[go: up one dir, main page]

JPH089034B2 - Method for removing dissolved oxygen from pure water or ultrapure water - Google Patents

Method for removing dissolved oxygen from pure water or ultrapure water

Info

Publication number
JPH089034B2
JPH089034B2 JP3048709A JP4870991A JPH089034B2 JP H089034 B2 JPH089034 B2 JP H089034B2 JP 3048709 A JP3048709 A JP 3048709A JP 4870991 A JP4870991 A JP 4870991A JP H089034 B2 JPH089034 B2 JP H089034B2
Authority
JP
Japan
Prior art keywords
gas
water
dissolved oxygen
hydrogen
pure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3048709A
Other languages
Japanese (ja)
Other versions
JPH04267993A (en
Inventor
葉子 岩瀬
孝行 斉藤
健 中島
学 辻村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP3048709A priority Critical patent/JPH089034B2/en
Publication of JPH04267993A publication Critical patent/JPH04267993A/en
Publication of JPH089034B2 publication Critical patent/JPH089034B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、純水又は超純水の溶存
酸素の除去方法に係わり、特にパラジウム又はその化合
物を担持した気体透過膜を用いた、溶存酸素の除去方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing dissolved oxygen from pure water or ultrapure water, and more particularly to a method for removing dissolved oxygen using a gas permeable membrane carrying palladium or its compound.

【0002】[0002]

【従来の技術】従来、溶存酸素の少ない超純水を製造す
る際は、原水を処理して純水を製造するいわゆる1次純
水システムで、溶存酸素除去を行う方法が一般的であ
る。ここで、溶存酸素の除去方法としては、脱気塔又は
膜による真空脱気、窒素等の不活性ガスで曝気する方
法、水素又はヒドラジン等の還元剤を添加して触媒と接
触、又は紫外線を照射する方法等が行われている。ま
た、本発明者らによって、パラジウム等を担持した気体
透過膜の接ガス側に水素を供給し、接液側に被処理水を
供給する方法が提案されている。
2. Description of the Related Art Conventionally, when producing ultrapure water containing little dissolved oxygen, it is common to remove dissolved oxygen using a so-called primary pure water system in which raw water is processed to produce pure water. Here, as a method for removing dissolved oxygen, vacuum deaeration with a degassing tower or a membrane, a method of aerating with an inert gas such as nitrogen, contact with a catalyst by adding a reducing agent such as hydrogen or hydrazine, or ultraviolet rays Irradiation methods are used. Further, the present inventors have proposed a method of supplying hydrogen to the gas-contacting side of a gas permeable membrane carrying palladium or the like and supplying water to be treated to the liquid-contacting side.

【0003】[0003]

【発明が解決しようとする課題】近年、純水又は超純水
の溶存酸素濃度は、数μg/l以下と、極度に低濃度が
要求されるようになり、超純水製造装置、いわゆるサブ
システム内の微量リーク等による溶存酸素の増加が問題
となる恐れが出てきた。またサブシステムを、過酸化水
素、オゾン等の酸化剤によって殺菌した場合、超純水ラ
イン中の溶存酸素濃度は非常に大きくなる。この濃度は
システム内の水の入れ替え(ブロー)によって低減され
ているが、数μg/l以下の極低濃度を回復する迄に
は、大量の超純水が必要となる。従って、サブシステム
内で、純水又は超純水の溶存酸素を除去する工程が求め
られてきた。
In recent years, the dissolved oxygen concentration of pure water or ultrapure water is required to be extremely low, ie, several μg / l or less. There is a concern that an increase in dissolved oxygen due to a slight leak in the system may become a problem. Further, when the subsystem is sterilized with an oxidizing agent such as hydrogen peroxide or ozone, the dissolved oxygen concentration in the ultrapure water line becomes very large. This concentration is reduced by replacing (blowing) water in the system, but a large amount of ultrapure water is required to recover an extremely low concentration of several μg / l or less. Therefore, there has been a demand for a step of removing dissolved oxygen in pure water or ultrapure water within the subsystem.

【0004】しかし、真空脱気では溶存酸素濃度を数μ
g/l以下にするためには極端に真空度を高くする必要
がある。また窒素曝気は気液接触の関係から少なくとも
1m以上の高さが必要であり装置が大規模になる。還元
剤を添加する方法では、還元剤の溶解装置が必要にな
り、また還元剤の種類によっては残留還元剤が問題とな
る。すなわちこれらの方法では、サブシステム内での適
用は困難である。また、発明者らが先に提案した、パラ
ジウム等を担持した気体透過膜の接ガス側に水素を供給
し、接液側に被処理水を流す方法には、通常の純水又は
超純水のように真空脱気処理が行われている水を処理す
る場合には、若干の問題があることが判明した。すなわ
ち、真空脱気後で溶存気体濃度が低くなっている水に
は、水素が非常に過剰に溶解する傾向があり、余剰水素
の処理が問題となった。また逆に水素の供給量を制限し
た場合には、接ガス側が減圧され、水封管の水が逆流す
る等の問題があった。本発明は、前記問題点を解決し、
水素の過剰供給を抑制し純水又は超純水の溶存酸素を除
去して、溶存酸素の極力少ない超純水を容易に安定して
得ることのできる、溶存酸素除去方法を提供することを
課題とする。
However, in vacuum degassing, the dissolved oxygen concentration is reduced to several μm.
It is necessary to extremely increase the degree of vacuum in order to achieve g / l or less. In addition, nitrogen aeration requires a height of at least 1 m or more because of gas-liquid contact, and the apparatus becomes large-scale. The method of adding a reducing agent requires a dissolving device for the reducing agent, and the residual reducing agent poses a problem depending on the type of the reducing agent. That is, these methods are difficult to apply within the subsystem. In addition, the method previously proposed by the inventors, in which hydrogen is supplied to the gas contact side of the gas permeable membrane supporting palladium or the like, and the water to be treated is caused to flow to the liquid contact side, may be ordinary pure water or ultrapure water. It was found that there are some problems in treating water that has been vacuum-deaerated as described above. That is, hydrogen tends to be dissolved in water excessively in water having a low dissolved gas concentration after vacuum deaeration, and treatment of excess hydrogen has been a problem. On the contrary, when the amount of hydrogen supply is limited, there is a problem that the gas contact side is depressurized and the water in the water sealing tube flows backward. The present invention solves the above problems,
An object of the present invention is to provide a method for removing dissolved oxygen, which can suppress excessive supply of hydrogen and remove dissolved oxygen in pure water or ultrapure water to easily and stably obtain ultrapure water containing as little dissolved oxygen as possible. And

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、接液側及び/又は接ガス側にパラジウ
ム又はその化合物を担持した気体透過膜を有するモジュ
ールを用い、該気体透過膜モジュールの接ガス側に水素
を含む気体を供給し、かつ接液側に純水又は超純水を流
すことによる純水又は超純水の溶存酸素の除去方法にお
いて、接ガス側に供給する気体は、水素と不活性ガスか
ら選ばれた1種以上の気体との供給量を、純水又は超純
水中に溶存する酸素濃度に従って調節することによっ
て、水素添加量を制御することを特徴とする純水又は超
純水の溶存酸素の除去方法としたものである。上記方法
において、不活性ガスとしては、窒素、アルゴン、ヘリ
ウム、ネオン、二酸化炭素等を用いることができる。
In order to solve the above-mentioned problems, the present invention uses a module having a gas permeable membrane carrying palladium or its compound on the liquid contact side and / or the gas contact side, and In a method of removing pure water or dissolved oxygen from ultrapure water by supplying a gas containing hydrogen to the gas contacting side of the membrane module and flowing pure water or ultrapure water to the liquid contacting side, supply to the gas contacting side The gas is characterized by controlling the hydrogenation amount by adjusting the supply amount of hydrogen and one or more gases selected from inert gases according to the concentration of oxygen dissolved in pure water or ultrapure water. This is a method for removing dissolved oxygen from pure water or ultrapure water. In the above method, as the inert gas, nitrogen, argon, helium, neon, carbon dioxide or the like can be used.

【0006】次に、本発明を詳細に説明する。本発明に
おいては、溶存酸素を含有する原水を処理するに際して
は、接液側及び/又は接ガス側にパラジウム又はその化
合物を担持した気体透過膜を有する気体透過膜モジュー
ルと、該モジュールの接ガス部に水素及び不活性気体、
又は水素と不活性ガスとの混合気体を供給し、接液側に
溶存酸素を含有する原水を供給する手段とを備えたもの
であれば良い。担持母体の気体透過膜としては、気体を
透過させ、液体を透過させない膜であればよく、通常の
膜脱気用の気体透過膜が使用できる。気体透過膜の接液
側への、パラジウム又はその化合物の担持は常法によっ
て行うことができる。例えば、中空糸膜モジュールへの
無電解めっき法は公知(特開昭63−278506号公
報)であるが、中空糸状の気体透過膜の場合には、この
方法に準じて、モジュールごとパラジウムによる活性化
までを行うことで、パラジウムを担持することができ
る。また、通常の無電解めっきに準じて、中空糸膜のみ
を処理液中に浸漬する方法で、パラジウムによる活性化
処理までを行ってパラジウムを担持した後、モジュール
化する方法を用いても良い。
Next, the present invention will be described in detail. In the present invention, in treating raw water containing dissolved oxygen, a gas permeable membrane module having a gas permeable membrane carrying palladium or a compound thereof on the liquid contact side and / or the gas contact side, and the gas contact gas of the module. Part of hydrogen and inert gas,
Alternatively, a means for supplying a mixed gas of hydrogen and an inert gas and supplying raw water containing dissolved oxygen to the liquid contact side may be used. As the gas permeable membrane of the supporting matrix, a gas permeable membrane that does not allow liquid to permeate may be used, and an ordinary gas permeable membrane for degassing may be used. The palladium or its compound can be supported on the liquid contact side of the gas permeable membrane by a conventional method. For example, a method of electroless plating on a hollow fiber membrane module is known (Japanese Patent Laid-Open No. 63-278506), but in the case of a hollow fiber-shaped gas permeable membrane, the module is activated by palladium according to this method. Palladium can be supported by performing the conversion. Further, in accordance with ordinary electroless plating, a method of immersing only the hollow fiber membrane in the treatment solution, carrying out the activation treatment with palladium to support palladium, and then modularizing it may be used.

【0007】接ガス部に供給する気体としては、純水又
は超純水の溶存酸素量の当量ないし当量よりわずかに多
い量の水素、及び純水又は超純水の飽和気体濃度と溶存
気体濃度との差に相当する窒素、アルゴン、ヘリウム、
ネオン、二酸化炭素等の不活性気体とを供給する。ここ
で、水素と不活性気体とはそれぞれ別個に供給してもよ
く、予め所要濃度に混合して供給しても良い。水素の添
加量は、溶存酸素の等量〜1.5倍量がよく、この範囲
になるように不活性ガスの添加量を調節するのがよい。
As the gas to be supplied to the gas contact part, hydrogen equivalent to the amount of dissolved oxygen of pure water or ultrapure water or slightly larger than the equivalent amount thereof, and saturated gas concentration and dissolved gas concentration of pure water or ultrapure water. Nitrogen, argon, helium,
Supply with an inert gas such as neon or carbon dioxide. Here, hydrogen and the inert gas may be supplied separately, or may be mixed in advance to a required concentration and supplied. The amount of hydrogen added is preferably equal to 1.5 times the amount of dissolved oxygen, and the amount of inert gas added is preferably adjusted to fall within this range.

【0008】[0008]

【作用】本発明による純水又は超純水の溶存酸素除去方
法では、気体透過膜の接ガス側の水素は、膜を透過して
接液側に移行する。接液側表面に供給された水素は、そ
こに担持されたパラジウム又はその化合物の存在下で、
水中の酸素すなわち溶存酸素と反応して水になる。ここ
で、パラジウム又はその化合物が、水素と酸素との反応
の有効な触媒であり、その存在下ではこの反応が速やか
に起こることは公知である。このとき、一般に純水又は
超純水は脱気処理が行われているため、純水又は超純水
タンクが窒素シールされていたとしても、水中の溶存気
体濃度は低くなっている。従って、気体透過膜を介して
気体と接触した場合には、接触面積が大きいこともあっ
て、気体が速やかに水中に溶解する。
In the method for removing dissolved oxygen from pure water or ultrapure water according to the present invention, hydrogen on the gas contact side of the gas permeable membrane permeates the membrane and moves to the liquid contact side. Hydrogen supplied to the liquid contact side surface, in the presence of palladium or a compound supported thereon,
It reacts with oxygen in water, that is, dissolved oxygen, to become water. Here, it is known that palladium or a compound thereof is an effective catalyst for the reaction between hydrogen and oxygen, and that in the presence thereof, this reaction occurs rapidly. At this time, since the pure water or the ultrapure water is generally deaerated, the dissolved gas concentration in the water is low even if the pure water or the ultrapure water tank is sealed with nitrogen. Therefore, when the gas comes into contact with the gas through the gas-permeable membrane, the contact area is large and the gas is rapidly dissolved in water.

【0009】そして、この気体が水素を主成分とする場
合には、被処理水の溶存酸素濃度に係わらず、多量の水
素が被処理水中に供給される。すなわち、溶存酸素濃度
が低い場合には、過剰水素濃度が非常に大きくなる。
又、逆に水素ガスの供給量を、単に酸素との当量程度に
制御した場合には、水素が速やかに水中に溶解するた
め、接ガス側は減圧状態となる。このため、例えば水封
水の逆流が起こる。この場合、接ガス表面積が減少する
ため、接液側表面のパラジウム等に吸蔵された水素、す
なわち溶存酸素との反応の活性の高い水素の割合が減少
する。従って、供給した水素のうち有効に利用される割
合が少なく、溶存酸素の除去効率が低くなる。原水の溶
存酸素濃度に応じて膜面積を変化させる方法も考えられ
るが、装置が複雑となり、実用上困難である。
When this gas contains hydrogen as a main component, a large amount of hydrogen is supplied to the water to be treated regardless of the dissolved oxygen concentration of the water to be treated. That is, when the dissolved oxygen concentration is low, the excess hydrogen concentration becomes very large.
On the contrary, when the supply amount of hydrogen gas is controlled to be just equivalent to oxygen, hydrogen is rapidly dissolved in water, so that the gas contact side is in a reduced pressure state. For this reason, for example, backflow of water-sealing water occurs. In this case, since the gas contact surface area is reduced, the ratio of hydrogen occluded in palladium or the like on the liquid contact side surface, that is, hydrogen having a high activity of reaction with dissolved oxygen is reduced. Therefore, the proportion of the supplied hydrogen that is effectively used is small, and the efficiency of removing dissolved oxygen is low. A method of changing the membrane area depending on the dissolved oxygen concentration of the raw water is also conceivable, but the apparatus becomes complicated and is practically difficult.

【0010】そこで、水素ガスを窒素ガス等の不活性ガ
スで希釈し、水素濃度を低下させることによって、水中
の過剰水素を減少させ、かつ反応効率を大きくすること
が実用上有効な方法である。ここで、不活性ガス及び水
素をそれぞれ供給する場合には、純水又は超純水中の溶
存酸素量に相当する量ないしそれよりわずかに多い量の
水素を供給し、更に水中に溶解して消費される量に相当
する量を不活性ガスで供給する。従って、水中の溶存気
体濃度及び溶存酸素量の変化に対応できる利点がある。
また、不活性ガスと水素とを、純水又は超純水中の溶存
酸素濃度及び溶存気体濃度に合わせて、予め混合したガ
スを用いる場合には、装置が簡略化され、操作が容易に
なる利点がある。
Therefore, it is a practically effective method to dilute hydrogen gas with an inert gas such as nitrogen gas to reduce the hydrogen concentration, thereby reducing excess hydrogen in water and increasing the reaction efficiency. . Here, when each of the inert gas and hydrogen is supplied, an amount of hydrogen corresponding to the amount of dissolved oxygen in pure water or ultrapure water or a slightly larger amount of hydrogen is supplied, and further dissolved in water. An inert gas is supplied in an amount corresponding to the amount consumed. Therefore, there is an advantage that it can respond to changes in the dissolved gas concentration and the dissolved oxygen amount in water.
Further, when a gas in which an inert gas and hydrogen are mixed in advance according to the dissolved oxygen concentration and the dissolved gas concentration in pure water or ultrapure water is used, the device is simplified and the operation is facilitated. There are advantages.

【0011】[0011]

【実施例】以下、本発明を実施例を挙げて説明するが、
本発明はこの実施例に限定されるものではない。 実施例1 図1に本実施例に用いた実験装置の概略図を示す。水道
水を、逆浸透処理後、混床式イオン交換樹脂等で処理し
た後、膜脱気した純水を原水とした。この原水の溶存酸
素は約700μg/lであった。この原水を図1に示し
た装置で、溶存酸素除去モジュール1に原水配管3から
100リットル/hで通水した。また、接ガス側に供給
する気体は、窒素ガス質量流量計5を介して窒素ガス
を、水素ガス質量流量計6を介して水素ガスをそれぞれ
供給し、溶存酸素除去モジュール1に気体入口配管7か
ら供給した。ここでガス供給量は、水素ガスを溶存酸素
の等量の約1.1倍になるように調製した後、窒素ガス
で水封管の水頭差が約50mmAqとなるように調整し
た。被処理水及び処理水の溶存酸素は、溶存酸素モニタ
ー10及び11で測定した。処理水の溶存酸素濃度は、
6〜8μg/lとなった。N2 にかえてCO2 を用いて
行ったが同様の効果が得られた。
EXAMPLES The present invention will be described below with reference to examples.
The invention is not limited to this example. Example 1 FIG. 1 shows a schematic diagram of an experimental apparatus used in this example. The tap water was subjected to reverse osmosis treatment and then treated with a mixed bed type ion exchange resin or the like, and pure water degassed with the membrane was used as raw water. The dissolved oxygen in this raw water was about 700 μg / l. This raw water was passed through the dissolved oxygen removing module 1 from the raw water pipe 3 at 100 liter / h by the apparatus shown in FIG. As the gas to be supplied to the gas contact side, nitrogen gas is supplied through the nitrogen gas mass flow meter 5 and hydrogen gas is supplied through the hydrogen gas mass flow meter 6, respectively, and the dissolved oxygen removing module 1 is supplied with the gas inlet pipe 7 Supplied from. Here, the gas supply amount was adjusted such that hydrogen gas was about 1.1 times the equivalent amount of dissolved oxygen, and was then adjusted with nitrogen gas so that the head difference of the water sealing tube was about 50 mmAq. The dissolved oxygen of the water to be treated and the treated water was measured by the dissolved oxygen monitors 10 and 11. The dissolved oxygen concentration of treated water is
It became 6 to 8 μg / l. The same effect was obtained by using CO 2 instead of N 2 .

【0012】比較例1 実施例1と同様の原水を、窒素ガス供給設備がない他
は、実施例1と同様の装置を用いて処理した。水素ガス
供給量が溶存酸素等量の約1.1倍では、水素ガスの水
中への溶解により接ガス側が減圧されて、水封管8の水
封水が逆流して接ガス側に入り、接ガス側が満水となる
ため、処理水の溶存酸素濃度は約200μg/lであっ
た。水素ガス供給量40ml/minでは、水封水の逆
流はなく、処理水の溶存酸素濃度は6〜8μg/lとな
った。しかし水素添加量が溶存酸素当量の約20倍と高
く、処理水の水素濃度が高くなるため、余剰水素を脱気
によって除去する必要があった。
Comparative Example 1 The same raw water as in Example 1 was treated using the same apparatus as in Example 1 except that there was no nitrogen gas supply facility. When the supply amount of hydrogen gas is about 1.1 times the dissolved oxygen equivalent amount, the contact gas side is depressurized due to the dissolution of hydrogen gas in water, and the water sealing water in the water sealing tube 8 flows backward to enter the contact gas side. Since the gas contact side was full, the dissolved oxygen concentration of the treated water was about 200 μg / l. At a hydrogen gas supply rate of 40 ml / min, there was no backflow of water-sealing water, and the dissolved oxygen concentration of the treated water was 6 to 8 μg / l. However, since the hydrogenation amount is as high as about 20 times the dissolved oxygen equivalent and the hydrogen concentration of the treated water becomes high, it was necessary to remove excess hydrogen by degassing.

【0013】[0013]

【発明の効果】本発明は、接液側にパラジウム又はその
化合物を担持し、接ガス側に水素及び不活性気体を供給
した気体透過膜モジュールに、純水又は超純水を通水す
ることによって、純水又は超純水中の溶存酸素を低減す
るものであり、 (1)従来法である膜を介して真空脱気(膜脱気)に比
較して、溶存酸素が低くできる。 (2)還元剤を添加して、触媒層に通水する方法に比較
して、還元剤の溶解設備が不要で設備が簡素化できる。 (3)窒素曝気に比較して、装置が小型化できる。 (4)水素の添加量を適正に、かつ容易に制御できる。
等の効果がある。 このため、本発明によれば簡単な装置で、かつ容易に純
水又は超純水中の溶存酸素を低減することができる。
INDUSTRIAL APPLICABILITY According to the present invention, pure water or ultrapure water is passed through a gas permeable membrane module in which palladium or its compound is supported on the liquid contact side and hydrogen and an inert gas are supplied on the gas contact side. This reduces dissolved oxygen in pure water or ultrapure water. (1) Dissolved oxygen can be lowered as compared with vacuum degassing (film degassing) through a conventional membrane. (2) Compared with the method of adding a reducing agent and passing water through the catalyst layer, the equipment for dissolving the reducing agent is unnecessary and the equipment can be simplified. (3) The device can be downsized as compared with nitrogen aeration. (4) The amount of hydrogen added can be controlled appropriately and easily.
And so on. Therefore, according to the present invention, dissolved oxygen in pure water or ultrapure water can be easily reduced with a simple device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法に用いる装置の概略図であるFIG. 1 is a schematic view of an apparatus used in the method of the present invention.

【符号の説明】[Explanation of symbols]

1:溶存酸素除去モジュール、2:パラジウム担持気体
透過膜、3:原水配管、4:処理水配管、5:窒素ガス
質量流量計、6:水素ガス質量流量計、7:気体入口配
管、8:水封管、9:排気配管、10:処理水溶存酸素
モニター、 11:原水溶存酸素モニター
1: Dissolved oxygen removal module, 2: Palladium-supporting gas permeable membrane, 3: Raw water pipe, 4: Treated water pipe, 5: Nitrogen gas mass flow meter, 6: Hydrogen gas mass flow meter, 7: Gas inlet pipe, 8: Water sealing pipe, 9: Exhaust pipe, 10: Processed dissolved oxygen monitor, 11: Raw dissolved oxygen monitor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中島 健 神奈川県藤沢市本藤沢4丁目2番1号 株 式会社 荏原総合研究所内 (72)発明者 辻村 学 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Ken Nakajima Ken 2-2-1 Fujisawa-shi, Kanagawa Kanagawa Prefecture Ebisu Research Institute Ltd. (72) Inventor Manabu Tsujimura 11-1 Haneda Asahi-cho, Ota-ku, Tokyo Issue EBARA CORPORATION

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 接液側及び/又は接ガス側にパラジウム
又はその化合物を担持した気体透過膜を有するモジュー
ルを用い、該気体透過膜モジュールの接ガス側に水素を
含む気体を供給し、かつ接液側に純水又は超純水を流す
ことによる純水又は超純水の溶存酸素の除去方法におい
て、接ガス側に供給する気体は、水素と不活性ガスから
選ばれた1種以上の気体との供給量を、純水又は超純水
中に溶存する酸素濃度に従って調節することによって、
水素添加量を制御することを特徴とする純水又は超純水
の溶存酸素の除去方法。
1. A module having a gas permeable membrane supporting palladium or a compound thereof on the liquid contact side and / or the gas contact side is used, and a gas containing hydrogen is supplied to the gas contact side of the gas permeable membrane module, and In the method of removing pure water or dissolved oxygen of ultrapure water by flowing pure water or ultrapure water to the liquid contact side, the gas supplied to the gas contact side is at least one selected from hydrogen and an inert gas. By adjusting the supply amount with gas according to the concentration of oxygen dissolved in pure water or ultrapure water,
A method for removing dissolved oxygen from pure water or ultrapure water, which comprises controlling the amount of hydrogen added.
JP3048709A 1991-02-22 1991-02-22 Method for removing dissolved oxygen from pure water or ultrapure water Expired - Fee Related JPH089034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3048709A JPH089034B2 (en) 1991-02-22 1991-02-22 Method for removing dissolved oxygen from pure water or ultrapure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3048709A JPH089034B2 (en) 1991-02-22 1991-02-22 Method for removing dissolved oxygen from pure water or ultrapure water

Publications (2)

Publication Number Publication Date
JPH04267993A JPH04267993A (en) 1992-09-24
JPH089034B2 true JPH089034B2 (en) 1996-01-31

Family

ID=12810844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3048709A Expired - Fee Related JPH089034B2 (en) 1991-02-22 1991-02-22 Method for removing dissolved oxygen from pure water or ultrapure water

Country Status (1)

Country Link
JP (1) JPH089034B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0760005A (en) * 1993-08-31 1995-03-07 Miura Co Ltd Dearation of liquid product
JP4835498B2 (en) * 2007-04-17 2011-12-14 栗田工業株式会社 Water treatment apparatus for ultrapure water production and water treatment system for ultrapure water production
JP5523665B2 (en) * 2007-12-04 2014-06-18 東芝燃料電池システム株式会社 Fuel cell system

Also Published As

Publication number Publication date
JPH04267993A (en) 1992-09-24

Similar Documents

Publication Publication Date Title
JP5447378B2 (en) Method and apparatus for treating water containing organic matter
WO2000064568A1 (en) Apparatus for producing water containing dissolved ozone
JP2652301B2 (en) Cleaning water production equipment
JPH0647105B2 (en) Purification method and device for pure water or ultrapure water
JP3765354B2 (en) Method for producing hydrogen-containing ultrapure water
TWI732970B (en) Water treatment method and apparatus
GB2283015A (en) Membrane reactor for the removal of dissolved oxygen from water
JPH0252088A (en) Apparatus for making desalted water
JP3734207B2 (en) Ozone water production method
JPH089034B2 (en) Method for removing dissolved oxygen from pure water or ultrapure water
JP2012254428A (en) Ultrapure water producing method and apparatus
JP2002210494A (en) Ultrapure water production equipment
CN115605441B (en) Water treatment device and water treatment method
JP4826864B2 (en) Ultrapure water production equipment
JP3009789B2 (en) Removal of dissolved oxygen in water
JPS6143088B2 (en)
JPH0813353B2 (en) Pure water production equipment
JP2008173617A (en) Water treatment apparatus and water treatment method
JP3645007B2 (en) Ultrapure water production equipment
JPH1119663A (en) How to remove organic matter
JP2519122B2 (en) Method and apparatus for removing dissolved oxygen in liquid
JPH01284385A (en) Pure water and ultrapure water production method and its production equipment
JP3452471B2 (en) Pure water supply system, cleaning device and gas dissolving device
JPH03154601A (en) Removal of dissolving oxygen in water
JP7171671B2 (en) Ultrapure water production system and ultrapure water production method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees