[go: up one dir, main page]

JPH0897487A - Magnetoresistance effect device and its reproducing method - Google Patents

Magnetoresistance effect device and its reproducing method

Info

Publication number
JPH0897487A
JPH0897487A JP6226411A JP22641194A JPH0897487A JP H0897487 A JPH0897487 A JP H0897487A JP 6226411 A JP6226411 A JP 6226411A JP 22641194 A JP22641194 A JP 22641194A JP H0897487 A JPH0897487 A JP H0897487A
Authority
JP
Japan
Prior art keywords
magnetic
magnetoresistive effect
magnetoresistance effect
film
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6226411A
Other languages
Japanese (ja)
Other versions
JP2661560B2 (en
Inventor
Toshiyuki Okumura
俊之 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6226411A priority Critical patent/JP2661560B2/en
Publication of JPH0897487A publication Critical patent/JPH0897487A/en
Application granted granted Critical
Publication of JP2661560B2 publication Critical patent/JP2661560B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3916Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide
    • G11B5/3919Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path
    • G11B5/3922Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path the read-out elements being disposed in magnetic shunt relative to at least two parts of the flux guide structure
    • G11B5/3925Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path the read-out elements being disposed in magnetic shunt relative to at least two parts of the flux guide structure the two parts being thin films
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B2005/3996Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Measuring Magnetic Variables (AREA)
  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PURPOSE: To obtain a high reproducing output which has an excellent waveform symmetry with a yoke-type magnetoresistance effect head. CONSTITUTION: At least two types of magnetic thin films whose coercive forces are different from each other are laminated with nonmagnetic layers between them. The lamination is repeated at least two times to obtain an artificial lattice magnetoresistance effect film. Yokes are provided on the artificial lattice magnetoresistance effect film with nonmagnetic insulating layers therebetween to constitute a magnetoresistance effect device. Therefore, a magnetic route composed of the yokes 5 and 6, a back yoke 7 and the magnetoresistance effect film 1 and a coil 11 which interlinks with the magnetic route are provided. A current is applied to the coil 11 by an external power supply circuit and a most suitable bias magnetic field is applied to the magnetoresistance effect film 1. With this constitution, the magnetoresistance effect device with which a high reproducing output having a symmetrical waveform can be obtained and the reproducing method of the magnetoresistance effect device can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁界強度を信号として
読み取る磁気抵抗効果素子に関し、特に、ヨーク型の人
工格子磁気抵抗効果素子において再生出力波形の対称性
を向上させる手段に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive effect element for reading magnetic field strength as a signal, and more particularly to means for improving the symmetry of a reproduction output waveform in a yoke type artificial lattice magnetoresistive effect element.

【0002】[0002]

【従来の技術】近年、磁気センサーの高感度化および磁
気記録における高密度化が進められており、これに伴い
磁気抵抗効果型磁気センサー(以下、MRセンサーとい
う)および磁気抵抗効果型磁気ヘッド(以下、MRヘッ
ドという)の開発が盛んに進められている。MRセンサ
ーもMRヘッドも、磁性材料からなる読み取りセンサー
部の抵抗変化により、外部磁界信号を読み出す訳である
が、MRセンサーおよびMRヘッドは、記録媒体との相
対速度が再生出力に依存しないことから、MRセンサー
では高感度が、MRヘッドでは高密度磁気記録において
も高い再生出力が得られるという特長がある。
2. Description of the Related Art In recent years, magnetic sensors have been made highly sensitive and magnetic recording has been made at a high density. Along with this, magnetoresistive effect magnetic sensors (hereinafter referred to as MR sensors) and magnetoresistive effect magnetic heads ( Hereinafter, the MR head will be actively developed. Both the MR sensor and the MR head read the external magnetic field signal by changing the resistance of the reading sensor section made of a magnetic material. However, the relative speed of the MR sensor and the MR head to the recording medium does not depend on the reproduction output. The MR sensor has high sensitivity, and the MR head has high reproduction output even in high-density magnetic recording.

【0003】最近、非磁性薄膜層を介して隣り合う保磁
力の異なった2種類以上の磁性薄膜が積層された構造を
有し、小さな外部磁場で大きな磁気抵抗変化を示す人工
格子磁気抵抗効果膜(以下、磁気抵抗効果膜という)が
発見された(例えば、特開平4−218982号公
報)。この磁気抵抗効果素子は、数Oe〜数十Oe程度
の小さい外部磁場で数%〜数十%の大きい抵抗変化率を
示す。
Recently, an artificial lattice magnetoresistive film having a structure in which two or more types of magnetic thin films having different coercive forces adjacent to each other via a nonmagnetic thin film layer are laminated, and exhibiting a large magnetoresistance change with a small external magnetic field. (Hereinafter, referred to as a magnetoresistive film) (for example, JP-A-4-218982). This magnetoresistive effect element exhibits a large rate of resistance change of several percent to several tens of percent with an external magnetic field as small as several Oe to several tens Oe.

【0004】上記先願の磁気抵抗効果素子において、実
用的なMRヘッドとしては、磁気抵抗効果膜の両側に非
磁性絶縁体を介して軟磁性層を積層した構造をなす、シ
ールド型人工格子磁気抵抗効果素子が提案されている
が、この場合、再生波形が極端な非対称となり、また、
磁気抵抗効果膜がヘッド浮上面(空気軸受面)に露出し
ていることにより、腐食が生じやすいという問題があ
る。
In the magnetoresistive element of the prior application, a practical MR head has a structure in which soft magnetic layers are laminated on both sides of a magnetoresistive film via a non-magnetic insulator. Although a resistance effect element has been proposed, in this case, the reproduced waveform becomes extremely asymmetric, and
Since the magnetoresistive film is exposed on the air bearing surface (air bearing surface), there is a problem that corrosion is likely to occur.

【0005】一方、磁気抵抗効果膜をヘッド浮上面から
後退させ、外部磁界を軟磁性ヨークを介して磁気抵抗効
果膜に誘導する構造のヨーク型人工格子磁気抵抗効果素
子(以下、ヨーク型磁気抵抗効果素子という)の場合で
は、磁気抵抗効果膜が表面に露出していないため、磁気
抵抗効果膜の腐食発生の懸念はなくなる。
On the other hand, a yoke type artificial lattice magnetoresistive effect element (hereinafter referred to as a yoke type magnetoresistive element) having a structure in which the magnetoresistive effect film is retracted from the air bearing surface of the head and an external magnetic field is guided to the magnetoresistive effect film via a soft magnetic yoke. In the case of the effect element), since the magnetoresistive effect film is not exposed on the surface, there is no concern about corrosion of the magnetoresistive effect film.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、このよ
うなヨーク型磁気抵抗効果素子の場合においても、実用
的なセンサ,磁気ヘッドとして使用する場合は、磁気抵
抗効果膜に外部バイアス磁界を印加しなければ、高出力
でかつ波形の対称的な再生出力が得られず、このような
磁気ヘッドを磁気ディスク装置に用いた場合には、装置
のエラーレートが高くなり、信頼性が低下するという欠
点がある。
However, even in the case of such a yoke type magnetoresistive effect element, when it is used as a practical sensor or magnetic head, an external bias magnetic field must be applied to the magnetoresistive effect film. For example, a high output and a symmetrical waveform reproduction output cannot be obtained, and when such a magnetic head is used in a magnetic disk device, the error rate of the device increases and the reliability decreases. is there.

【0007】本発明の目的は、ヨーク型磁気抵抗効果素
子に的確にバイアス磁界を印加することにより、高出力
でかつ波形の対称的な再生出力を得ることができる磁気
抵抗効果素子およびその再生方法を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetoresistive element capable of obtaining a high output and symmetrically reproduced output with a waveform by accurately applying a bias magnetic field to a yoke type magnetoresistive element and a reproducing method thereof. Is to provide.

【0008】[0008]

【課題を解決するための手段】第1の発明の磁気抵抗効
果素子は、保持力の異る2種類以上の磁性薄膜が非磁性
層を介して積層し、繰り返し積層回数が2回以上からな
る人工格子磁気抵抗効果膜に、非磁性絶縁層を介してヨ
ークを配置した磁気抵抗効果素子において、前記ヨーク
と前記人工格子磁気抵抗効果膜とを含んで構成される磁
気経路と、この磁気経路に鎖交し前記磁気経路にバイア
ス磁界を発生させるコイルとを備えることを特徴とす
る。
In the magnetoresistive effect element of the first invention, two or more kinds of magnetic thin films having different coercive forces are laminated via a non-magnetic layer, and the number of repeated lamination is two or more. In a magnetoresistive effect element in which a yoke is disposed on an artificial lattice magnetoresistive effect film via a nonmagnetic insulating layer, a magnetic path including the yoke and the artificial lattice magnetoresistive effect film, and a magnetic path And a coil that interlinks and generates a bias magnetic field in the magnetic path.

【0009】また、第2の発明の磁気抵抗効果素子の再
生方法は、前記ヨークと前記人工格子磁気抵抗効果膜と
を含んで構成される磁気経路に鎖交するコイルに通電
し、前記磁気経路に磁界を発生させるとともに、前記磁
気経路を介して前記人工格子磁気抵抗効果膜にバイアス
磁界を印加しながら外部磁場を検出することを特徴とす
る。
Also, in the reproducing method of the magnetoresistive effect element according to the second aspect of the invention, the coil interlinking with the magnetic path constituted by including the yoke and the artificial lattice magnetoresistive effect film is energized, And generating an external magnetic field while applying a bias magnetic field to the artificial lattice magnetoresistive film via the magnetic path.

【0010】[0010]

【作用】上記先願の磁気抵抗効果膜では、非磁性層を介
して隣り合った磁性薄膜の保磁力の違いにより、外部磁
場によって隣り合った磁性層の磁化の向きが互いに平行
から反平行となることによって抵抗変化が生じる。すな
わち、隣り合う磁性薄膜の各々の保磁力をHc2,Hc
3(0<Hc2<Hc3)として、外部磁場Hが磁性薄膜の
保磁力Hc2とHc3との間(Hc2<H<Hc3)であると
き、隣り合った磁性薄膜の磁化の方向が互いに逆向きと
なって抵抗値が増大する。このため、磁気抵抗効果素子
として作用させるためには、保磁力Hc3の磁性薄膜にお
ける磁化は初めに磁化飽和される。
In the magnetoresistive film of the prior application, the magnetization directions of the adjacent magnetic layers are changed from parallel to antiparallel by an external magnetic field due to the difference in coercive force between the adjacent magnetic thin films via the nonmagnetic layer. As a result, a resistance change occurs. That is, the coercive force of each of the adjacent magnetic thin films is represented by Hc 2 , Hc
3 (0 <Hc 2 <Hc 3 ), when the external magnetic field H is between the coercive forces Hc 2 and Hc 3 of the magnetic thin films (Hc 2 <H <Hc 3 ), the magnetization of the adjacent magnetic thin films is The directions are opposite to each other and the resistance value increases. Therefore, in order to function as a magnetoresistive effect element, the magnetization of the magnetic thin film having the coercive force Hc 3 is first saturated.

【0011】このとき、微細加工された磁気抵抗効果膜
では膜端部において、非磁性薄膜を介して隣り合った磁
性薄膜の間で静磁結合が生じているため、外部磁場ゼロ
の状態でも、膜端部では隣り合った磁性層間で磁化が反
平行状態となっている。従って、保磁力Hc2の磁性薄膜
の磁化は、膜中央部から膜端部にかけて徐々に反転した
磁化分布となる。
At this time, in the microfabricated magnetoresistive effect film, magnetostatic coupling occurs between the adjacent magnetic thin films via the nonmagnetic thin film at the film end, so that even when the external magnetic field is zero, At the film edge, the magnetization is antiparallel between the adjacent magnetic layers. Therefore, the magnetization of the magnetic thin film having the coercive force Hc 2 has a magnetization distribution that is gradually inverted from the center of the film to the end of the film.

【0012】一方、磁気抵抗効果膜に流す電流によって
電流磁界が生じるため、保磁力Hc2の磁性薄膜の磁化
は、この電流磁界の影響も大きく受ける。ヨーク型磁気
抵抗効果素子の場合には、軟磁性体であるヨークが磁気
抵抗効果膜に対して、非磁性絶縁層を介して片側のみに
配置されているため、磁気抵抗効果膜に流す電流によっ
て発生する磁界は、ヨークの影響を受けて非対称な分布
となる。このとき、保磁力Hc2の磁性薄膜の磁化分布
は、非対称な電流磁界の影響で、電流方向により差が生
じる。
On the other hand, since a current magnetic field is generated by the current flowing through the magnetoresistive film, the magnetization of the magnetic thin film having the coercive force Hc 2 is greatly affected by the current magnetic field. In the case of the yoke type magnetoresistive effect element, since the yoke, which is a soft magnetic material, is arranged only on one side of the magnetoresistive effect film via the non-magnetic insulating layer, it is The generated magnetic field has an asymmetric distribution under the influence of the yoke. At this time, the magnetization distribution of the magnetic thin film having the coercive force Hc2 varies depending on the current direction due to the influence of the asymmetric current magnetic field.

【0013】ヨーク型磁気抵抗効果素子においては、こ
のような電流方向依存性を考慮し、かつ高い再生出力を
確保するには、MR高さを小さくすることが有効である
が、MR高さの減少に伴い、保磁力Hc2の磁性薄膜と保
磁力Hc3の磁性薄膜との間の静磁結合が、膜端部からヨ
ークで覆われていない膜中央部にまでおよんでいるた
め、再生波形が非対称となる。すなわち、高い再生出力
を確保するとともに再生波形の対称性を良好に保つため
には、MR膜中央部における静磁結合の影響を相殺する
バイアス磁界を印加することが有効である。
In the yoke type magnetoresistive effect element, it is effective to reduce the MR height in order to consider such current direction dependency and to secure a high reproduction output. With the decrease, the magnetostatic coupling between the magnetic thin film with coercive force Hc 2 and the magnetic thin film with coercive force Hc 3 extends from the film edge part to the film central part not covered by the yoke. Becomes asymmetric. That is, it is effective to apply a bias magnetic field that cancels out the effect of magnetostatic coupling at the center of the MR film in order to secure a high reproduction output and maintain good symmetry of the reproduction waveform.

【0014】ここで、磁気抵抗効果素子に与えるバイア
ス磁界印加方法として、外部磁界からの磁束が前記磁気
抵抗効果素子を介して構成される磁気経路に対し、この
磁気経路を鎖交するコイルを設け、このコイルに直流電
流を流すことにより磁気ヘッドコアにバイアス磁界印加
機構を設ける。ヨーク型気抵抗効果素子では、磁気経路
が形成されており、バイアス磁界を印加させやすい。ま
た、コイルに流す電流源として外部に回路を設ける構成
が可能であるため、バイアス磁界の方向およびその磁界
強度の調整が容易で、かつ的確に行なうことができる。
Here, as a method of applying a bias magnetic field to the magnetoresistive element, a coil is provided which links a magnetic path formed by an external magnetic field through the magnetoresistive element to the magnetic path. A bias magnetic field applying mechanism is provided in the magnetic head core by passing a direct current through the coil. In the yoke type air resistance effect element, a magnetic path is formed, and it is easy to apply a bias magnetic field. Further, since it is possible to provide a circuit externally as a current source to be passed through the coil, the direction of the bias magnetic field and the magnetic field strength thereof can be adjusted easily and accurately.

【0015】[0015]

【実施例】次に、本発明について図面を参照して説明す
る。
Next, the present invention will be described with reference to the drawings.

【0016】図1は、本発明の磁気抵抗効果素子の構成
を示す図であり、図1(a),(b)は、それぞれ正面
図および断面図である。また、図2は、図1の磁気抵抗
効果膜1の詳細を示す断面図である。
FIG. 1 is a diagram showing the configuration of a magnetoresistive element according to the present invention, and FIGS. 1 (a) and 1 (b) are a front view and a sectional view, respectively. FIG. 2 is a sectional view showing details of the magnetoresistive film 1 of FIG.

【0017】本実施例の磁気抵抗効果素子は、いわゆ
る、ヨーク型磁気抵抗効果素子であって、図1に示すよ
うに、例えば、NiZnフェライト等の強磁性体基板か
らなるバックヨーク7には、溝(例えば、幅:30μ
m、深さ:4μm)が形成され、この溝には非磁性絶縁
体8(例えば、SiO2 )が充填される。そして、この
非磁性絶縁体8上に磁気抵抗効果膜1(例えば、MR高
さ:3μm)を形成し、電極9(例えば、Au:0.2
4μm)および非磁性絶縁層10(例えば、SiO2
0.2μm)を介して、ヨーク5およびヨーク6(例え
ば、NiFe:1μm)が、磁気抵抗効果膜1とオーバ
ーラップ(例えば、オーバーラップ量:1μm)するよ
うに形成されている。また、ヨーク6にはバイアス磁界
を発生するためのコイル11(例えば、Cu:3μm)
が巻装され、ヨーク5とバックヨク7とで磁気経路を形
成している。なお、図1(a)に示す正面図では、構成
の理解を容易にするために非磁性絶縁層10は省略して
ある。
The magnetoresistive effect element of the present embodiment is a so-called yoke type magnetoresistive effect element. As shown in FIG. 1, for example, the back yoke 7 made of a ferromagnetic substrate such as NiZn ferrite is Groove (eg width: 30μ
m, depth: 4 μm), and the groove is filled with a nonmagnetic insulator 8 (for example, SiO 2 ). Then, the magnetoresistive film 1 (for example, MR height: 3 μm) is formed on the non-magnetic insulator 8 and the electrode 9 (for example, Au: 0.2) is formed.
4 μm) and the non-magnetic insulating layer 10 (for example, SiO 2 :
0.2 μm), the yoke 5 and the yoke 6 (for example, NiFe: 1 μm) are formed so as to overlap with the magnetoresistive film 1 (for example, the amount of overlap: 1 μm). Further, the yoke 6 has a coil 11 (for example, Cu: 3 μm) for generating a bias magnetic field.
Is wound, and the yoke 5 and the back yoke 7 form a magnetic path. In the front view shown in FIG. 1A, the nonmagnetic insulating layer 10 is omitted for easy understanding of the structure.

【0018】磁気抵抗効果膜1は、図2に示すような人
工格子よりなる積層膜であって、その構成材料として、
磁性薄膜2にはNiFeを、磁性薄膜3にはCoを、ま
た、非磁性薄膜4にはCuをそれぞれ選択し、例えば、
1.5nm厚のNiFe薄膜,3.5nm厚のCu薄
膜,1.5nm厚のCo薄膜および3.5nm厚のCu
薄膜を順次形成する工程を3回繰り返して作成される。
The magnetoresistive film 1 is a laminated film made of an artificial lattice as shown in FIG.
NiFe is selected for the magnetic thin film 2, Co is selected for the magnetic thin film 3, and Cu is selected for the non-magnetic thin film 4, respectively.
1.5 nm thick NiFe thin film, 3.5 nm thick Cu thin film, 1.5 nm thick Co thin film and 3.5 nm thick Cu
It is formed by repeating a process of sequentially forming thin films three times.

【0019】なお、最後のCu薄膜からなる非磁性薄膜
4は形成されていない。また、磁性薄膜3の矢印は残留
磁化の方向を示している。そして、このように構成され
た磁気抵抗効果膜1の磁気抵抗変化率は9%であった。
The nonmagnetic thin film 4 made of the last Cu thin film is not formed. The arrow of the magnetic thin film 3 indicates the direction of residual magnetization. The magnetoresistance effect ratio of the magnetoresistance effect film 1 thus configured was 9%.

【0020】次に、本発明による磁気抵抗効果素子の再
生方法について説明する。図3は、本発明による磁気抵
抗効果素子を外部の直流電源回路に接続した状態を示す
模式図である。
Next, a method of reproducing the magnetoresistive effect element according to the present invention will be described. FIG. 3 is a schematic diagram showing a state where the magnetoresistance effect element according to the present invention is connected to an external DC power supply circuit.

【0021】本発明による磁気抵抗効果素子を用いて再
生出力を得る場合は、図1に示すコイル11の端子に外
部電源を接続する。ここで、図3を参照すると、外部電
源である直流電源回路12は、電流方向を切り替える切
り替え回路12aと定電流源12bとから構成されてお
り、切り替え回路12aを切り替えることより、定電流
源12bからの電流を任意の向きにコイル11に印加し
て磁界を発生させるとともに、ヨーク5,ヨーク6およ
びバックヨーク7を介して磁気抵抗効果膜1にバイアス
磁界を印加しながら外部磁場を検出する。
When a reproduction output is obtained using the magnetoresistive element according to the present invention, an external power supply is connected to the terminal of the coil 11 shown in FIG. Here, referring to FIG. 3, the DC power supply circuit 12, which is an external power supply, includes a switching circuit 12a for switching the current direction and a constant current source 12b, and by switching the switching circuit 12a, the constant current source 12b Is applied to the coil 11 in an arbitrary direction to generate a magnetic field, and an external magnetic field is detected while applying a bias magnetic field to the magnetoresistive film 1 via the yoke 5, yoke 6, and back yoke 7.

【0022】このように、磁気抵抗効果素子の近傍にコ
イルを設けて電流を流すことにより、閉磁路が形成され
やすく、バイアス磁界がかけやすい。さらに、外部にバ
イアス磁界を発生するための電源回路を設けることも可
能であるため、バイアス磁界の向き、および磁界強度の
調整が容易で、かつ的確に行なうことができる。
As described above, by providing a coil near the magnetoresistive element and passing a current, a closed magnetic circuit is easily formed, and a bias magnetic field is easily applied. Further, since it is possible to provide a power supply circuit for generating a bias magnetic field to the outside, the direction of the bias magnetic field and the magnetic field strength can be adjusted easily and accurately.

【0023】[0023]

【発明の効果】以上説明したように本発明によれば、ヨ
ーク型磁気抵抗効果効果素子において、人工格子磁気抵
抗効果膜にバイアス磁界を印加するコイルおよびヨーク
を設けることにより、高出力で波形対称性の良好な再生
波形が得られるため、エラーレートの低い高信頼性の磁
気ディスク装置等の外部記憶装置を提供できる。
As described above, according to the present invention, in the yoke type magnetoresistive effect element, by providing the coil and the yoke for applying the bias magnetic field to the artificial lattice magnetoresistive effect film, the waveform is symmetrical at a high output. Since it is possible to obtain a reproduced waveform having good characteristics, it is possible to provide an external storage device such as a highly reliable magnetic disk device having a low error rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のヨーク型磁気抵抗効果素子の構成を示
す図である。
FIG. 1 is a diagram showing a configuration of a yoke type magnetoresistive effect element of the present invention.

【図2】図1の磁気抵抗効果膜1の詳細を示す断面図で
ある。
FIG. 2 is a cross-sectional view showing details of the magnetoresistive film 1 of FIG.

【図3】本発明による磁気抵抗効果素子を外部の直流電
源回路に接続した状態を示す模式図である。
FIG. 3 is a schematic diagram showing a state where the magnetoresistance effect element according to the present invention is connected to an external DC power supply circuit.

【符号の説明】[Explanation of symbols]

1 磁気抵抗効果膜 2,3 磁性薄膜 4 非磁性薄膜 5,6 ヨーク 7 バックヨーク 8 非磁性絶縁体 9 電極 10 非磁性絶縁層 11 コイル 12 直流電源回路 12a 切り替え回路 12b 定電流源 DESCRIPTION OF SYMBOLS 1 Magnetoresistance effect film 2, 3 Magnetic thin film 4 Nonmagnetic thin film 5, 6 Yoke 7 Back yoke 8 Nonmagnetic insulator 9 Electrode 10 Nonmagnetic insulating layer 11 Coil 12 DC power supply circuit 12a Switching circuit 12b Constant current source

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 保持力の異る2種類以上の磁性薄膜が非
磁性層を介して積層し、繰り返し積層回数が2回以上か
らなる人工格子磁気抵抗効果膜に、非磁性絶縁層を介し
てヨークを配置した磁気抵抗効果素子において、前記ヨ
ークと前記人工格子磁気抵抗効果膜とを含んで構成され
る磁気経路と、この磁気経路に鎖交し前記磁気経路にバ
イアス磁界を発生させるコイルとを備えることを特徴と
する磁気抵抗効果素子。
1. An artificial lattice magnetoresistive effect film comprising two or more types of magnetic thin films having different coercive forces laminated with a non-magnetic layer interposed therebetween, and the artificial lattice magnetoresistive effect film having a number of repeated laminations of two or more, with a non-magnetic insulating layer interposed therebetween. In the magnetoresistive effect element in which a yoke is arranged, a magnetic path including the yoke and the artificial lattice magnetoresistive effect film, and a coil interlinking with the magnetic path and generating a bias magnetic field in the magnetic path are provided. A magnetoresistive effect element characterized by comprising.
【請求項2】 請求項1記載の磁気抵抗効果素子による
外部磁界信号の再生方法であって、前記ヨークと前記人
工格子磁気抵抗効果膜とを含んで構成される磁気経路に
鎖交するコイルに通電し、前記磁気経路に磁界を発生さ
せるとともに、前記磁気経路を介して前記人工格子磁気
抵抗効果膜にバイアス磁界を印加しながら外部磁場を検
出することを特徴とする磁気抵抗効果素子の再生方法。
2. A method of reproducing an external magnetic field signal by the magnetoresistive effect element according to claim 1, wherein the coil interlinks with a magnetic path including the yoke and the artificial lattice magnetoresistive effect film. A method of reproducing a magnetoresistive effect element, which comprises energizing to generate a magnetic field in the magnetic path and detecting an external magnetic field while applying a bias magnetic field to the artificial lattice magnetoresistive effect film via the magnetic path. .
JP6226411A 1994-09-21 1994-09-21 Magnetoresistive element and reproducing method thereof Expired - Fee Related JP2661560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6226411A JP2661560B2 (en) 1994-09-21 1994-09-21 Magnetoresistive element and reproducing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6226411A JP2661560B2 (en) 1994-09-21 1994-09-21 Magnetoresistive element and reproducing method thereof

Publications (2)

Publication Number Publication Date
JPH0897487A true JPH0897487A (en) 1996-04-12
JP2661560B2 JP2661560B2 (en) 1997-10-08

Family

ID=16844703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6226411A Expired - Fee Related JP2661560B2 (en) 1994-09-21 1994-09-21 Magnetoresistive element and reproducing method thereof

Country Status (1)

Country Link
JP (1) JP2661560B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100425575B1 (en) * 1999-10-19 2004-04-01 마츠시타 덴끼 산교 가부시키가이샤 Magnetic recording device, method of adjusting magnetic head and magnetic recording medium
US6721139B2 (en) 2001-05-31 2004-04-13 International Business Machines Corporation Tunnel valve sensor with narrow gap flux guide employing a lamination of FeN and NiFeMo

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04339309A (en) * 1991-05-15 1992-11-26 Hitachi Ltd Magneto-resistance effect element using multilayred magneto-resistance effect film
JPH04364212A (en) * 1991-06-11 1992-12-16 Fuji Photo Film Co Ltd Magnetic resistance head
JPH05175572A (en) * 1991-12-20 1993-07-13 Hitachi Ltd Magnetoresistance effect element, and magnetic head and recording/reproducing device using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04339309A (en) * 1991-05-15 1992-11-26 Hitachi Ltd Magneto-resistance effect element using multilayred magneto-resistance effect film
JPH04364212A (en) * 1991-06-11 1992-12-16 Fuji Photo Film Co Ltd Magnetic resistance head
JPH05175572A (en) * 1991-12-20 1993-07-13 Hitachi Ltd Magnetoresistance effect element, and magnetic head and recording/reproducing device using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100425575B1 (en) * 1999-10-19 2004-04-01 마츠시타 덴끼 산교 가부시키가이샤 Magnetic recording device, method of adjusting magnetic head and magnetic recording medium
US6721139B2 (en) 2001-05-31 2004-04-13 International Business Machines Corporation Tunnel valve sensor with narrow gap flux guide employing a lamination of FeN and NiFeMo

Also Published As

Publication number Publication date
JP2661560B2 (en) 1997-10-08

Similar Documents

Publication Publication Date Title
US5461527A (en) Magneto-resistive head
JPS6286519A (en) Magnetic head for twin truck
KR100196581B1 (en) Magnetoresistive effect element
US5491606A (en) Planar magnetoresistive head with an improved gap structure
KR0145034B1 (en) Magnetic transducer and a media drive containing the magnetic transducer
JPH05135332A (en) Magneto-resistance effect playback head and magnetic recording device using this head
JP2661560B2 (en) Magnetoresistive element and reproducing method thereof
JPH1125425A (en) Magnetic head
JP2701748B2 (en) Magnetoresistive element and bias applying method thereof
JPH08147631A (en) Magnetic recording and reproducing apparatus
JP2658868B2 (en) Magnetoresistive element and reproducing method thereof
JPH08203032A (en) Magneto-resistance effect reproducing head
JPH0441415B2 (en)
JP2658872B2 (en) Magnetoresistance effect element
JPS61134913A (en) Magnetoresistance type thin film head
JP2979966B2 (en) Magnetic head
JPS6050607A (en) Vertical magnetic recording and reproducing head
JP2003208706A (en) Magnetic head
JPH08124122A (en) Magnetoresistive reproducing head and magnetic recording/reproducing device
JPH0330109A (en) Magnetoresistive playback head
JPH061533B2 (en) Multi-track reluctance type magnetic head
JPH11126933A (en) Magnetoresistance effect element
JPH05266435A (en) Thin film magnetic head
JPH0981910A (en) Magnetoresistive effect type reproducing head and magnetic recording and reproducing device
JPS6192415A (en) Magneto-resistance effect type head

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970513

LAPS Cancellation because of no payment of annual fees