[go: up one dir, main page]

JPH0897513A - Manufacture of microscopic optical component - Google Patents

Manufacture of microscopic optical component

Info

Publication number
JPH0897513A
JPH0897513A JP23100194A JP23100194A JPH0897513A JP H0897513 A JPH0897513 A JP H0897513A JP 23100194 A JP23100194 A JP 23100194A JP 23100194 A JP23100194 A JP 23100194A JP H0897513 A JPH0897513 A JP H0897513A
Authority
JP
Japan
Prior art keywords
substrate
optical component
micro
emitting element
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23100194A
Other languages
Japanese (ja)
Inventor
Masahiko Muto
雅彦 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP23100194A priority Critical patent/JPH0897513A/en
Publication of JPH0897513A publication Critical patent/JPH0897513A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Lasers (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE: To make it possible to manufacture easily a microscopic optical component on the same substrate as a substrate with a semiconductor light-emitting element formed thereon. CONSTITUTION: In a method of manufacturing a microscopic optical component, which forms the microscopic optical component 3, which condenses or guides outgoing light from a semiconductor light-emitting element 2, on the same substrate as a substrate 10 with the element 2 formed thereon, the substrate 10 is made to position in a photo-setting resin or thermosetting resin solution and while a hardening optical beam is emitted on the substrate 10, the substrate 10 is moved along the emission direction of the optical beam, whereby the component 3 is formed on the substrate 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体発光素子を形成
した基板と同一基板上に、半導体発光素子からの出射光
を集光又は案内する微小光学部品を形成する微小光学部
品の作製方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a micro optical component for forming a micro optical component for collecting or guiding light emitted from the semiconductor light emitting element on the same substrate on which the semiconductor light emitting element is formed. .

【0002】[0002]

【従来の技術】かかる微小光学部品の作製方法は、半導
体発光素子を形成した基板と同一基板上に、半導体発光
素子からの出射光を集光又は案内するレンズ又は光導波
路等の微小光学部品を形成して、光半導体部品の小型
化,集積化を図るためのものである。微小光学部品の作
製方法としては、従来、半導体発光素子を形成した基板
上にスパッリング法等により半導体発光素子の出射光を
透過する所望の材料の厚膜を形成した後、その厚膜を、
半導体発光素子の出射光を集光するかあるいは又案内す
るかの用途に応じた形状に、エッチングにより形成する
方法があった。
2. Description of the Related Art A method of manufacturing such a micro optical component is a micro optical component such as a lens or an optical waveguide that collects or guides light emitted from the semiconductor light emitting element on the same substrate on which the semiconductor light emitting element is formed. This is for forming the optical semiconductor component to make it smaller and more integrated. As a method of manufacturing a micro optical component, conventionally, after forming a thick film of a desired material that transmits the emitted light of the semiconductor light emitting element by a sparring method or the like on the substrate on which the semiconductor light emitting element is formed, the thick film,
There has been a method of forming by etching into a shape according to the purpose of collecting or guiding the emitted light of the semiconductor light emitting element.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来技術では、基板と微小光学部品の構成材料との熱膨張
率の差等から十分な厚みを持った厚膜の作製が容易では
ないこと、又、その厚膜の厚さが厚くなるほど精度良く
所望形状にエッチングするのが困難となること等によ
り、微小光学部品の作製が容易ではなかった。本発明
は、上記実情に鑑みてなされたものであって、その第1
の目的は、半導体発光素子を作製した基板と同一基板上
に、容易に微小光学部品を作製できるようにすることに
ある。第2の目的は、作製する微小光学部品の機能を更
に向上できるようにしながら、上記第1の目的を達する
ことにある。
However, in the above-mentioned conventional technique, it is not easy to produce a thick film having a sufficient thickness due to the difference in the coefficient of thermal expansion between the substrate and the constituent material of the minute optical component, and However, as the thick film becomes thicker, it becomes more difficult to perform etching into a desired shape with high accuracy, so that it is not easy to manufacture a micro optical component. The present invention has been made in view of the above circumstances, and the first
The purpose of is to make it possible to easily fabricate a micro optical component on the same substrate on which the semiconductor light emitting device is fabricated. The second purpose is to achieve the first purpose while enabling the function of the micro-optical component to be manufactured to be further improved.

【0004】[0004]

【課題を解決するための手段】本発明の微小光学部品の
作製方法は、半導体発光素子を形成した基板と同一基板
上に、半導体発光素子からの出射光を集光又は案内する
微小光学部品を形成するものであって、その第1特徴
は、前記基板を光硬化性樹脂又は熱硬化性樹脂の溶液中
に位置させて、硬化用光ビームを前記基板上に照射しな
がら、前記基板を前記硬化用光ビームの照射方向に沿っ
て移動させることにより前記基板上に前記微小光学部品
を形成する点にある。第2特徴は、上記第1特徴におい
て、前記基板の硬化用光ビームの照射方向への移動に伴
って、前記光硬化性樹脂又は熱硬化性樹脂の材料構成を
変化させる点にある。
A method of manufacturing a micro-optical component according to the present invention includes a micro-optical component for collecting or guiding light emitted from a semiconductor light-emitting element on the same substrate on which a semiconductor light-emitting element is formed. The first feature is that the substrate is placed in a solution of a photocurable resin or a thermosetting resin, and the substrate is irradiated with a curing light beam while the substrate is The point is that the minute optical component is formed on the substrate by moving along the irradiation direction of the curing light beam. The second feature is that, in the first feature, the material composition of the photocurable resin or the thermosetting resin is changed with the movement of the substrate in the irradiation direction of the curing light beam.

【0005】[0005]

【作用】本発明の第1特徴によれば、半導体発光素子を
形成した基板を、光硬化性樹脂又は熱硬化性樹脂の溶液
中に位置させて、レーザ光線等の硬化用光ビームを微小
光学部品の形成箇所に向けて照射する。硬化用光ビーム
の照射を受けた部分は、光硬化性樹脂の場合は光化学反
応にて硬化し、熱硬化性樹脂の場合は硬化用光ビームの
熱エネルギーにて硬化する。この状態で、必要に応じて
硬化用光ビームの照射位置又はビーム形状を変更しなが
ら、基板を硬化用光ビームの照射方向に沿って移動させ
ると、既に硬化した部分に隣接した部分が新たに硬化し
て行く。このようにして、光硬化性樹脂又は熱硬化性樹
脂の硬化したものによって、基板上の所望の位置に所望
の形状の微小光学部品を作製できる。
According to the first feature of the present invention, the substrate on which the semiconductor light emitting element is formed is placed in a solution of a photocurable resin or a thermosetting resin, and a curing light beam such as a laser beam is applied to the micro-optical system. Irradiate toward the formation site of the parts. The portion irradiated with the curing light beam is cured by a photochemical reaction in the case of a photocurable resin, and is cured by the thermal energy of the curing light beam in the case of a thermosetting resin. In this state, if the substrate is moved along the irradiation direction of the curing light beam while changing the irradiation position or the beam shape of the curing light beam as necessary, a portion adjacent to the already cured portion is newly added. Harden and go. In this way, a micro-optical component having a desired shape can be manufactured at a desired position on the substrate by using the cured photocurable resin or thermosetting resin.

【0006】本発明の第2特徴によれば、光硬化性樹脂
又は熱硬化性樹脂を硬化させながら、基板を硬化用光ビ
ームの照射方向に沿って移動させるとき、例えば、光硬
化性樹脂又は熱硬化性樹脂を異なる種類のものと入れ換
えるか、又は、異なる種類のものと混合し、その混合比
率を変化させる等して、光硬化性樹脂又は熱硬化性樹脂
の材料構成の変化させる。このように、光硬化性樹脂又
は熱硬化性樹脂の材料構成を変化させると、その材料構
成の変化に応じて、硬化した後の微小光学部品の屈折率
が、基板の移動方向に沿ってすなわち微小光学部品の厚
み方向に変化することになる。微小光学部品の厚み方向
に屈折率を変化させることができると、例えば、微小光
学部品の厚み方向においても半導体発光素子の出射光を
閉じ込める光導波路を形成したり、あるいは、微小光学
部品の厚み方向においてもレンズ的作用を有せしめる等
の機能を持たせることが可能となる。
According to the second aspect of the present invention, when the substrate is moved along the irradiation direction of the curing light beam while curing the photocurable resin or the thermosetting resin, for example, the photocurable resin or The material composition of the photocurable resin or the thermosetting resin is changed by replacing the thermosetting resin with that of a different type or by mixing with a different type and changing the mixing ratio. In this way, when the material composition of the photocurable resin or the thermosetting resin is changed, the refractive index of the cured micro-optical component is changed along the moving direction of the substrate in accordance with the change of the material composition. It changes in the thickness direction of the micro optical component. If the refractive index can be changed in the thickness direction of the micro optical component, for example, an optical waveguide for confining the emitted light of the semiconductor light emitting element can be formed in the thickness direction of the micro optical component, or the thickness direction of the micro optical component can be changed. Also in, it is possible to have a function such as having a lens-like effect.

【0007】[0007]

【発明の効果】上記第1特徴によれば、上記の如く、硬
化用光ビームによって光硬化性樹脂又は熱硬化性樹脂を
硬化させることで、半導体発光素子を作製した基板と同
一基板上に、十分な厚みと所望の形状を有する微小光学
部品を容易に作製できるようにするに至った。上記第2
特徴によれば、上記の如く、微小光学部品の厚み方向に
屈折率を変化させることで、微小光学部品に種々の機能
を持たせることができ、もって、作製する微小光学部品
の機能を更に向上できるようにしながら、上記第1特徴
による効果を奏することができる。
According to the first feature, as described above, by curing the photocurable resin or the thermosetting resin with the curing light beam, the same substrate as the substrate on which the semiconductor light emitting device is manufactured can be provided. It has become possible to easily manufacture a micro optical component having a sufficient thickness and a desired shape. Second above
According to the characteristics, as described above, by changing the refractive index in the thickness direction of the micro optical component, the micro optical component can be given various functions, thereby further improving the function of the micro optical component to be manufactured. While being able to do so, it is possible to obtain the effect of the first feature.

【0008】[0008]

【実施例】本発明を適用した集光レンズ集積型の半導体
レーザ装置の作製方法の実施例を図面に基づいて説明す
る。本発明を適用して作製した集光レンズ集積型の半導
体レーザ装置1は、図1に示すように、半導体発光素子
であるAlGaAs系の半導体レーザ素子2を形成した
n型GaAsの基板10と同一基板上における半導体レ
ーザ素子2の光出射端面FAの光出射方向前方側に、半
導体レーザ素子2の出射光を集光して平行光に変換する
微小光学部品であるマイクロコリメートレンズ3を形成
してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method of manufacturing a condenser lens integrated type semiconductor laser device to which the present invention is applied will be described with reference to the drawings. As shown in FIG. 1, a condenser lens integrated semiconductor laser device 1 manufactured by applying the present invention is the same as an n-type GaAs substrate 10 on which an AlGaAs semiconductor laser device 2 which is a semiconductor light emitting device is formed. On the front side of the light emitting end face FA of the semiconductor laser element 2 on the substrate in the light emitting direction, a micro collimator lens 3 which is a micro optical component that collects the emitted light of the semiconductor laser element 2 and converts it into parallel light is formed. is there.

【0009】半導体レーザ素子2から出射したレーザ光
は、本来、放射状に広がるビーム形状となるが、マイク
ロコリメートレンズ3によって平行光に変換された状態
で、半導体レーザ装置1から出射する。このように平行
光に変換されたレーザ光を出射することにより、外付け
のコリメートレンズとその取付位置調整とを不要にした
状態で、種々の光学装置に適用できる。
The laser light emitted from the semiconductor laser element 2 originally has a beam shape that spreads radially, but is emitted from the semiconductor laser device 1 in a state of being converted into parallel light by the micro-collimator lens 3. By emitting the laser light converted into parallel light in this way, it can be applied to various optical devices without the need for an external collimator lens and adjustment of its mounting position.

【0010】以下、上記構成の半導体レーザ装置1の作
製方法を説明する。先ず、図2の断面図に示すように、
ウェハ状態のn型GaAsの基板10に、n型GaAs
バッファ層20、n型AlGaAsクラッド層21、ア
ンドープAlGaAs活性層22、p型AlGaAsク
ラッド層23、p型GaAsキャップ層24を、MBE
法,MO−CVD法又は液相成長法等によりエピタキシ
ャル成長させて、更に、p型GaAsキャップ層24上
にSiO2 膜25をCVD法等により積層し、基板10
側にn側電極26を、SiO2 膜25側にp側電極27
を真空蒸着法等により形成する。
A method of manufacturing the semiconductor laser device 1 having the above structure will be described below. First, as shown in the sectional view of FIG.
The n-type GaAs is formed on the substrate 10 of the n-type GaAs in a wafer state.
The buffer layer 20, the n-type AlGaAs clad layer 21, the undoped AlGaAs active layer 22, the p-type AlGaAs clad layer 23, and the p-type GaAs cap layer 24 are MBE.
Method, MO-CVD method, liquid phase growth method or the like, epitaxial growth is performed, and a SiO 2 film 25 is further laminated on the p-type GaAs cap layer 24 by the CVD method or the like to form the substrate 10.
The n-side electrode 26 on the side and the p-side electrode 27 on the SiO 2 film 25 side.
Are formed by a vacuum deposition method or the like.

【0011】尚、SiO2 膜25は、p側電極27の形
成の前に、図2において矢印Aで示す半導体レーザ素子
2の共振器方向となる方向に延びるストライプ状にエッ
チング除去してあり、そのエッチング除去した部分にお
いて、p側電極27とp型GaAsキャップ層24とが
接する。従って、n側電極26とp側電極27との間に
順方向電圧を印加したときに、ストライプ状にエッチン
グ除去した部分を通って電流が注入される。
Before the p-side electrode 27 is formed, the SiO 2 film 25 is etched and removed in a stripe shape extending in the direction of the cavity of the semiconductor laser device 2 shown by the arrow A in FIG. At the portion removed by etching, the p-side electrode 27 and the p-type GaAs cap layer 24 are in contact with each other. Therefore, when a forward voltage is applied between the n-side electrode 26 and the p-side electrode 27, a current is injected through the stripe-shaped etched and removed portion.

【0012】次に、p側電極27側からドライエッチン
グにて、図3に示す断面形状を有し、矢印Aで示す共振
器方向に垂直な方向に延びる溝TRを形成する。溝TR
の深さは基板10に達する深さで、溝TRの側面はアン
ドープAlGaAs活性層22に対して垂直となってお
り、溝TRの側面は半導体レーザ素子2の光出射端面F
Aとなる。溝TRを形成した後、図5に示す樹脂製光学
部品作製装置LMによって、図4に示すマイクロコリメ
ートレンズ3を作製する。
Next, by dry etching from the p-side electrode 27 side, a trench TR having a sectional shape shown in FIG. 3 and extending in a direction perpendicular to the resonator direction shown by arrow A is formed. Groove TR
Is a depth reaching the substrate 10, the side surface of the trench TR is perpendicular to the undoped AlGaAs active layer 22, and the side surface of the trench TR is the light emitting end face F of the semiconductor laser element 2.
It becomes A. After forming the groove TR, the micro-collimator lens 3 shown in FIG. 4 is manufactured by the resin optical component manufacturing apparatus LM shown in FIG.

【0013】樹脂製光学部品製装置LMは、He−Cd
レーザやArレーザ等の紫外線レーザ40の出射レーザ
光を光ファイバー43にて案内し、容器41に入れたエ
ポキシ系又はウレタン・アクリレート系等の光硬化性樹
脂の溶液の液面近くに、光ファイバー43の出射側端部
に設けたレンズ42によって硬化用光ビームとして集光
して、液面近くの光硬化性樹脂を硬化させる。レンズ4
2は、X,Y,Zの3軸に位置制御可能な3軸NCテー
ブル44にて移動自在で、レーザ光の集光位置を任意に
移動できる。
The resin optical component device LM is a He-Cd device.
A laser beam emitted from an ultraviolet laser 40 such as a laser or an Ar laser is guided by an optical fiber 43 so that the optical fiber 43 is placed near the liquid surface of a solution of a photo-curable resin such as an epoxy resin or a urethane acrylate resin contained in a container 41. The light beam for curing is condensed by the lens 42 provided at the end portion on the emission side to cure the photocurable resin near the liquid surface. Lens 4
2 can be freely moved by a triaxial NC table 44 whose position can be controlled in the three axes of X, Y and Z, and the focusing position of the laser light can be arbitrarily moved.

【0014】光学部品を形成する基板10を支持する支
持台45は、Z軸すなわち上下方向に位置制御可能な1
軸NCテーブル46にて上下方向に移動自在に構成され
ている。3軸NCテーブル44,1軸NCテーブル46
及び紫外線レーザ40の出射光の光路を開閉するシャッ
タ47の作動はコントローラ48にて制御される。基板
10上にマイクロコリメートレンズ3を作製するとき
は、図3に示す段階まで処理した基板10を樹脂製光学
部品作製装置LMの支持台45に溝TR形成側を上面と
して載置する。
The support base 45 for supporting the substrate 10 forming the optical component is position-controllable in the Z-axis, that is, in the vertical direction.
The axis NC table 46 is configured to be vertically movable. 3-axis NC table 44, 1-axis NC table 46
The operation of the shutter 47 that opens and closes the optical path of the emitted light of the ultraviolet laser 40 is controlled by the controller 48. When manufacturing the micro-collimator lens 3 on the substrate 10, the substrate 10 processed up to the stage shown in FIG. 3 is placed on the support base 45 of the resin optical component manufacturing apparatus LM with the groove TR forming side as the upper surface.

【0015】レーザ光は、基板10の溝TRの底面が僅
かに光硬化性樹脂の液面下に没した状態の基板10上に
照射されることになり、3軸NCテーブル44にてレー
ザ光を水平面内で走査しながら、同時に、1軸NCテー
ブル46にて基板10をレーザ光の照射方向に沿う状態
で下降させる。この結果、紫外線レーザ光の照射を受け
た光硬化性樹脂が液面付近で硬化して、基板10上に徐
々にマイクロコリメートレンズ3が形成されて行く。図
1及び図4に示すマイクロコリメートレンズ3の形状は
予めコントローラ48に登録されており、コントローラ
48は登録された形状のマイクロコリメートレンズ3が
図4の矢印Aで示す方向と垂直な方向すなわち溝TRの
長手方向に等間隔に並ぶ状態で形成するように3軸NC
テーブル及び1軸NCテーブル46の作動を制御する。
The laser light is irradiated onto the substrate 10 in a state where the bottom surface of the groove TR of the substrate 10 is slightly submerged below the liquid surface of the photocurable resin, and thus the laser light is irradiated on the triaxial NC table 44. While scanning in the horizontal plane, at the same time, the substrate 10 is lowered by the uniaxial NC table 46 along the irradiation direction of the laser light. As a result, the photocurable resin that has been irradiated with the ultraviolet laser light cures near the liquid surface, and the microcollimator lens 3 is gradually formed on the substrate 10. The shape of the micro-collimator lens 3 shown in FIGS. 1 and 4 is registered in the controller 48 in advance. The controller 48 indicates that the micro-collimator lens 3 having the registered shape is in a direction perpendicular to the direction indicated by the arrow A in FIG. Triaxial NC to be formed in a state of being aligned at equal intervals in the longitudinal direction of TR
It controls the operation of the table and the 1-axis NC table 46.

【0016】マクロコリメートレンズ3の形成を終了す
ると、ウェハ状態のGaAs基板10から個々の半導体
レーザ装置1に分離する素子分離を行い、図1に示す半
導体レーザ装置1が完成する。素子分離は、半導体レー
ザ素子2の共振器方向に垂直な方向すなわち図4の矢印
Aに垂直な方向では、図4に矢印Bにて示す位置と、図
示を省略するが、半導体レーザ素子2の形成部分の中間
位置とで分離し、半導体レーザ素子2の共振器方向すな
わち図4の矢印Aの方向では、等間隔で並ぶマイクロコ
リメートレンズ3の中間位置で分離する。
When the formation of the macro-collimator lens 3 is completed, the semiconductor laser device 1 shown in FIG. 1 is completed by performing element isolation for separating the semiconductor laser device 1 from the GaAs substrate 10 in a wafer state. In the element isolation, in the direction perpendicular to the cavity direction of the semiconductor laser element 2, that is, in the direction perpendicular to the arrow A in FIG. 4, the position indicated by the arrow B in FIG. Separation is performed at the intermediate position of the formation portion, and separation is performed at the intermediate position of the micro-collimator lenses 3 arranged at equal intervals in the resonator direction of the semiconductor laser element 2, that is, in the direction of arrow A in FIG.

【0017】〔別実施例〕以下、別実施例を列記する。 上記実施例では、光硬化性樹脂を容器41に溜めた
状態で微小光学部品の作製を行っているが、光硬化性樹
脂を緩やかに流動させて、異なる材料構成の光硬化性樹
脂を切り換えながら、あるいは、異なる材料構成の光硬
化性樹脂を混合しその混合比を変化させながら、微小光
学部品を形成して行くようにしても良い。
[Other Embodiments] Other embodiments will be listed below. In the above-described embodiment, the micro-optical component is manufactured in a state where the photo-curable resin is stored in the container 41. However, the photo-curable resin is gently flowed to switch the photo-curable resin of different material composition. Alternatively, the photo-curable resins having different material configurations may be mixed and the mixing ratio may be changed to form the micro optical component.

【0018】 上記実施例では、光硬化性樹脂に紫外
線のレーザ光を照射して硬化させ、微小光学部品を作製
する構成としているが、ポリエステル等の熱硬化性樹脂
を炭酸ガスレーザやYAGレーザ等の赤外線レーザの熱
エネルギーにて硬化させる構成としても良い。
In the above-mentioned embodiment, the photo-curable resin is irradiated with the laser beam of the ultraviolet ray to be cured to form the micro optical component. However, the thermosetting resin such as polyester is used for the carbon dioxide gas laser, the YAG laser or the like. It may be configured to be cured by thermal energy of an infrared laser.

【0019】 上記実施例では、微小光学部品として
半導体レーザ素子2の出射光を平行光に変換するマイク
ロコリメートレンズ3を作製する場合を例示している
が、任意の形状の光導波路を形成する等、種々の微小光
学部品を作製できる。
In the above-mentioned embodiment, the case where the micro-collimator lens 3 for converting the emitted light of the semiconductor laser element 2 into parallel light is manufactured as a minute optical component is illustrated, but an optical waveguide having an arbitrary shape is formed, etc. , Various micro optical components can be manufactured.

【0020】 上記実施例では、半導体発光素子とし
てAlGaAs系の半導体レーザ素子2を作製する場合
を例示しているが、AlGaAs系の半導体レーザ素子
2の代わりにInGaAsP系の半導体レーザ素子、又
は、GaP系等の発光ダイオード等の半導体発光素子を
作製しても良い。
In the above embodiment, the case where the AlGaAs semiconductor laser device 2 is manufactured as the semiconductor light emitting device is illustrated. However, instead of the AlGaAs semiconductor laser device 2, an InGaAsP semiconductor laser device or GaP semiconductor laser device is used. A semiconductor light emitting element such as a light emitting diode of a system may be manufactured.

【0021】 上記実施例では、樹脂製光学部品作製
装置LMは、微小光学部品を作製する基板10を、レー
ザ光の照射方向に沿って下降させる構成としているが、
容器41の底面を透明体にて形成し、容器41の底面側
からレーザ光を照射して、基板10を上昇させながら微
小光学部品を形成する構成としても良い。
In the above-described embodiment, the resin optical component manufacturing apparatus LM is configured to lower the substrate 10 for manufacturing the micro optical component along the irradiation direction of the laser light.
A configuration may be adopted in which the bottom surface of the container 41 is formed of a transparent body, and laser light is emitted from the bottom surface side of the container 41 to raise the substrate 10 to form the micro optical component.

【0022】 上記実施例では、レーザ光を水平面内
で走査して、所望の形状の微小光学部品を作製する構成
としているが、レーザ光の光路に所望の形状の開口を有
するマスクを設置し、そのマスクの像をレンズにて基板
10上に結像させた状態で、基板10をレーザ光の照射
方向に沿って移動させて微小光学部品を作製する構成と
しても良い。
In the above-mentioned embodiment, the laser beam is scanned in the horizontal plane to manufacture the micro optical component having a desired shape. However, a mask having an opening of a desired shape is installed in the optical path of the laser beam, A configuration in which the substrate 10 is moved along the laser light irradiation direction while the image of the mask is formed on the substrate 10 by the lens may be used to manufacture the minute optical component.

【0023】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構造に限定されるものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the structure of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用して作製した半導体レーザ装置の
斜視図
FIG. 1 is a perspective view of a semiconductor laser device manufactured by applying the present invention.

【図2】本発明の実施例にかかる製造工程図FIG. 2 is a manufacturing process diagram according to an embodiment of the present invention.

【図3】本発明の実施例にかかる製造工程図FIG. 3 is a manufacturing process diagram according to an embodiment of the present invention.

【図4】本発明の実施例にかかる製造工程図FIG. 4 is a manufacturing process diagram according to an embodiment of the present invention.

【図5】本発明の実施例にかかる樹脂製光学部品作製装
置の概略構成図
FIG. 5 is a schematic configuration diagram of a resin optical component manufacturing apparatus according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2 半導体発光素子 3 微小光学部品 10 基板 2 Semiconductor light emitting element 3 Micro optical component 10 Substrate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体発光素子(2)を形成した基板
(10)と同一基板上に、前記半導体発光素子(2)か
らの出射光を集光又は案内する微小光学部品(3)を形
成する微小光学部品の作製方法であって、 前記基板(10)を光硬化性樹脂又は熱硬化性樹脂の溶
液中に位置させて、硬化用光ビームを前記基板(10)
上に照射しながら、前記基板(10)を前記硬化用光ビ
ームの照射方向に沿って移動させることにより前記基板
(10)上に前記微小光学部品(3)を形成する微小光
学部品の作製方法。
1. A micro optical component (3) for collecting or guiding light emitted from the semiconductor light emitting element (2) is formed on the same substrate as the substrate (10) on which the semiconductor light emitting element (2) is formed. A method of manufacturing a micro-optical component, wherein the substrate (10) is placed in a solution of a photocurable resin or a thermosetting resin, and a curing light beam is applied to the substrate (10).
A method for producing a micro optical component in which the micro optical component (3) is formed on the substrate (10) by moving the substrate (10) along the irradiation direction of the curing light beam while irradiating the micro optical component onto the substrate (10). .
【請求項2】 前記基板(10)の硬化用光ビームの照
射方向への移動に伴って、前記光硬化性樹脂又は熱硬化
性樹脂の材料構成を変化させる請求項1記載の微小光学
部品の作製方法。
2. The micro-optical component according to claim 1, wherein the material composition of the photocurable resin or the thermosetting resin is changed with the movement of the substrate (10) in the irradiation direction of the curing light beam. Manufacturing method.
JP23100194A 1994-09-27 1994-09-27 Manufacture of microscopic optical component Pending JPH0897513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23100194A JPH0897513A (en) 1994-09-27 1994-09-27 Manufacture of microscopic optical component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23100194A JPH0897513A (en) 1994-09-27 1994-09-27 Manufacture of microscopic optical component

Publications (1)

Publication Number Publication Date
JPH0897513A true JPH0897513A (en) 1996-04-12

Family

ID=16916685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23100194A Pending JPH0897513A (en) 1994-09-27 1994-09-27 Manufacture of microscopic optical component

Country Status (1)

Country Link
JP (1) JPH0897513A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019135362A1 (en) * 2018-01-05 2019-07-11 国立大学法人弘前大学 Transparent material processing method, transparent material processing device, and transparent material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019135362A1 (en) * 2018-01-05 2019-07-11 国立大学法人弘前大学 Transparent material processing method, transparent material processing device, and transparent material
CN111542411A (en) * 2018-01-05 2020-08-14 国立大学法人弘前大学 Transparent material processing method, transparent material processing device, and transparent material
JPWO2019135362A1 (en) * 2018-01-05 2020-12-24 国立大学法人弘前大学 Transparent material processing method, transparent material processing equipment and transparent material
US11471981B2 (en) 2018-01-05 2022-10-18 Hirosaki University Transparent material processing method, transparent material processing device, and transparent material

Similar Documents

Publication Publication Date Title
KR100462089B1 (en) Surface emission type semiconductor laser and surface emission type semiconductor laser array
US8731349B2 (en) Integrated photonics device
KR100478800B1 (en) Optical package substrate, and optical device and module using this optical package substrate
JP4310410B2 (en) Method for integrating multiple optical components at wafer level
CN113557644A (en) Vertical emitter with integral microlens
US20050195882A1 (en) VCSEL with integrated lens
KR101025132B1 (en) Optical shaping device using Blu-ray pickup unit
JPS61114817A (en) Apparatus for forming solid configuration
JP4231924B2 (en) Micro processing equipment for transparent materials
US6525296B2 (en) Method of processing and optical components
JPH0897513A (en) Manufacture of microscopic optical component
US5171707A (en) Method of fabricating semiconductor laser device using the light generated by the laser to disorder its active layer at the end surfaces thereby forming window regions
US5768022A (en) Laser diode having in-situ fabricated lens element
JP2007501433A (en) Passive alignment of optical fibers with optical elements
JP2001028456A (en) Semiconductor light emitting device
GB2203892A (en) A method of etching a semiconductor body
US20230275194A1 (en) Method for producing a component, and optoelectronic component
JPS61501739A (en) Manufacturing method of semiconductor laser mirror
KR100921939B1 (en) Optical modeling apparatus using optical pickup unit and method of forming structure using the apparatus
JPH0514839Y2 (en)
GB2312527A (en) Arrangement for coupling a transmitting or receiving element to an optical waveguide
JPH05241048A (en) Coupling device for optical parts
JPH05241047A (en) Coupling device for optical parts
JPH0843678A (en) Optical fiber lens and manufacturing method thereof
JPH03193434A (en) Formation of three-dimensional shape