutants such as organic substances and nitrogen compounds flows is connected to the aeration tank 12. ing. Further, a discharge unit 14 is provided above the aeration tank 12 to discharge alkaline water from the raw water tank 6 by the transfer pump 9 via the transfer pipe 10.
【0032】また、曝気槽12内には充填層15が設けら
れ、この充填層15は流入した汚水13中の有機物質や窒素
化合物などの汚染物質を分解する好気性生物が担持され
る多数の図示しない多孔質材料が充填されて形成されて
いる。さらに、曝気槽12の上部には、汚水13に空気を散
気し充填層15の好気性生物に酸素を供給するブロワ16が
接続された曝気装置17が設けられている。Further, a packing layer 15 is provided in the aeration tank 12, and the packing layer 15 carries a large number of aerobic organisms which decompose pollutants such as organic substances and nitrogen compounds in the inflowing sewage 13. It is formed by filling a porous material (not shown). Further, above the aeration tank 12, there is provided an aeration device 17 to which a blower 16 that diffuses air into the wastewater 13 and supplies oxygen to aerobic organisms in the packed bed 15 is connected.
【0033】そして、この曝気槽12の底部には、充填層
15の好気性生物により浄化処理された処理水を放水する
放水ポンプ18が設けられた放水管19が接続されている。
なお、この曝気槽12には、図示しない逆流洗浄手段が設
けられ、適宜曝気槽12内を逆流洗浄し、回収した汚泥な
どは別途処理されるようになっている。At the bottom of the aeration tank 12, there is a packed bed.
A water discharge pipe 19 provided with a water discharge pump 18 for discharging treated water purified by 15 aerobic organisms is connected.
The aeration tank 12 is provided with a backwashing means (not shown) so that the inside of the aeration tank 12 is appropriately backwashed and the collected sludge or the like is separately treated.
【0034】次に、この装置についての動作を汚水の処
理について説明する。Next, the operation of this apparatus will be described for the treatment of sewage.
【0035】有機物質や窒素化合物などの汚染物質が含
まれるとともに、ベンゼン(C6 H6 )やトルエン(C
7 H8 )、トリクロルエチレン(CHCl=CCl2 )
やテトラクロルエチレン(CCl2 =CCl2 )などの
揮発性有機化合物を含有する汚水13を、抽出装置2に流
入し、この汚水13に空気を散気して汚水13中の揮発性有
機化合物を空気中に揮発させる。そして、この揮発性有
機化合物を含有する空気を照射槽1に流入する。また、
揮発性有機化合物が除かれた汚水13は、図示しない原水
管を介して曝気槽12に流入する。Containing pollutants such as organic substances and nitrogen compounds, benzene (C 6 H 6 ) and toluene (C
7 H 8 ), trichloroethylene (CHCl = CCl 2 )
Sewage 13 containing a volatile organic compound such as or tetrachloroethylene (CCl 2 = CCl 2 ) flows into the extraction device 2, and air is diffused into the wastewater 13 to remove the volatile organic compounds in the wastewater 13. Volatilize in the air. Then, the air containing the volatile organic compound flows into the irradiation tank 1. Also,
The wastewater 13 from which the volatile organic compounds have been removed flows into the aeration tank 12 via a raw water pipe (not shown).
【0036】次に、照射槽1の図示しない紫外線ランプ
を点灯させ、照射槽1に流入された揮発性有機化合物を
含有する空気に紫外線を照射する。そして、紫外線を所
定時間照射後、照射槽1内の空気を送気管4を介して原
水槽6に送気する。Next, an ultraviolet lamp (not shown) of the irradiation tank 1 is turned on, and the air containing the volatile organic compound flowing into the irradiation tank 1 is irradiated with ultraviolet rays. Then, after irradiating the ultraviolet ray for a predetermined time, the air in the irradiation tank 1 is sent to the raw water tank 6 through the air supply pipe 4.
【0037】一方、原水槽6内に流水口から水を流入
し、送気管4を介して送気された空気を、原水槽6の底
部に設けた散気装置7から散気する。さらに、この散気
の際、pH制御装置8にて原水槽6内の水のpH値を測
定し、適宜水酸化ナトリウム(NaOH)や水酸化カリ
ウム(KOH)などを投入してpH値をpH8以上、好
ましくはpH10以上のアルカリ性となるように制御し
つつ、図示しない攪拌手段にて水を攪拌する。On the other hand, water is introduced into the raw water tank 6 through the water flow port, and the air sent through the air supply pipe 4 is diffused from the air diffuser 7 provided at the bottom of the raw water tank 6. Further, at the time of this air diffusion, the pH value of the water in the raw water tank 6 is measured by the pH controller 8 and sodium hydroxide (NaOH), potassium hydroxide (KOH) or the like is appropriately added to adjust the pH value to pH 8. As described above, the water is stirred by the stirring means (not shown) while controlling the pH to be alkaline at pH 10 or higher.
【0038】そして、散気装置7からの散気が終了し、
水酸化ナトリウムや水酸化カリウムなどを投入せずと
も、pH値がpH8以上、好ましくはpH10以上で一
定となった後、攪拌を停止して、搬送ポンプ9を駆動さ
せ、搬送管10を介して原水槽6内の水を曝気槽12に搬送
する。Then, the air diffusion from the air diffuser 7 is completed,
Even if sodium hydroxide or potassium hydroxide is not added, after the pH value becomes constant at pH 8 or higher, preferably pH 10 or higher, stirring is stopped, the transport pump 9 is driven, and the transport pipe 10 is used. The water in the raw water tank 6 is transported to the aeration tank 12.
【0039】次に、原水槽6から搬送された水は、曝気
槽12の上部に設けた吐出部14より吐出され、図示しない
原水管から流入された汚水13に流入される。そして、汚
水13と混合された水は、曝気装置17から曝気される空気
とともに、曝気槽12内の充填層15を流過する。また、こ
の充填層15の流過の際、汚水13と混合した水は、充填層
15の図示しない多孔質材料に担持された好気性生物によ
り浄化処理され、曝気槽12の底部に流下する。Next, the water conveyed from the raw water tank 6 is discharged from the discharge portion 14 provided at the upper part of the aeration tank 12 and flows into the waste water 13 which is flowed in from a raw water pipe (not shown). Then, the water mixed with the dirty water 13 flows through the packed bed 15 in the aeration tank 12 together with the air aerated from the aeration device 17. When the packed bed 15 flows through, the water mixed with the sewage 13 is packed in the packed bed.
It is purified by aerobic organisms supported on a porous material (not shown) 15 and flows down to the bottom of the aeration tank 12.
【0040】そして、曝気槽12の底部の浄化処理された
処理水を、放水ポンプ18を駆動させて放水管19より放水
する。Then, the purified water at the bottom of the aeration tank 12 is discharged from the water discharge pipe 19 by driving the water discharge pump 18.
【0041】また、以上の処理工程を続けることによ
り、曝気槽12内の充填層15に担持された好気性生物が増
殖したり、汚水13中の汚泥が充填層15に濾過され、流過
抵抗が向上する場合には、図示しない逆流洗浄手段によ
り、汚泥などを除去する。By continuing the above treatment steps, aerobic organisms carried on the packed bed 15 in the aeration tank 12 grow, and sludge in the wastewater 13 is filtered by the packed bed 15 to prevent flow-through resistance. In the case of improving the air pollution, sludge and the like are removed by a backflow cleaning means (not shown).
【0042】次に、上記実施例の作用を説明する。Next, the operation of the above embodiment will be described.
【0043】照射槽1、原水槽6、曝気槽12における処
理について各種実験を行った。Various experiments were conducted on the treatments in the irradiation tank 1, the raw water tank 6, and the aeration tank 12.
【0044】まず、照射槽1として、図2に示すような
照射槽1を形成する。この照射槽1は、直径が略400
mm、高さが1000mmの円筒状の鋼板製の管体21からな
り、気密に形成されている。First, as the irradiation tank 1, the irradiation tank 1 as shown in FIG. 2 is formed. The irradiation tank 1 has a diameter of about 400.
The tube body 21 is made of a cylindrical steel plate and has a height of 1000 mm and a height of 1000 mm, and is formed airtight.
【0045】また、この管体21に紫外線ランプである長
さが約500mmの15Wの低圧水銀灯22を配設する。な
お、この低圧水銀灯22は、例えば不純物が0.001%
以下の合成石英ガラスにて形成され、波長が200nm以
下の紫外線を50%以上透過するガラス管を構成してい
る。さらに、この管体21の上端面には注入部23が形成さ
れている。また、この管体21内に乾燥空気を充填させて
おく。Further, a 15 W low-pressure mercury lamp 22 having a length of about 500 mm, which is an ultraviolet lamp, is arranged in the tube body 21. The low-pressure mercury lamp 22 contains, for example, 0.001% impurities.
A glass tube is formed of the following synthetic quartz glass and transmits 50% or more of ultraviolet rays having a wavelength of 200 nm or less. Further, an injection portion 23 is formed on the upper end surface of the tube body 21. Further, the tube body 21 is filled with dry air.
【0046】そして、この管体21内に揮発性有機化合物
としてトリクロルエチレンを0.1ml注入し、紫外線の
照射時間を変化させて、トリクロルエチレンの酸化分解
状況についての実験1−1を行った。その結果を図3お
よび表1に示す。Then, 0.1 ml of trichlorethylene as a volatile organic compound was injected into the tubular body 21, and the irradiation time of ultraviolet rays was changed to carry out Experiment 1-1 on the oxidative decomposition state of trichlorethylene. The results are shown in FIG. 3 and Table 1.
【0047】なお、図3は、縦軸が管体21内のトリクロ
ルエチレン濃度(単位はppm )、横軸が低圧水銀灯22の
点灯時間(単位は秒)で表したグラフである。また、ト
リクロルエチレン、テトラクロルエチレン等の揮発性有
機化合物はガスクロマト質量分析計(GC/MS:Gas
Chromatograph Mass Spectrometer )を用いて測定し、
第1次副生成物のうち塩化カルボニル(COCl2 )に
ついてはJIS-K-0090に基づいて吸収液に吸収させた後、
比色計による紫外吸収スペクトルを用いた定量方法によ
り測定し、ジクロルアセチルクロリド(Cl2 CHCO
Cl)については水に吸収後生成するジクロル酢酸(C
HCl2COOH)を(誘導体化し、ガスクロマトグラ
フィにより定量する)上水試験方法により測定した。FIG. 3 is a graph in which the vertical axis represents the concentration of trichlorethylene in the tube body 21 (unit is ppm) and the horizontal axis represents the lighting time of the low-pressure mercury lamp 22 (unit is second). In addition, volatile organic compounds such as trichlorethylene and tetrachlorethylene are analyzed by gas chromatography mass spectrometer (GC / MS: Gas
Chromatograph Mass Spectrometer)
Regarding carbonyl chloride (COCl 2 ) among the primary by-products, after absorbing it in an absorbing solution based on JIS-K-0090,
Dichloroacetyl chloride (Cl 2 CHCO) was measured by a quantitative method using an ultraviolet absorption spectrum with a colorimeter.
For Cl), dichloroacetic acid (C
HCl2COOH) was measured by the tap water test method (derivatized and quantified by gas chromatography).
【0048】そして、図3に示す実験1−1において、
紫外線の照射時間が長くなるにしたがって、注入された
トリクロルエチレン濃度は、ほぼ指数関数的に減少する
ことが分かる。また、この紫外線の照射時間も20秒間
の照射のみでほとんどが酸化分解されていることが分か
る。Then, in Experiment 1-1 shown in FIG.
It can be seen that the injected trichlorethylene concentration decreases almost exponentially as the irradiation time of ultraviolet rays increases. Also, it can be seen that most of the irradiation time of this ultraviolet ray is oxidized and decomposed only by irradiation for 20 seconds.
【0049】そして、この結果に基づいて、揮発性有機
化合物としてテトラクロルエチレンを0.1ml、cis-1.
2.ジクロルエチレン(CHCl=CHCl)を0.05
ml、それぞれ注入し、紫外線を約20秒照射し、これら
テトラクロルエチレン、cis-1.2.ジクロルエチレンの酸
化分解状況についても同様に実験を行った。その結果を
表1に示す。Based on this result, 0.1 ml of tetrachloroethylene as a volatile organic compound, cis-1.
2. Dichloroethylene (CHCl = CHCl) 0.05
Each of them was injected and irradiated with ultraviolet rays for about 20 seconds, and the same experiment was carried out for the oxidative decomposition state of these tetrachloroethylene and cis-1.2.dichloroethylene. Table 1 shows the results.
【0050】[0050]
【表1】 この表1に示す結果から、20秒間の紫外線の照射によ
り、トリクロルエチレンは、第1次副生成物として、ほ
とんどが塩化水素(HCl)、二酸化炭素(CO2 )、
塩化カルボニル(COCl2 )、ジクロルアセチルクロ
リド(Cl2 CHCOCl)に酸化分解され、塩化カル
ボニルは32ppm 、ジクロルアセチルクロリドは130
ppm 検出された。また、テトラクロルエチレンおよびci
s-1.2.ジクロルエチレンも、ほとんどが塩化水素、二酸
化炭素、塩化カルボニルなどに酸化分解され、塩化カル
ボニルは、テトラクロルエチレンが37ppm 、cis-1.2.
ジクロルエチレンは26ppm 検出された。なお、テトラ
クロルエチレンおよびcis-1.2.ジクロルエチレンでは、
分解されて生成された上記以外の副生成物が存在した
が、特定できなかった。[Table 1] From the results shown in Table 1, by irradiation with ultraviolet rays for 20 seconds, most of trichlorethylene was hydrogen chloride (HCl), carbon dioxide (CO 2 ), as a primary by-product,
It is oxidatively decomposed into carbonyl chloride (COCl 2 ) and dichloroacetyl chloride (Cl 2 CHCOCl). Carbonyl chloride is 32 ppm and dichloroacetyl chloride is 130 ppm.
ppm was detected. Also, tetrachlorethylene and ci
Most of s-1.2.dichloroethylene is also oxidatively decomposed into hydrogen chloride, carbon dioxide, carbonyl chloride, etc., and carbonyl chloride is tetrachloroethylene 37 ppm, cis-1.2.
Dichloroethylene was detected at 26 ppm. In addition, in tetrachloroethylene and cis-1.2.dichloroethylene,
There was a by-product other than the above that was generated by decomposition, but could not be identified.
【0051】次に、低圧水銀灯22のガラス管を、波長が
200nm以下の紫外線を50%以下透過する溶融石英ガ
ラスにて形成した低圧水銀灯22を照射槽1に配設して、
実験1−1と同様な操作にて実験1−2を行った。その
結果を図4に示す。Next, the glass tube of the low-pressure mercury lamp 22 is provided in the irradiation tank 1 with the low-pressure mercury lamp 22 made of fused silica glass which transmits 50% or less of ultraviolet rays having a wavelength of 200 nm or less.
Experiment 1-2 was performed by the same operation as Experiment 1-1. FIG. 4 shows the results.
【0052】この図4に示す実験1−2の結果から、波
長が200nm以下の紫外線が少ないと、紫外線を長時間
照射しても、トリクロルエチレンは、ほとんど酸化分解
されないことがわかる。From the results of Experiment 1-2 shown in FIG. 4, it can be seen that trichlorethylene is hardly oxidatively decomposed even if it is irradiated with ultraviolet rays for a long time when the amount of ultraviolet rays having a wavelength of 200 nm or less is small.
【0053】そして、内径が1cmのガラスセル中に、ト
リクロルエチレンを528ppm およびテトラクロルエチ
レンを328ppm 投入して、それぞれの透過率を測定し
た結果を図5に示す。この図5に示す結果から、トリク
ロルエチレンおよびテトラクロルエチレンは、波長が2
40nm以下の紫外線を吸収し、200nm以下ではほぼ5
0%近く吸収することがわかる。Then, into a glass cell having an inner diameter of 1 cm, 528 ppm of trichlorethylene and 328 ppm of tetrachlorethylene were charged, and the results of measuring the respective transmittances are shown in FIG. From the results shown in FIG. 5, the wavelengths of trichloroethylene and tetrachloroethylene are 2
Absorbs UV light of 40 nm or less, and almost 5 at 200 nm or less
It can be seen that it absorbs nearly 0%.
【0054】次に、実験1−1および1−2の紫外線照
射された管体21内の気体を、図示しないガラス製シリン
ダにて80ml抽出し、さらに、このシリンダにイオン交
換水10mlを採取し、このシリンダを約10分間振盪
し、実験2を行った。その結果を表2に示す。Next, 80 ml of the gas in the tube body 21 irradiated with ultraviolet rays in Experiments 1-1 and 1-2 was extracted with a glass cylinder (not shown), and 10 ml of ion-exchanged water was collected in this cylinder. Experiment 2 was performed by shaking the cylinder for about 10 minutes. Table 2 shows the results.
【0055】[0055]
【表2】 まず、シリンダ内の気体を定性分析した結果、トリクロ
ルエチレン、テトラクロルエチレン、cis-1.2.ジクロル
エチレンとも、塩化カルボニルおよびジクロルアセチル
クロリドなど揮発性有機化合物や第1次副生成物は検出
されなかった。[Table 2] First, as a result of qualitative analysis of the gas in the cylinder, volatile organic compounds such as carbonyl chloride and dichloroacetyl chloride and primary by-products were detected in trichloroethylene, tetrachloroethylene, and cis-1.2.dichloroethylene. There wasn't.
【0056】また、シリンダ内の液体のpH値を測定し
たところ、トリクロルエチレンの場合にはpH値は3.
9で、塩化水素(HCl)、二酸化炭素(CO2)の他
に、第2次副生成物である易分解性のジクロル酢酸(C
HCl2COOH)などが検出された。なお、ジクロル
酢酸は5.9mg/l検出された。さらに、テトラクロルエ
チレンおよびcis-1.2.ジクロルエチレンの場合には、ジ
クロル酢酸も検出されなかった。When the pH value of the liquid in the cylinder was measured, it was found that the pH value in the case of trichlorethylene was 3.
In addition to hydrogen chloride (HCl) and carbon dioxide (CO2), the secondary by-product, easily degradable dichloroacetic acid (C)
HCl2COOH) etc. were detected. 5.9 mg / l of dichloroacetic acid was detected. Furthermore, in the case of tetrachlorethylene and cis-1.2.dichloroethylene, dichloroacetic acid was also not detected.
【0057】このため、第1次副生成物の塩化水素、塩
化カルボニル、ジクロルアセチルクロリドや特定できな
かった第1次副生成物は、イオン交換水との接触により
全てイオン交換水に溶解もしくは加水分解されたものと
考えられる。Therefore, the primary by-products such as hydrogen chloride, carbonyl chloride, dichloroacetyl chloride and the unspecified primary by-products are all dissolved in the ion-exchanged water by contact with the ion-exchanged water or It is considered to have been hydrolyzed.
【0058】次に、図6に示す実験装置を用いて、実験
3を行った。この図6に示す実験装置は、図2に示す照
射槽と略同形状に、ステンレスにて直径が略30cm、高
さが略80cmの略円筒状の管体21に、紫外線ランプであ
る20Wのキセノンフラッシュランプを配設し、上端面
に注入部23を設けて気密に照射槽1を形成している。ま
た、この照射槽1の底部からバルブ24a を有した送気管
4aを原水槽6となる気密構造の水槽6aの底部に配設した
散気装置7に連通させ、この水槽6aの上部から風量が1
5l/分のブロワ24b およびバルブ24c を有した循環管
4bを照射槽1の上部に連通して閉路を形成している。な
お、管体21内には乾燥空気を充填し、水槽6a内には各種
pHを異ならせた水を貯溜する。Next, Experiment 3 was conducted using the experimental apparatus shown in FIG. The experimental apparatus shown in FIG. 6 has substantially the same shape as the irradiation tank shown in FIG. 2, and is made of stainless steel and has a substantially cylindrical tube body 21 having a diameter of about 30 cm and a height of about 80 cm. A xenon flash lamp is provided and an injection part 23 is provided on the upper end surface to form the irradiation tank 1 in an airtight manner. Further, an air supply pipe having a valve 24a from the bottom of the irradiation tank 1
4a is communicated with an air diffuser 7 provided at the bottom of the water tank 6a having an airtight structure to be the raw water tank 6, and the air volume from the top of the water tank 6a is 1
Circulation pipe with blower 24b and valve 24c of 5 l / min
4b communicates with the upper part of the irradiation tank 1 to form a closed circuit. The pipe 21 is filled with dry air, and water having different pH is stored in the water tank 6a.
【0059】そして、照射槽1の管体21内に注入部23か
ら揮発性有機化合物としてトリクロルエチレンを0.5
ml注入し、紫外線を20秒間照射した後、バルブ24a ,
24cを開きブロワ24b を駆動させて、管体21内の気体を
水槽6a内の水に散気装置7から曝気して、15分間循環
させる。そして、管体21内の気体を定量分析した。その
結果を表3および図7に示す。Then, 0.5 parts of trichloroethylene as a volatile organic compound is injected from the injection part 23 into the tube body 21 of the irradiation tank 1.
After injecting ml and irradiating with ultraviolet light for 20 seconds, bulb 24a,
24c is opened and the blower 24b is driven to aerate the gas in the pipe body 21 to the water in the water tank 6a from the air diffuser 7 and circulate the gas for 15 minutes. Then, the gas in the tube body 21 was quantitatively analyzed. The results are shown in Table 3 and FIG. 7.
【0060】[0060]
【表3】 この表3および図7に示す結果から、水のpHが8のア
ルカリ性になるにしたがって管体21内の第1次副生成物
である塩化カルボニル量が急激に減少し、pH10以上
のアルカリ性ではほとんど塩化カルボニルが検出されな
かった。また、第1次副生成物であるジクロルアセチル
クロリドは、水槽6a内の水のpHにかかわらず検出され
なかった。[Table 3] From the results shown in Table 3 and FIG. 7, the amount of carbonyl chloride, which is the primary by-product in the tube 21, decreases sharply as the pH of water becomes alkaline at 8. No carbonyl chloride was detected. Further, the primary by-product, dichloroacetyl chloride, was not detected regardless of the pH of the water in the water tank 6a.
【0061】このため、揮発性有機化合物であるトリク
ロルエチレンに紫外線を照射することによって生成され
る第1次副生成物、特に塩化カルボニルは、アルカリ性
の水、特にpH8以上、好ましくはpH10以上のアル
カリ性の水を用いることにより非常によく溶解吸収で
き、効率よく捕捉することができることが分かる。Therefore, the primary by-product produced by irradiating the volatile organic compound trichlorethylene with ultraviolet rays, particularly carbonyl chloride, is alkaline water, particularly pH 8 or higher, preferably pH 10 or higher. It can be seen that, by using the water of No. 3, the water can be dissolved and absorbed very well, and the water can be efficiently captured.
【0062】次に、塩化ビニルにて、直径が略400m
m、高さが略600mmの合成槽25と、縦が略210mm、
横が略145mm、高さが略500mmの曝気槽26と、直径
が略150mm、高さが略210mmの沈殿池27とを形成す
る。そして、図8に示すように、合成槽25の底部と曝気
槽26の上部とを原水ポンプ28を介して原水管29で接続す
る。また、曝気槽26の底部と沈殿池27の上部とを送水ポ
ンプ30を介して送水管31で接続するとともに、沈殿池27
の底部と曝気槽26の上部とを還流ポンプ32を介して還流
管33で接続する。さらに、曝気槽26には、曝気装置とし
て送気ポンプ34に接続された散気管35が接続され、曝気
槽26内に空気を曝気するようになっている。また、沈殿
池27の上部には、上澄みの処理水が装置外に放流される
放水管36を接続する。そして、この装置を用いて実験4
を行った。Next, using vinyl chloride, the diameter is about 400 m.
m, the height of about 600mm synthetic tank 25, and the length of about 210mm,
An aeration tank 26 having a width of about 145 mm and a height of about 500 mm and a settling tank 27 having a diameter of about 150 mm and a height of about 210 mm are formed. Then, as shown in FIG. 8, the bottom of the synthesis tank 25 and the top of the aeration tank 26 are connected by a raw water pipe 29 via a raw water pump 28. Further, the bottom of the aeration tank 26 and the upper part of the settling tank 27 are connected by a water feed pipe 31 via a water feed pump 30, and the settling tank 27
The bottom of the tank is connected to the top of the aeration tank by a reflux pipe 33 via a reflux pump 32. Further, the aeration tank 26 is connected with an air diffuser pipe 35 connected to an air supply pump 34 as an aeration device so that air is aerated in the aeration tank 26. In addition, a water discharge pipe 36 through which the supernatant treated water is discharged outside the apparatus is connected to the upper part of the settling tank 27. Then, using this device, Experiment 4
Was done.
【0063】まず、合成槽25に水を流入し、この水に酢
酸を200mg/l、ペプトン100mg/l添加し、合成汚水
37を生成する。なお、この合成汚水37は、生化学的酸素
要求量(BOD)が176mg/l、化学的酸素要求量(C
OD)が42mg/lであった。一方、曝気槽26に合成した
合成汚水37を流入し、好気性生物を増殖させておく。な
お、この曝気槽26は、図1に示す充填層15を設けず曝気
のエアリフトにより好気性生物が合成汚水37中に浮遊し
て浄化処理するものである。First, water is made to flow into the synthesis tank 25, and 200 mg / l of acetic acid and 100 mg / l of peptone are added to this water to synthesize synthetic wastewater.
Generates 37. This synthetic wastewater 37 has a biochemical oxygen demand (BOD) of 176 mg / l and a chemical oxygen demand (C
OD) was 42 mg / l. On the other hand, the synthetic wastewater 37 that has been synthesized flows into the aeration tank 26 to grow aerobic organisms. The aeration tank 26 does not have the packing layer 15 shown in FIG. 1 and aerobic organisms are suspended in the synthetic sewage 37 by an aeration air lift for purification treatment.
【0064】また、合成汚水37の処理においては、合成
汚水37を合成槽25から14ml/分で曝気槽26に流入さ
せ、曝気槽26から処理された処理水および浮遊する好気
性生物を沈殿池27に14ml/分で流入させ、沈殿池27の
底部から沈降した好気性生物を7ml/分で曝気槽26に還
流させ、沈殿池27の上部の上澄みの処理水を14ml/分
で放水管36から放水させる。In the treatment of the synthetic sewage 37, the synthetic sewage 37 is allowed to flow into the aeration tank 26 from the synthesis tank 25 at 14 ml / min, and the treated water treated from the aeration tank 26 and floating aerobic organisms are settled in a sedimentation tank. 27 ml at a rate of 14 ml / min, aerobic organisms settling from the bottom of the sedimentation tank 27 are returned to the aeration tank 26 at 7 ml / min, and the treated water in the upper part of the sedimentation tank 27 is discharged at 14 ml / min. Let water drain from.
【0065】そして、表4に示す条件にて、実験2で生
成された第2次副生成物のジクロル酢酸を合成汚水37に
添加し、合成汚水37の浄化処理を行った。合成汚水37の
浄化処理状況として、沈殿池27から放水管36を介して放
流される上澄みの処理水のBODを測定し、その結果を
図9に示す。Under the conditions shown in Table 4, the secondary byproduct dichloroacetic acid produced in Experiment 2 was added to the synthetic wastewater 37 to purify the synthetic wastewater 37. As the purification treatment status of the synthetic wastewater 37, the BOD of the treated water of the supernatant discharged from the settling tank 27 through the discharge pipe 36 was measured, and the result is shown in FIG.
【0066】[0066]
【表4】 この図9に示す結果から、ジクロル酢酸を添加しない合
成汚水37のみの浄化処理である第1処理段階(RUN
1)では、BOD値は、10〜20mg/lまで浄化処理さ
れることが分かる。[Table 4] From the results shown in FIG. 9, the first treatment stage (RUN) is a purification treatment of only the synthetic wastewater 37 without addition of dichloroacetic acid.
In 1), it can be seen that the BOD value is purified to 10 to 20 mg / l.
【0067】そして、この合成汚水37の処理状況の中
で、合成汚水37に20mg/lのジクロル酢酸を添加して第
2処理段階(RUN2)の浄化処理を行うと、若干BO
D値が上昇し、少量のジクロル酢酸が処理水中に検出さ
れたが、処理の後期段階では、BODも15mg/l以下に
低下し、ジクロル酢酸も検出されなくなった。Then, in the treatment situation of the synthetic wastewater 37, when 20 mg / l of dichloroacetic acid was added to the synthetic wastewater 37 and the purification treatment of the second treatment stage (RUN2) was carried out, it was slightly BO.
The D value increased and a small amount of dichloroacetic acid was detected in the treated water, but in the latter stage of the treatment, BOD also decreased to 15 mg / l or less and dichloroacetic acid was not detected.
【0068】さらに、第3処理段階(RUN3)でジク
ロル酢酸の添加量を増加させても、同様に処理の後期段
階ではBODも低下し、ジクロル酢酸も検出されなくな
る。そして、さらにジクロル酢酸の添加量を増加させた
第4処理段階(RUN4)では、処理の前期段階でもジ
クロル酢酸は検出されなくなり、ジクロル酢酸の添加に
よるBODの上昇も少なくなり、処理水のBODも15
mg/l以下に低下する。Furthermore, even if the amount of dichloroacetic acid added in the third treatment stage (RUN3) is increased, BOD is also decreased and dichloracetic acid is not detected in the latter stage of the treatment. Then, in the fourth treatment stage (RUN4) in which the amount of added dichloroacetic acid was further increased, dichloroacetic acid was not detected even in the earlier stage of the treatment, the increase in BOD due to the addition of dichloroacetic acid was reduced, and the BOD of treated water was also 15
It drops below mg / l.
【0069】すなわち、曝気槽26内にジクロル酢酸を分
解する好気性生物が少ない運転初期段階では、多少処理
水中にジクロル酢酸が検出されるが、曝気槽26内でジク
ロル酢酸を分解する好気性生物が順養されると、合成汚
水37とともに確実に分解されることがわかる。That is, in the aerial stage of operation where there are few aerobic organisms decomposing dichloroacetic acid in the aeration tank 26, some dichloroacetic acid is detected in the treated water, but aerobic organisms decomposing dichloroacetic acid in the aeration tank 26 are detected. It can be seen that when is cultivated, it is surely decomposed together with the synthetic wastewater 37.
【0070】したがって、本発明の処理方法によれば、
有毒な揮発性有機化合物を短時間の紫外線照射のみで第
1次副生成物に分解し、アルカリ性の水、特にpH8以
上、好ましくはpH10以上のアルカリ性の水との接触
により好気性生物にて浄化処理可能な易分解性の第2次
副生成物を効率よく容易に生成させ、揮発性有機化合物
を抽出した汚水13,37とともに浄化処理するので、オゾ
ンや過酸化水素などを用いずとも、容易で確実に効率よ
く安価に無害化できるとともに、汚水13,37の浄化処理
とともに副生成物を浄化処理するため、副生成物による
汚染を防止でき、効率よく浄化処理できる。Therefore, according to the processing method of the present invention,
Toxic volatile organic compounds are decomposed into primary by-products only by short-time UV irradiation, and purified by aerobic organisms by contact with alkaline water, especially pH 8 or more, preferably pH 10 or more alkaline water. Efficient and easy production of easily decomposable secondary by-products and purification treatment with sewage 13, 37 from which volatile organic compounds are extracted makes it easy even without using ozone or hydrogen peroxide. In addition to being able to reliably and efficiently detoxify the wastewater at a low cost, the purification treatment of the wastewater 13 and 37 as well as the purification of the by-product can prevent the contamination by the by-product, and the purification treatment can be performed efficiently.
【0071】なお、上記実施例において、紫外線の照射
により分解生成された第1次副生成物を、原水槽6にて
pH値を制御しつつ一旦第2次副生成物にし、この生成
された第2次副生成物を曝気槽12にて浄化処理したが、
例えば図10に示すように、原水槽6と曝気槽12とを一
体的に形成する構造としてもよい。In the above example, the primary by-product decomposed and produced by the irradiation of ultraviolet rays was once converted into the secondary by-product while controlling the pH value in the raw water tank 6, and this secondary by-product was produced. The secondary by-product was purified in the aeration tank 12,
For example, as shown in FIG. 10, the raw water tank 6 and the aeration tank 12 may be integrally formed.
【0072】すなわち、曝気槽12を気密構造とし、この
曝気槽12にpH制御装置8を設けて、第1次副生成物を
直接曝気槽12中の汚水13に曝気させ、第2次副生成物を
生成させるとともに、この第2次副生成物を上部に還流
させて吐出部14より吐出させ、曝気槽12内の空気を還流
される汚水13に接触させつつ、充填層15を形成するラー
シッヒリングや多孔質材料などの充填材に担持された好
気性生物にて汚水13中の第2次副生成物を分解させる。
この構成によれば、処理装置の構造をさらに簡略化でき
る。That is, the aeration tank 12 has an airtight structure, the pH control device 8 is provided in the aeration tank 12, and the primary byproduct is directly aerated to the wastewater 13 in the aeration tank 12, and the secondary byproduct is generated. While forming the product, the secondary by-product is refluxed to the upper part and discharged from the discharge part 14, and the air in the aeration tank 12 is brought into contact with the recycled wastewater 13 while forming the packed bed 15. The secondary by-products in the wastewater 13 are decomposed by aerobic organisms carried by a packing material such as Schichling or a porous material.
With this configuration, the structure of the processing device can be further simplified.
【0073】また、第1次副生成物のアルカリ性の水と
の接触として、水中に曝気して説明したが、第1次副生
成物を充填した原水槽6内にアルカリ性の水を噴霧する
などいずれの方法でもできる。Further, as the contact of the primary by-product with the alkaline water, the explanation was made by aeration in water, but the alkaline water is sprayed into the raw water tank 6 filled with the primary by-product. Either method is possible.
【0074】さらに、汚水13および土中から揮発性有機
化合物を真空などにより抽出し、この揮発性有機化合物
を紫外線にて第1次副生成物に分解し、アルカリ性の水
との接触後、汚水13とは別に曝気槽12内で好気性生物に
て分解処理した後、汚水13と別に放水してもできる。Further, volatile organic compounds are extracted from the wastewater 13 and the soil by vacuum or the like, and the volatile organic compounds are decomposed into primary by-products by ultraviolet rays, and after contact with alkaline water, the wastewater is discharged. Separately from the aeration tank 12, it can be decomposed by aerobic organisms in the aeration tank 12 and then discharged separately from the sewage 13.
【0075】また、揮発性有機化合物として塩素基を有
する揮発性有機化合物を用いて説明したが、ベンゼンや
トルエンなどでも同様に分解処理できる。Further, although the volatile organic compound having a chlorine group is used as the volatile organic compound, the decomposition treatment can be similarly performed with benzene or toluene.
【0076】次に、他の実施例を図面を参照して説明す
る。Next, another embodiment will be described with reference to the drawings.
【0077】図11および図12に示す実施例は、図1
ないし図9に示す実施例の曝気槽12の代わりに吸着処理
装置を設けたものである。The embodiment shown in FIGS. 11 and 12 is similar to that shown in FIG.
In addition, an adsorption treatment device is provided instead of the aeration tank 12 of the embodiment shown in FIG.
【0078】すなわち、波長が200nm以下の紫外線を
50%以上照光する図示しない紫外線ランプを収容した
気密構造の照射槽1に、工場排水などの汚水13中の揮発
性有機化合物を空気とともに抽出する抽出装置2が接続
されている。That is, the volatile organic compounds in the wastewater 13 such as factory wastewater are extracted together with air into the irradiation tank 1 having an airtight structure containing an ultraviolet lamp (not shown) that illuminates 50% or more of ultraviolet rays having a wavelength of 200 nm or less. Device 2 is connected.
【0079】そして、この抽出装置2は、ブロワ41から
の空気を曝気する曝気手段42を底部近傍に配設した抽出
槽43を備え、この抽出槽43には、曝気により汚水13中か
ら抽出された揮発性有機化合物を、流量が流量調節装置
44にて調整されて送気する抽出管45が接続されている。The extraction apparatus 2 is provided with an extraction tank 43 in which aeration means 42 for aerating the air from the blower 41 is arranged near the bottom, and the extraction tank 43 is extracted from the wastewater 13 by aeration. Flow control device for volatile organic compounds
An extraction pipe 45, which is adjusted by 44 and sends air, is connected.
【0080】さらに、照射槽1には、紫外線照射により
分解生成された第1副生成物を、送気管4を介して散気
装置7から散気する原水槽6が接続されている。Further, the irradiation tank 1 is connected to a raw water tank 6 for diffusing a first by-product decomposed and generated by irradiation of ultraviolet rays from an air diffusing device 7 through an air feeding pipe 4.
【0081】また、この原水槽6は、図12に示すよう
に、図1ないし図9に示す実施例と同様に、気密かつ耐
腐食構造に形成されている。さらに、水48が流入される
図示しない流水口が形成されているとともに、この導入
された水48を攪拌する図示しない攪拌手段が設けられて
いる。Further, as shown in FIG. 12, the raw water tank 6 is formed in an airtight and corrosion resistant structure as in the embodiment shown in FIGS. 1 to 9. Further, a water outlet (not shown) through which the water 48 flows is formed, and a stirring means (not shown) for stirring the introduced water 48 is provided.
【0082】そして、原水槽6の底部には、送気管4に
連通された散気装置7が形成され、この散気装置7から
照射槽1より送気管4を介して搬送される第1次副生成
物を含有する空気が、流水口から流入された水48に散気
される。また、原水槽6の中間部には、図10に示す実
施例と同様に、図示しないラーシッヒリングなどの充填
材が充填された充填層49が形成されている。At the bottom of the raw water tank 6, an air diffuser 7 communicating with the air supply pipe 4 is formed, and the primary air is transported from the air diffuser 7 from the irradiation tank 1 through the air supply pipe 4. Air containing by-products is diffused into the water 48 that has flowed in through the water outlet. Further, in the intermediate portion of the raw water tank 6, as in the embodiment shown in FIG. 10, a filling layer 49 filled with a filler such as a Raschig ring (not shown) is formed.
【0083】さらに、原水槽6には、図10に示す実施
例と同様に、散気された水48のpH値を検出するセンサ
8aと、水酸化ナトリウム(NaOH)や炭酸ナトリウム
(Na2 CO3 )、炭酸水素ナトリウム(NaHC
O3 )、水酸化カリウム(KOH)などを添加するアル
カリ制御装置8bとを設けた水を中性に制御するpH制御
装置8が接続されている。Further, as in the embodiment shown in FIG. 10, the raw water tank 6 has a sensor for detecting the pH value of the diffused water 48.
8a, sodium hydroxide (NaOH), sodium carbonate (Na 2 CO 3 ), sodium hydrogen carbonate (NaHC
A pH controller 8 for controlling water to neutrality is provided, which is provided with an alkali controller 8b for adding O 3 ), potassium hydroxide (KOH) and the like.
【0084】また、原水槽6の底部には、循環手段とし
ての循環ポンプ51を設けた循環管52が接続され、途中に
設けた流量計53にて流量を調整しつつ原水槽6内の水48
を再び原水槽6の上部に設けた散水手段55にて散水して
循環する閉鎖循環回路が構成されている。そして、この
循環管52には、バルブ57が設けられた搬送管10が接続さ
れ、一部は原水槽6に返送し、適宜原水槽6内が水48を
引き抜くようになっている。Further, a circulation pipe 52 provided with a circulation pump 51 as a circulation means is connected to the bottom of the raw water tank 6, and the water in the raw water tank 6 is adjusted while the flow rate is adjusted by a flow meter 53 provided on the way. 48
A closed circulation circuit is constructed in which water is again circulated by water sprinkling means 55 provided on the upper part of the raw water tank 6. The circulation pipe 52 is connected to the carrier pipe 10 provided with a valve 57, and a part of it is returned to the raw water tank 6 so that the inside of the raw water tank 6 drains water 48 as appropriate.
【0085】さらに、原水槽6の上部には、散気装置7
から散気した気体を吸気する図示しない吸気手段が設け
られ、吸気管59を介して、吸気した気体を照射槽1に返
送して再び紫外線照射させるようになっている。なお、
この吸気管59からの気体は、適宜図示しない吸着処理装
置に送気するようにしてもよい。Further, on the upper part of the raw water tank 6, there is an air diffuser 7
Intake means (not shown) for inhaling the gas diffused from is provided, and the inhaled gas is returned to the irradiation tank 1 through the intake pipe 59 to irradiate the ultraviolet rays again. In addition,
The gas from the intake pipe 59 may be appropriately sent to an adsorption treatment device (not shown).
【0086】なお、吸着処理装置は、図示しない活性炭
などの吸着剤が充填された吸着層が形成され、この吸着
層の通過により、原水槽6から引き抜いた空気に含まれ
る揮発性有機化合物、各種副生成物などを吸着処理し、
処理された空気は、系外に排気される。In the adsorption treatment device, an adsorption layer filled with an adsorbent such as activated carbon (not shown) is formed, and when the adsorption layer passes through the adsorption layer, volatile organic compounds contained in the air drawn from the raw water tank 6 By-products are adsorbed,
The treated air is exhausted outside the system.
【0087】次に、上記図11および図12に示す実施
例の装置についての処理動作を説明する。Next, the processing operation of the apparatus of the embodiment shown in FIGS. 11 and 12 will be described.
【0088】ベンゼン(C6 H6 )やトルエン(C7 H
8 )、トリクロルエチレン(CHCl=CCl2 )やテ
トラクロルエチレン(CCl2 =CCl2 )などの揮発
性有機化合物を含有する工業排水などの汚水13を、抽出
装置2に流入し、この汚水13にブロワ41からの空気を曝
気手段42から曝気して汚水13中の揮発性有機化合物を空
気中に揮発させる。そして、この揮発性有機化合物を含
有する空気を照射槽1に流入する。Benzene (C 6 H 6 ) and toluene (C 7 H
8 ) Sewage 13 such as industrial effluent containing volatile organic compounds such as trichlorethylene (CHCl = CCl 2 ) and tetrachlorethylene (CCl 2 ═CCl 2 ) flows into the extraction device 2 and enters this sewage 13. The air from the blower 41 is aerated by the aeration means 42 to volatilize the volatile organic compounds in the wastewater 13 into the air. Then, the air containing the volatile organic compound flows into the irradiation tank 1.
【0089】次に、照射槽1に流入した揮発性有機化合
物を含有する空気に、図1ないし図7に示す実施例と同
様に、図示しない紫外線ランプにて紫外線を適宜照射
し、揮発性有機化合物を、例えば揮発性有機化合物とし
てトリクロルエチレンを使用した場合、塩化カルボニル
(COCl2 )やジクロルアセチルクロリド(Cl2 C
HCOCl)などの第1副生成物に分解する。Next, the volatile organic compound-containing air that has flowed into the irradiation tank 1 is appropriately irradiated with ultraviolet rays by an ultraviolet lamp (not shown) as in the embodiment shown in FIGS. When trichloroethylene is used as the compound, for example, volatile organic compound, carbonyl chloride (COCl 2 ) or dichloroacetyl chloride (Cl 2 C
HCOCl) and other first by-products are decomposed.
【0090】そして、紫外線を所定時間照射後、照射槽
1内の第1副生成物を含有する空気を送気管4を介して
原水槽6に送気する。次に、原水槽6内にあらかじめ流
水口を介して流入した水48に、pH制御装置8にてpH
値をアルカリ性、例えばpH8以上、好ましくはpH1
0以上のアルカリ性となるように制御し、図示しない攪
拌手段にて水を攪拌しつつ、送気管4を介して送気され
た空気を散気装置7から散気する。After irradiation with ultraviolet rays for a predetermined time, the air containing the first by-product in the irradiation tank 1 is sent to the raw water tank 6 through the air supply pipe 4. Next, the pH of the water 48 that has flowed into the raw water tank 6 through the water outlet in advance is adjusted by the pH controller 8.
Value is alkaline, eg pH 8 or higher, preferably pH 1
The air blown through the air feeding pipe 4 is diffused from the diffuser 7 while controlling the alkalinity to be 0 or more and stirring the water by a stirring means (not shown).
【0091】なお、この散気の際、循環ポンプ51を駆動
させ、上部に設けた散水手段55より充填層49に、照射槽
1からの空気が曝気されたアルカリ性の水48を散水し、
再び原水槽6内の空気と接触させる。また、適宜図示し
ない吸気手段から吸気管59を介して空気を照射槽1に返
送する。At the time of this air diffusion, the circulating pump 51 is driven, and the water sprinkling means 55 provided at the upper portion sprinkles the alkaline water 48 to which the air from the irradiation tank 1 is aerated into the packed bed 49,
It is again brought into contact with the air in the raw water tank 6. Further, air is appropriately returned to the irradiation tank 1 from an intake means (not shown) through the intake pipe 59.
【0092】そして、この散気により、空気に含有する
第1副生成物は、アルカリ性の水48との接触によりアル
カリ性の水48に効率よく溶解もしくは加水分解されて捕
捉され、塩化水素(HCl)やジクロル酢酸(CHCl
2COOH)などの易分解性の第2次副生成物となる。
また、アルカリ性の水48との接触により水48中に第2次
副生成物として含有されずに水面から原水槽6内に拡散
した第1次副生成物は、散水手段55からの散水により再
び水48と接触される。By this aeration, the first by-product contained in the air is efficiently dissolved or hydrolyzed in the alkaline water 48 by contact with the alkaline water 48 and captured, and hydrogen chloride (HCl) is added. And dichloroacetic acid (CHCl
2COOH) and other easily decomposable secondary byproducts.
Further, the primary by-product diffused from the water surface into the raw water tank 6 without being contained as a secondary by-product in the water 48 due to contact with the alkaline water 48, is again sprayed by the sprinkling means 55. Contacted with water 48.
【0093】このため、第1次副生成物が系外に漏洩す
ることなく、確実にアルカリ性の水48に捕捉できるとと
もに、散水する水48は、既に第1次副生成物が第2次副
生成物となって含有されているため、水48中への第2次
副生成物の濃度が上昇し濃縮できる。Therefore, the primary by-product does not leak to the outside of the system and can be reliably captured by the alkaline water 48, and the sprinkled water 48 already has the primary by-product as the secondary by-product. Since it is contained as a product, the concentration of the secondary by-product in the water 48 is increased and it can be concentrated.
【0094】さらに、吸気手段にて原水槽6内の空気を
照射槽1に送気するため、紫外線照射により分解されな
かった揮発性有機化合物が、第1次副生成物を含有する
空気とともに原水槽6に流入したとしても、再び照射槽
1に返送されて紫外線照射により分解されるので、有害
な揮発性有機化合物を系外に漏洩することなく確実に第
1次副生成物に分解して、アルカリ性の水に捕捉でき
る。また、照射槽1に返送せず適宜引き抜いた吸着処理
装置58に送気することにより、抽出装置2にて抽出した
揮発性有機化合物に紫外線難分解性の物質が含有してい
ても、吸着剤にて確実に吸着除去されるため、系外に有
害な揮発性有機化合物が漏洩することを防止できる。Further, since the air in the raw water tank 6 is sent to the irradiation tank 1 by the suction means, the volatile organic compounds which have not been decomposed by the irradiation of ultraviolet rays are discharged together with the air containing the primary by-product. Even if it flows into the water tank 6, it is returned to the irradiation tank 1 again and decomposed by ultraviolet irradiation, so that harmful volatile organic compounds are surely decomposed into primary by-products without leaking out of the system. , Can be captured in alkaline water. Moreover, even if the volatile organic compound extracted by the extraction device 2 contains a substance that is hardly decomposed by ultraviolet rays, the adsorbent is not returned to the irradiation tank 1 but is blown to the adsorption treatment device 58 that is appropriately extracted. Since it is surely adsorbed and removed by, it is possible to prevent harmful volatile organic compounds from leaking out of the system.
【0095】そして、散気装置7からの散気が終了し、
水酸化ナトリウム(NaOH)などを投入せずとも、p
H値がほぼ一定となった後、攪拌を停止して、駆動する
循環ポンプ51により、原水槽6内の第2次副生成物が濃
縮されたアルカリ性の水48をバルブ57を調整して搬送管
10を介して適宜引き抜き、焼却や生物処理などにて処理
する。したがって、濃縮させない処理方法に比し、第2
次副生成物の処理する水の量が減少し、処理コストが低
減できる。Then, the air diffusion from the air diffuser 7 is completed,
Even without adding sodium hydroxide (NaOH), p
After the H value becomes almost constant, the stirring is stopped and the circulating pump 51 is driven to convey the alkaline water 48 in which the secondary by-products in the raw water tank 6 are concentrated by adjusting the valve 57. tube
It is appropriately extracted through 10 and treated by incineration or biological treatment. Therefore, the second
The amount of water to be treated as the by-product is reduced, and the treatment cost can be reduced.
【0096】次に、さらに他の実施例を図面を参照して
説明する。Next, still another embodiment will be described with reference to the drawings.
【0097】図13および図14に示す実施例は、図1
1ないし図12に示す実施例に、図1ないし図9に示す
実施例の曝気槽12を設けたものである。The embodiment shown in FIGS. 13 and 14 is similar to that shown in FIG.
The embodiment shown in FIGS. 1 to 12 is provided with the aeration tank 12 of the embodiment shown in FIGS.
【0098】すなわち、波長が200nm以下の紫外線を
50%以上照光する図示しない紫外線ランプを収容した
気密構造の照射槽1に、ブロワ41からの空気を曝気手段
42にて曝気し、工業排水などの汚水13中の揮発性有機化
合物を空気とともに抽出する抽出装置2が接続されてい
る。That is, the air from the blower 41 is aerated to the irradiation tank 1 having an airtight structure containing an ultraviolet lamp (not shown) that illuminates 50% or more of ultraviolet rays having a wavelength of 200 nm or less.
An extraction device 2 for aerating at 42 and extracting volatile organic compounds in wastewater 13 such as industrial wastewater together with air is connected.
【0099】そして、照射槽1には、紫外線照射により
分解生成された第1副生成物を、送気管4を介して散気
装置から散気する原水槽6が接続されている。The irradiation tank 1 is connected to a raw water tank 6 for diffusing the first by-product decomposed and generated by irradiation of ultraviolet rays from an air diffusing device via an air feeding pipe 4.
【0100】また、この原水槽6は、図11ないし図1
2に示す実施例と同様に、気密かつ耐腐食構造に形成さ
れている。さらに、水48が流入される図示しない流水口
が形成されているとともに、この導入された水48を攪拌
する図示しない攪拌手段が設けられている。The raw water tank 6 is shown in FIGS.
Similar to the embodiment shown in FIG. 2, it has an airtight and corrosion resistant structure. Further, a water outlet (not shown) through which the water 48 flows is formed, and a stirring means (not shown) for stirring the introduced water 48 is provided.
【0101】そして、原水槽6の底部には、送気管4に
連通された散気装置7が形成され、この散気装置7から
照射槽1より送気管4を介して搬送される第1次副生成
物を含有する空気が、流水口から流入された水48に散気
される。また、原水槽6の中間部には、図8に示す実施
例と同様に、ラーシッヒリングなどの充填材が充填され
た充填層49が形成されている。At the bottom of the raw water tank 6, an air diffuser 7 communicating with the air supply pipe 4 is formed, and the primary air is transported from the air diffuser 7 from the irradiation tank 1 through the air supply pipe 4. Air containing by-products is diffused into the water 48 that has flowed in through the water outlet. Further, in the middle portion of the raw water tank 6, as in the embodiment shown in FIG. 8, a filling layer 49 filled with a filler such as Raschig ring is formed.
【0102】また、原水槽6の底部には、循環手段とし
ての循環ポンプ51を設けた循環管52が接続され、途中に
設けたバルブ57にて流量を調整しつつ原水槽6内の水48
を再び原水槽6の上部に設けた散水手段55にて散水して
循環する閉鎖循環回路が構成されている。そして、この
循環管52には、バルブ57が設けられた搬送管10が接続さ
れ、循環管52にて循環されない一部の水48を、適宜曝気
槽12に送水するようになっている。Further, a circulation pipe 52 provided with a circulation pump 51 as a circulation means is connected to the bottom of the raw water tank 6, and water 48 in the raw water tank 6 is adjusted while the flow rate is adjusted by a valve 57 provided midway.
A closed circulation circuit is constructed in which water is again circulated by water sprinkling means 55 provided on the upper part of the raw water tank 6. The circulation pipe 52 is connected to the carrier pipe 10 provided with a valve 57, and a part of the water 48 that is not circulated in the circulation pipe 52 is appropriately fed to the aeration tank 12.
【0103】さらに、原水槽6の上部には、散気装置7
から散気した気体を吸気する図示しない吸気手段が設け
られ、この吸気手段から吸気管59を介して、吸気した空
気を再び照射槽1に返送して再び紫外線照射させるよう
になっている。なお、この吸気管59からの空気は、適宜
図示しない活性炭などの吸着剤が充填された吸着処理装
置58に送気し、揮発性有機化合物や副生成物などを吸着
除去し、浄化処理された空気を大気中に排気するように
している。Further, on the upper part of the raw water tank 6, an air diffuser 7 is provided.
Intake means (not shown) for inhaling the gas diffused from is provided, and the inhaled air is returned from the intake means to the irradiation tank 1 through the intake pipe 59 to irradiate the ultraviolet rays again. The air from the intake pipe 59 is appropriately sent to an adsorption treatment device 58, which is filled with an adsorbent such as activated carbon (not shown), to adsorb and remove volatile organic compounds, by-products, etc., and is purified. The air is exhausted to the atmosphere.
【0104】そして、曝気槽12には、上部に原水槽6か
ら搬送ポンプ51により搬送管10を介して搬送される水48
が吐出される吐出部14が設けられている。また、曝気槽
12内には中間に充填層15が設けられ、この充填層15は流
入した水中の第2次副生成物を分解する好気性生物が担
持される多数の図示しない多孔質材料などの充填材が充
填されて形成されている。Then, in the aeration tank 12, the water 48 transferred from the raw water tank 6 to the upper portion of the aeration tank 12 by the transfer pump 51 via the transfer pipe 10.
A discharge part 14 for discharging is provided. Also, aeration tank
A packed bed 15 is provided in the middle of the container 12, and the packed bed 15 contains a large number of packing materials such as porous materials (not shown) carrying aerobic organisms that decompose secondary by-products in the inflowing water. Filled and formed.
【0105】さらに、曝気槽12の下部には、汚水13に空
気を散気し充填層15の好気性生物に酸素を供給するブロ
ワ16が接続された曝気装置17が設けられている。なお、
曝気槽12には、図示しない逆流洗浄手段が設けられ、適
宜曝気槽12内を逆流洗浄し、回収した汚泥などは別途処
理したり、後述する好気性生物の栄養源として用いても
よい。Further, in the lower part of the aeration tank 12, there is provided an aeration device 17 to which a blower 16 which diffuses air into the wastewater 13 and supplies oxygen to aerobic organisms in the packed bed 15 is connected. In addition,
The aeration tank 12 is provided with a backwashing means (not shown), and the inside of the aeration tank 12 may be appropriately backwashed, and the collected sludge or the like may be separately treated or used as a nutrient source for aerobic organisms described later.
【0106】また、曝気槽12の上部には、充填層15の好
気性生物の生殖に必要な窒素、燐、マグネシウム、鉄、
カルシウム、マンガン、カルシウムなどの栄養源を添加
する添加装置61が設けられている。なお、添加装置61の
栄養源の代りに、曝気槽12の上部に、有機物質や窒素化
合物などの汚染物質が含まれる汚水13や汚泥物を流入す
るようにしてもよい。Further, in the upper part of the aeration tank 12, nitrogen, phosphorus, magnesium, iron, which are necessary for reproduction of aerobic organisms in the packed bed 15,
An adding device 61 for adding a nutrient source such as calcium, manganese, or calcium is provided. Instead of the nutrient source of the addition device 61, sewage 13 or sludge containing pollutants such as organic substances and nitrogen compounds may flow into the upper part of the aeration tank 12.
【0107】さらに、この曝気槽12の底部には、充填層
15の好気性生物により浄化処理された水48を流出する流
出管62が接続されている。また、この流出管62の下流側
には、図11および図12に示す実施例と同様、pH値
を検出するセンサ8aおよび水酸化ナトリウムなどを添加
するアルカリ制御装置8bを設けたpH制御装置8と、図
示しない攪拌手段を備えた水槽63が設けられている。Furthermore, a packed bed is provided at the bottom of the aeration tank 12.
An outflow pipe 62 for connecting the water 48 purified by 15 aerobic organisms is connected. Further, on the downstream side of the outflow pipe 62, as in the embodiment shown in FIGS. 11 and 12, a pH control device 8 having a sensor 8a for detecting a pH value and an alkali control device 8b for adding sodium hydroxide or the like is provided. And a water tank 63 provided with a stirring means (not shown).
【0108】そして、この水槽63の底部には、途中に放
水ポンプ18およびバルブ65を設けた返送手段としての返
送管66が接続され、水槽63の水48を適宜原水槽6の散水
手段55および曝気槽12の吐出部14に返送して還流させる
閉鎖還流回路が形成されている。At the bottom of the water tank 63, a return pipe 66 as a return means having a water discharge pump 18 and a valve 65 provided in the middle is connected, and the water 48 in the water tank 63 is appropriately sprinkled in the sprinkling means 55 and A closed reflux circuit is formed to return the gas to the discharge section 14 of the aeration tank 12 for reflux.
【0109】なお、この返送管66には、図示しないバル
ブを設けた放水管19が形成され、適宜水槽63の処理され
た水48を放水するようにしている。また、そのまま放水
せず、吸着剤などにて浄化処理後に放水するようにして
もよい。The return pipe 66 is provided with a water discharge pipe 19 provided with a valve (not shown) so that the treated water 48 in the water tank 63 is appropriately discharged. Alternatively, the water may not be discharged as it is, but may be discharged after purification treatment with an adsorbent or the like.
【0110】次に、上記図13および図14に示す実施
例の装置についての処理動作を説明する。Next, the processing operation of the apparatus of the embodiment shown in FIGS. 13 and 14 will be described.
【0111】ベンゼン(C6 H6 )やトルエン(C7 H
8 )、トリクロルエチレン(CHCl=CCl2 )やテ
トラクロルエチレン(CCl2 =CCl2 )などの揮発
性有機化合物を含有する工業排水などの汚水13を、図1
ないし図7に示す実施例、および、図9および図10に
示す実施例と同様に、抽出装置2にて曝気して揮発性有
機化合物を空気中に揮発させる。そして、この揮発性有
機化合物を含有する空気を照射槽1にて紫外線を適宜照
射して第1副生成物に分解し、この第1副生成物を含有
する空気を送気管4を介して原水槽6に送気する。Benzene (C 6 H 6 ) and toluene (C 7 H 6
8 ), wastewater 13 such as industrial wastewater containing volatile organic compounds such as trichlorethylene (CHCl = CCl 2 ) and tetrachlorethylene (CCl 2 = CCl 2 ).
Similarly to the embodiment shown in FIGS. 7 to 7 and the embodiments shown in FIGS. 9 and 10, the extractor 2 is aerated to volatilize the volatile organic compounds into the air. Then, the air containing the volatile organic compound is appropriately irradiated with ultraviolet rays in the irradiation tank 1 to decompose the air into the first by-product, and the air containing the first by-product is fed through the air supply pipe 4 to the raw material. Air is fed to the water tank 6.
【0112】次に、原水槽6内にあらかじめ流水口を介
して流入した水48に、送気管4を介して送気された空気
を散気装置7から散気する。Next, the air 48 supplied through the air supply pipe 4 is diffused from the air diffuser 7 into the water 48 which has previously flown into the raw water tank 6 through the water flow port.
【0113】なお、この散気の際、循環ポンプ51を駆動
させ、上部に設けた散水手段55より充填層49に、照射槽
1からの空気が曝気されたアルカリ性の水48を散水し、
再び原水槽6内の空気と接触させ、空気に含有する第1
副生成物を、アルカリ性の水ひとの接触によりアルカリ
性の水48に溶解もしくは加水分解させて捕捉し、易分解
性の第2次副生成物を生成させる。そして、搬送ポンプ
51により、適宜バルブ57を調整して搬送管10を介して曝
気槽12に送水する。また、原水槽6内の空気は、適宜図
示しない吸気手段から吸気管59を介して空気を照射槽1
に返送して循環させ、一部は吸着処理装置58に送気して
吸着処理して排気する。At the time of this air diffusion, the circulating pump 51 is driven, and the water sprinkling means 55 provided on the upper portion sprinkles the alkaline water 48 aerated with the air from the irradiation tank 1 on the packed bed 49,
The first contact with the air in the raw water tank 6 again,
By-products are dissolved or hydrolyzed in alkaline water 48 by contact with alkaline water to be trapped to form easily decomposable secondary by-products. And the transport pump
The valve 57 is appropriately adjusted by 51 to supply water to the aeration tank 12 via the transfer pipe 10. Further, the air in the raw water tank 6 is appropriately irradiated with air from an intake means (not shown) through an intake pipe 59.
And is circulated, and part of the gas is sent to the adsorption processing device 58 to be adsorbed and exhausted.
【0114】そして、原水槽6からの水48を、曝気槽12
の上部に設けた吐出部14より吐出させ、適宜栄養源を投
入し曝気装置17から空気を曝気しつつ、充填層15を流過
させて、充填層15の充填材に担持する好気性生物により
第2次副生成物を浄化処理する。なお、好気性生物が増
殖した場合には、図示しない逆流洗浄手段により、汚泥
などを除去する。Then, the water 48 from the raw water tank 6 is fed to the aeration tank 12
Discharge from the discharge unit 14 provided on the upper part, while appropriately aerating the nutrient source and aerating the air from the aeration device 17, let the packing layer 15 flow through, and by the aerobic organisms carried on the packing material of the packing layer 15. Purify secondary by-products. When aerobic organisms grow, sludge and the like are removed by a backwashing means (not shown).
【0115】さらに、浄化処理した水48を、流出管62を
水槽63に流出させ、攪拌手段にて攪拌しつつセンサ8aに
てpHを監視しながらアルカリ制御装置8bから水酸化ナ
トリウムなどを適宜投入してpH値を若干アルカリ性、
例えばpH8、好ましくはpH10以上に制御する。こ
のアルカリ性の水48を適宜ポンプ18により返送管66を介
して、原水槽6の散水手段55および曝気槽12の吐出部14
に返送して還流させる。Further, the purified water 48 is allowed to flow out into the water tank 63 through the outflow pipe 62, and while stirring with the stirring means, while monitoring the pH with the sensor 8a, appropriately feed sodium hydroxide or the like from the alkali controller 8b. And the pH value is slightly alkaline,
For example, the pH is controlled to 8 and preferably to 10 or more. The alkaline water 48 is appropriately pumped by the pump 18 via the return pipe 66 and the sprinkling means 55 of the raw water tank 6 and the discharge part 14 of the aeration tank 12.
Return to and bring to reflux.
【0116】そして、適宜水槽63のpH調整され浄化処
理された水48を、放水管19から吸着処理装置58に流入さ
せ、図示しない放水口を介して放水する。Then, the pH-adjusted and purified water 48 in the water tank 63 is caused to flow into the adsorption treatment device 58 from the water discharge pipe 19 and is discharged through a water discharge port (not shown).
【0117】したがって、上記実施例によれば、有毒な
揮発性有機化合物を短時間の紫外線照射のみで第1次副
生成物に分解し、水48との接触により好気性生物にて浄
化処理可能な易分解性の第2次副生成物を生成させ、適
宜処理した水48および空気を還流させつつ浄化処理し、
処理した空気および水48を排気および放水する前に適宜
吸着剤にて吸着処理してさらに浄化処理するため、確実
に有毒な吸着除去されるため、系外に有害な揮発性有機
化合物が漏洩することなく確実に浄化処理できる。Therefore, according to the above-mentioned embodiment, poisonous volatile organic compounds are decomposed into primary by-products by only irradiation of ultraviolet rays for a short time, and can be purified by aerobic organisms by contact with water 48. A second by-product which is easily decomposable and is purified by appropriately treating water 48 and air under reflux,
Before exhausting and discharging the treated air and water 48, it is adsorbed with an adsorbent and further purified so that it is surely toxic and adsorbed and removed, and harmful volatile organic compounds leak to the outside of the system. The purification process can be performed without fail.
【0118】[0118]
【発明の効果】請求項1記載の揮発性有機化合物の処理
方法によれば、抽出した揮発性有機化合物を、酸素存在
下で紫外線を照射して第1次副生成物に酸化するので、
紫外線の照射率が向上して紫外線による酸化分解効率を
向上でき、第1次副生成物を水と接触させて易分解性の
第2次副生成物を生成させて水に含有させるため、取り
扱いが容易な水が有害な揮発性有機化合物から分解され
た第2次副生成物のキャリヤとなり、容易に効率よく処
理できる。According to the method for treating a volatile organic compound described in claim 1, since the extracted volatile organic compound is irradiated with ultraviolet rays in the presence of oxygen to be oxidized into a primary by-product,
Since the irradiation rate of ultraviolet rays can be improved and the efficiency of oxidative decomposition by ultraviolet rays can be improved, the primary by-product is brought into contact with water to form a readily decomposable secondary by-product, which is contained in water. Water, which is easy to use, serves as a carrier for secondary by-products decomposed from harmful volatile organic compounds, and can be easily and efficiently treated.
【0119】請求項2記載の揮発性有機化合物の処理方
法によれば、請求項1記載の揮発性有機化合物の処理方
法に加え、アルカリ性の水のpHを8以上としたため、
第1次副生成物がpH8以上のアルカリ性の水との接触
により易分解性の第2次副生成物に非常に効率よく分解
される。According to the method for treating a volatile organic compound described in claim 2, in addition to the method for treating a volatile organic compound described in claim 1, since the pH of the alkaline water is 8 or more,
The primary by-product is decomposed into a readily decomposable secondary by-product very efficiently by contact with alkaline water having a pH of 8 or more.
【0120】請求項3記載の揮発性有機化合物の処理方
法によれば、請求項1または2記載の揮発性有機化合物
の処理方法に加え、第1次副生成物とアルカリ性の水と
の接触の際に循環手段にてアルカリ性の水を循環させて
閉鎖循環回路を形成し、生成する第2次副生成物を濃縮
するため、第2次副生成物の処理効率を向上でき、第2
次副生成物の処理コストを低減できる。According to the method for treating a volatile organic compound according to claim 3, in addition to the method for treating a volatile organic compound according to claim 1 or 2, the method of contacting a primary by-product with alkaline water is used. At this time, the circulation means circulates the alkaline water to form a closed circulation circuit and concentrates the generated secondary by-product, so that the processing efficiency of the secondary by-product can be improved.
The processing cost of the secondary by-product can be reduced.
【0121】請求項4記載の揮発性有機化合物の処理方
法によれば、請求項1ないし3いずれか記載の揮発性有
機化合物の処理方法に加え、第1次副生成物とアルカリ
性の水との接触により生成された易分解性の第2次副生
成物を好気性生物にて分解するので、揮発性有機化合物
を無害な最終生成物に確実に処理できる。According to the method for treating a volatile organic compound described in claim 4, in addition to the method for treating a volatile organic compound according to any one of claims 1 to 3, a primary by-product and alkaline water are added. Since the easily decomposable secondary by-product produced by the contact is decomposed by the aerobic organism, the volatile organic compound can be surely processed into a harmless final product.
【0122】請求項5記載の揮発性有機化合物の処理方
法によれば、請求項4記載の揮発性有機化合物の処理方
法に加え、第2次副生成物を好気性生物にて分解した水
を返送手段にて返送して再び第1次副生成物と接触させ
る閉鎖還流回路を形成するため、副生成物が系外に漏洩
することなく確実に処理できるとともに、第2次副生成
物の処理効率を向上でき、第2次副生成物の処理コスト
を低減できる。According to the method for treating a volatile organic compound described in claim 5, in addition to the method for treating a volatile organic compound according to claim 4, water obtained by decomposing the secondary by-product with an aerobic organism is added. Since a closed reflux circuit for returning by the returning means and contacting with the primary by-product again is formed, the by-product can be reliably processed without leaking out of the system, and the secondary by-product is processed. The efficiency can be improved and the processing cost of the secondary by-product can be reduced.
【0123】請求項6記載の揮発性有機化合物の処理方
法によれば、請求項1ないし5いずれか記載の揮発性有
機化合物の処理方法に加え、波長が200nm以下の紫外
線を50%以上透過するガラス管を有する紫外線ランプ
にて、揮発性有機化合物が含有される気体に紫外線を照
射するため、揮発性有機化合物を短時間で酸化分解でき
る。According to the method for treating a volatile organic compound of claim 6, in addition to the method for treating a volatile organic compound according to any one of claims 1 to 5, 50% or more of ultraviolet rays having a wavelength of 200 nm or less are transmitted. Since a gas containing a volatile organic compound is irradiated with ultraviolet rays by an ultraviolet lamp having a glass tube, the volatile organic compound can be oxidized and decomposed in a short time.
【図1】本発明の揮発性有機化合物の処理方法を実施す
る装置の一実施例の構成を示す系統説明図である。FIG. 1 is a system explanatory view showing the configuration of an embodiment of an apparatus for carrying out the method for treating a volatile organic compound of the present invention.
【図2】本発明の揮発性有機化合物の紫外線照射による
第1次副生成物への酸化分解を説明する実験装置を示す
斜視図である。FIG. 2 is a perspective view showing an experimental apparatus for explaining the oxidative decomposition of the volatile organic compound of the present invention into primary by-products by UV irradiation.
【図3】同上200nm以下の紫外線を50%以上透過す
るガラス管を有する紫外線ランプを用いた揮発性有機化
合物のトリクロルエチレンの分解状況を示すグラフ化し
た図である。FIG. 3 is a graph showing the state of decomposition of trichlorethylene, a volatile organic compound, using an ultraviolet lamp having a glass tube that transmits 50% or more of ultraviolet rays of 200 nm or less.
【図4】同上200nm以下の紫外線を50%以下透過す
るガラス管を有する紫外線ランプを用いた揮発性有機化
合物のトリクロルエチレンの分解状況を示すグラフ化し
た図である。FIG. 4 is a graph showing the decomposition state of trichlorethylene, a volatile organic compound, using an ultraviolet lamp having a glass tube that transmits 50% or less of ultraviolet rays of 200 nm or less.
【図5】同上揮発性有機化合物の透過率を示すグラフ化
した図である。FIG. 5 is a graph showing the transmittance of a volatile organic compound.
【図6】同上揮発性有機化合物と接触させる水のpHと
揮発性有機化合物の溶解性との関係を実験する装置を示
す説明図である。FIG. 6 is an explanatory view showing an apparatus for experimenting the relationship between the pH of water which is brought into contact with a volatile organic compound and the solubility of the volatile organic compound.
【図7】同上塩化カルボニルの溶解状況を示すグラフ化
した図である。FIG. 7 is a graph showing the state of dissolution of carbonyl chloride.
【図8】同上第2次副生成物のジクロル酢酸を好気性生
物にて浄化処理する装置の構成を示す系統説明図であ
る。FIG. 8 is a system explanatory view showing a configuration of an apparatus for purifying dichloroacetic acid, which is a secondary by-product of the above, by an aerobic organism.
【図9】同上ジクロル酢酸の浄化処理状況を示すグラフ
化した図である。FIG. 9 is a graph showing the purification treatment status of dichloroacetic acid.
【図10】他の実施例の装置の構成を示す説明図であ
る。FIG. 10 is an explanatory diagram showing a configuration of an apparatus according to another embodiment.
【図11】さらに他の実施例の装置の構成を示す系統説
明図である。FIG. 11 is a system explanatory view showing a configuration of an apparatus of still another embodiment.
【図12】同上原水槽を示す説明図である。FIG. 12 is an explanatory view showing the same raw water tank as above.
【図13】さらに他の実施例を示す装置の構成を示す系
統説明図である。FIG. 13 is a system explanatory view showing a configuration of an apparatus showing still another embodiment.
【図14】同上原水槽および曝気槽を示す説明図であ
る。FIG. 14 is an explanatory diagram showing a raw water tank and an aeration tank of the same as above.
1 照射槽 6 原水槽 12 曝気槽 52 循環手段としての循環管 66 返送手段としての返送管 1 Irradiation tank 6 Raw water tank 12 Aeration tank 52 Circulation pipe as circulation means 66 Return pipe as return means
Claims (6)
方に含有される揮発性有機化合物を真空または曝気によ
り抽出し、 この抽出した前記揮発性有機化合物が含有される気体に
酸素存在下で紫外線を照射して前記揮発性有機化合物を
酸化し、 この酸化により生成された第1次副生成物を含有する気
体をアルカリ性の水と接触させて易分解性の第2次副生
成物を生成することを特徴とする揮発性有機化合物の処
理方法。1. A volatile organic compound contained in at least one of soil and water is extracted by vacuum or aeration, and the gas containing the extracted volatile organic compound is exposed to ultraviolet rays in the presence of oxygen. Irradiating to oxidize the volatile organic compound, and contacting a gas containing the primary by-product generated by this oxidation with alkaline water to generate a readily decomposable secondary by-product. A method for treating a volatile organic compound, comprising:
ことを特徴とする請求項1記載の揮発性有機化合物の処
理方法。2. The method for treating a volatile organic compound according to claim 1, wherein the alkaline water has a pH of 8 or more.
触の際に循環手段にて前記アルカリ性の水を循環させて
生成する第2次副生成物を濃縮する閉鎖循環回路を形成
することを特徴とする請求項1または2記載の揮発性有
機化合物の処理方法。3. A closed circulation circuit for concentrating a secondary by-product produced by circulating the alkaline water by a circulation means when the primary by-product and alkaline water are brought into contact with each other. The method for treating a volatile organic compound according to claim 1 or 2, characterized in that:
触により生成された第2次副生成物を好気性生物にて分
解することを特徴とする請求項1ないし3いずれか記載
の揮発性有機化合物の処理方法。4. The aerobic organism decomposes the secondary by-product produced by contacting the primary by-product with alkaline water, according to any one of claims 1 to 3. Treatment method of volatile organic compounds.
た水を返送手段にて返送し第1次副生成物と接触させて
閉鎖還流回路を形成することを特徴とする請求項4記載
の揮発性有機化合物の処理方法。5. The closed reflux circuit is formed by returning the water obtained by decomposing the secondary by-product with aerobic organisms by the returning means and bringing it into contact with the primary by-product. 4. The method for treating a volatile organic compound according to 4.
上透過するガラス管を有する紫外線ランプを用いること
を特徴とする請求項1ないし5いずれか記載の揮発性有
機化合物の処理方法。6. The method for treating a volatile organic compound according to claim 1, wherein an ultraviolet lamp having a glass tube which transmits 50% or more of an ultraviolet ray having a wavelength of 200 nm or less is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7164079A JPH0910551A (en) | 1995-06-29 | 1995-06-29 | Treatment of volatile organic compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7164079A JPH0910551A (en) | 1995-06-29 | 1995-06-29 | Treatment of volatile organic compound |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0910551A true JPH0910551A (en) | 1997-01-14 |
Family
ID=15786387
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7164079A Pending JPH0910551A (en) | 1995-06-29 | 1995-06-29 | Treatment of volatile organic compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0910551A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102319517A (en) * | 2011-09-02 | 2012-01-18 | 江苏斯威森生物医药工程研究中心有限公司 | Extraction tank |
-
1995
- 1995-06-29 JP JP7164079A patent/JPH0910551A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102319517A (en) * | 2011-09-02 | 2012-01-18 | 江苏斯威森生物医药工程研究中心有限公司 | Extraction tank |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0373268B2 (en) | Oxidation of organic compounds in water | |
US5234606A (en) | Method and system for recovering wastewater | |
JP3825958B2 (en) | Chlorine-containing gas generator and contaminated gas decomposition apparatus using the chlorine-containing gas generator | |
JPH07241557A (en) | Method and apparatus for treating contaminated water | |
JPH0975993A (en) | Treatment of organic matter-containing waste water and device therefor | |
EP1167300B1 (en) | Photodegradative process for the purification of contaminated water | |
JPH10507680A (en) | Gas and liquid purification method and apparatus | |
JP3352200B2 (en) | Method for treating volatile organic chlorine compounds | |
Amirsardari et al. | Effect of ozonation and UV irradiation with direct filtration on disinfection and disinfection by-product precursors in drinking water treatment | |
EP0242941B1 (en) | Process and apparatus for the deodorization of air | |
RU2636076C2 (en) | Method of photochemical purifying water and device for its implementation | |
JP2000325971A (en) | Method and apparatus for purifying contaminated water | |
JPH0910551A (en) | Treatment of volatile organic compound | |
JP4254943B2 (en) | Wastewater treatment system | |
JP4553326B1 (en) | Method for decomposing and removing 1,4-dioxane contained in an aquatic medium at a low concentration | |
JPH0255117B2 (en) | ||
JP2778715B2 (en) | Method of oxidizing organic compounds in water | |
JP2001129540A (en) | Apparatus and method for cleaning up volatile pollutant | |
JP2001017995A (en) | Treatment of volatile organochlorine compound and device therefor | |
JP2001259664A (en) | Method and apparatus for purifying contaminated water and gas | |
JP3739169B2 (en) | Organochlorine compound decomposition equipment | |
JP2005103519A (en) | Method and apparatus for decomposing pollutant | |
JPH08192175A (en) | Method and apparatus for treating waste water containing organic matter | |
JP3854898B2 (en) | Decomposition product decomposition method and apparatus | |
JP3566143B2 (en) | How to remove dioxins from sewage |