JPH0888353A - Field effect transistor - Google Patents
Field effect transistorInfo
- Publication number
- JPH0888353A JPH0888353A JP22512994A JP22512994A JPH0888353A JP H0888353 A JPH0888353 A JP H0888353A JP 22512994 A JP22512994 A JP 22512994A JP 22512994 A JP22512994 A JP 22512994A JP H0888353 A JPH0888353 A JP H0888353A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- semi
- field effect
- effect transistor
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、電界効果トランジスタ
の構造に関する。FIELD OF THE INVENTION This invention relates to the structure of field effect transistors.
【0002】[0002]
【従来の技術】ガリウム砒素等を利用した化合物半導体
電界効果トランジスタ(FET)は、シリコンに比べ電
子移動度が高いという特徴を持ち、低消費電力・高速I
Cやマイクロ波素子への応用がなされている。こうした
化合物半導体電界効果トランジスタの高性能は、分子線
エピタキシー(MBE)法や有機金属気相成長(MOC
VD)法などの結晶技術の向上によるところが大きい。2. Description of the Related Art A compound semiconductor field effect transistor (FET) using gallium arsenide or the like is characterized by higher electron mobility than silicon, and has low power consumption and high speed I.
It has been applied to C and microwave devices. The high performance of such compound semiconductor field effect transistors is due to the molecular beam epitaxy (MBE) method and the metal organic chemical vapor deposition (MOC) method.
This is largely due to the improvement of crystal technology such as the VD) method.
【0003】ところで、エピタキシャル層/半絶縁性基
板再成長界面は、しばしば酸素や炭素などの不純物で汚
染されており、その清浄化は困難であることが知られて
いる。これら不純物のうち、酸素などは、半導体中で深
い準位を形成し、ドレインコンダクタンスの周波数分散
やドレインラグなどのデバイス寄生効果を引き起こす。
従来、このような現象を抑制する一つの手段として、チ
ャネル層下にp型バッファ層(nチャネルを想定)を設
けるという技術が用いられてきた。Incidentally, the epitaxial layer / semi-insulating substrate regrowth interface is often contaminated with impurities such as oxygen and carbon, and it is known that its cleaning is difficult. Of these impurities, oxygen and the like form deep levels in the semiconductor and cause device parasitic effects such as frequency dispersion of drain conductance and drain lag.
Conventionally, as one means for suppressing such a phenomenon, a technique of providing a p-type buffer layer (assuming an n-channel) under the channel layer has been used.
【0004】図5はp型バッファ層を有する従来のヘテ
ロ接合電界効果トランジスタ(HJFET)の結晶構造
図である。図5において、51は半絶縁性GaAs基
板、53はバッファ層をなすp型GaAs層、54はキ
ャリア走行層をなすアンドープGaAs層、55はキャ
リア供給層をなすn+ −Al0.2 Ga0.8 As層であ
る。55に接してゲート電極59が、形成されている。FIG. 5 is a crystal structure diagram of a conventional heterojunction field effect transistor (HJFET) having a p-type buffer layer. In FIG. 5, 51 is a semi-insulating GaAs substrate, 53 is a p-type GaAs layer forming a buffer layer, 54 is an undoped GaAs layer forming a carrier transit layer, and 55 is an n + -Al 0.2 Ga 0.8 As layer forming a carrier supply layer. Is. A gate electrode 59 is formed in contact with 55.
【0005】[0005]
【発明が解決しようとする課題】p型バッファ層を導入
するときには、通常、正孔が完全に空乏化するように、
不純物濃度と厚さが決められる。これは、中性p領域が
存在すると、寄生容量が増え、デバイス本来の動作速度
が劣化することが懸念されるからである。つまり、p型
バッファ層の不純物濃度と厚さには制限があり、また、
単にp型層をバッファ領域に導入しても、界面トラップ
効果の抑制に対して有効に働くわけではない。When a p-type buffer layer is introduced, it is usually necessary to completely deplete holes.
The impurity concentration and thickness are determined. This is because the presence of the neutral p region increases the parasitic capacitance, which may deteriorate the original operating speed of the device. That is, there are restrictions on the impurity concentration and thickness of the p-type buffer layer, and
Simply introducing the p-type layer into the buffer region does not work effectively for suppressing the interface trap effect.
【0006】本発明の目的は、界面トラップ効果の抑制
に対して、最も効率的な領域に効率的な不純物濃度と厚
さでp型層を導入した構造をとる電界効果トランジスタ
を提供することにある。An object of the present invention is to provide a field effect transistor having a structure in which a p-type layer is introduced in the most efficient region with an effective impurity concentration and a thickness for suppressing the interface trap effect. is there.
【0007】[0007]
【課題を解決するための手段】本発明は、半絶縁性化合
物半導体基板上にエピタキシャル成長によって形成され
た電界効果トランジスタにおいて、エピタキシャル層の
半絶縁性基板に接する領域が、活性層とは逆の導電型の
半導体層で形成されており、その不純物濃度が1×10
17cm-3以上でかつ完全に空乏化する厚さであることを
特徴としている。According to the present invention, in a field effect transistor formed on a semi-insulating compound semiconductor substrate by epitaxial growth, the region of the epitaxial layer in contact with the semi-insulating substrate has a conductivity opposite to that of the active layer. Type semiconductor layer, and has an impurity concentration of 1 × 10
It is characterized in that the thickness is 17 cm −3 or more and the thickness is completely depleted.
【0008】なお、上述した従来例は、nチャネルFE
Tを想定しており、以下の説明でもnチャネルFETを
想定する。しかし、pチャネルFETの場合も電荷の符
号を反転するだけで、全く同様の議論ができる。The above-mentioned conventional example is an n-channel FE.
T is assumed, and an n-channel FET is also assumed in the following description. However, in the case of the p-channel FET, the same argument can be made by only inverting the sign of the charge.
【0009】[0009]
【実施例】次に、本発明の実施例について図面を参照し
て説明する。Embodiments of the present invention will now be described with reference to the drawings.
【0010】図1は、本発明の電界効果トランジスタの
一実施例を示す断面図である。半絶縁性GaAs基板1
1上に分子線エピタキシー法や有機金属気相成長法によ
ってp型GaAs層13、アンドープGaAs層14、
n+ −Al0.2 Ga0.8 As層15、n+ −GaAs層
16が順次形成されている。FIG. 1 is a sectional view showing an embodiment of the field effect transistor of the present invention. Semi-insulating GaAs substrate 1
1, a p-type GaAs layer 13, an undoped GaAs layer 14, by a molecular beam epitaxy method or a metal organic chemical vapor deposition method,
An n + -Al 0.2 Ga 0.8 As layer 15 and an n + -GaAs layer 16 are sequentially formed.
【0011】例えば、下記のような構造を有している。For example, it has the following structure.
【0012】 組成 不純物(cm-3) 厚さ(nm) 16 GaAs 3e18(n) 80 15 Al0.2 Ga0.8 As 2e18(n) 65 14 GaAs アンドープ 500 13 GaAs 1e18(p) 10 11 半絶縁性GaAs基板 13が本発明によって導入されたp型層である。Composition Impurity (cm −3 ) Thickness (nm) 16 GaAs 3e18 (n) 80 15 Al 0.2 Ga 0.8 As 2e18 (n) 65 14 GaAs undoped 500 13 GaAs 1e18 (p) 10 11 semi-insulating GaAs substrate 13 is the p-type layer introduced by the present invention.
【0013】この半導体基板上に、従来技術により、ソ
ース電極17とドレイン電極18が、例えば金ゲルマニ
ウム/ニッケル/金を用いて形成されており、ゲート電
極19が、例えばタングステンシリサイドを用いて形成
されている。On this semiconductor substrate, a source electrode 17 and a drain electrode 18 are formed by using, for example, gold germanium / nickel / gold, and a gate electrode 19 is formed by using, for example, tungsten silicide by a conventional technique. ing.
【0014】なお、本実施例は、AlGaAs/GaA
s系HJFETであるが、本発明は、エピタキシャル成
長によって作成されたGaAs MESFETにも適用
可能である。In this embodiment, AlGaAs / GaA is used.
Although it is an s-based HJFET, the present invention is also applicable to a GaAs MESFET formed by epitaxial growth.
【0015】次に、本実施例の動作について説明する。Next, the operation of this embodiment will be described.
【0016】図2は、本実施例のエネルギーバンド図で
あり、図3は、本実施例のp型層の不純物濃度と厚さの
範囲を示す図である。図2において、p型層23を半絶
縁性基板21に接した領域に設けることによって、界面
のトラップにピンニングされていたフェルミ準位が、界
面準位から離れ、界面トラップは、常に空乏化する。こ
のとき界面トラップは、単なる固定電荷と考えることが
でき、周波数分散などのデバイス寄生効果は起こらな
い。p型層の濃度と厚さは、界面トラップの面密度より
は高く、かつp型層が完全に空乏化するという条件から
決められる。 図3に示した斜線領域は、界面トラップ
の面密度が5×1011cm2 以下で、界面トラップのエ
ネルギー深さが伝導帯から0.4eVよりも深いところ
にある深い準位の影響を無くすためのp型層の不純物濃
度と厚さの領域である。これらは、典型的な界面トラッ
プの値であり、図3から、p型層の条件として、不純物
濃度1×1017cm-3以上で完全空乏化の条件を設定す
れば、予想され得る界面トラップの影響は、取り除くこ
とができる。FIG. 2 is an energy band diagram of this embodiment, and FIG. 3 is a diagram showing the impurity concentration and thickness range of the p-type layer of this embodiment. In FIG. 2, by providing the p-type layer 23 in the region in contact with the semi-insulating substrate 21, the Fermi level pinned by the interface trap is separated from the interface level, and the interface trap is always depleted. . At this time, the interface traps can be considered as merely fixed charges, and device parasitic effects such as frequency dispersion do not occur. The concentration and thickness of the p-type layer are higher than the surface density of the interface trap and are determined under the condition that the p-type layer is completely depleted. In the shaded area shown in FIG. 3, the surface density of the interface trap is 5 × 10 11 cm 2 or less, and the effect of the deep level at the energy depth of the interface trap deeper than 0.4 eV from the conduction band is eliminated. This is the region of the impurity concentration and thickness of the p-type layer. These are typical values of interface traps, and from FIG. 3, interface traps that can be expected if the conditions of the p-type layer are set such that the impurity concentration is 1 × 10 17 cm −3 or more and complete depletion is set. The effect of can be removed.
【0017】図4は従来例と本実施例を比較して、本実
施例の効果を表す図である。図4では、ドレイン電圧を
ステップ状に変化させたときのドレイン電流の過渡応答
を比較している。従来例では、界面のトラップの応答に
よると考えられるドレイン電流の大きな変動が観測され
るが、本実施例では、界面トラップの応答は消え、基板
トラップによるわずかな変動のみが残る。FIG. 4 is a diagram showing the effect of this embodiment by comparing this embodiment with the conventional example. FIG. 4 compares the transient response of the drain current when the drain voltage is changed stepwise. In the conventional example, a large fluctuation of the drain current, which is considered to be due to the response of the interface trap, is observed, but in the present example, the response of the interface trap disappears, and only a slight variation due to the substrate trap remains.
【0018】[0018]
【発明の効果】以上説明したように本発明は、エピタキ
シャル層の半絶縁性基板と接する領域に、不純物濃度が
1×1017cm-3以上でかつ完全に空乏化する厚さでp
型層を導入することにより、エピタキシャル層と半絶縁
性基板との界面のトラップに起因したデバイス寄生効果
を抑制することができるという効果を有する。As described above, according to the present invention, in the region of the epitaxial layer which is in contact with the semi-insulating substrate, the impurity concentration is 1 × 10 17 cm −3 or more and the p thickness is such that it is completely depleted.
The introduction of the mold layer has an effect that the device parasitic effect due to the trap at the interface between the epitaxial layer and the semi-insulating substrate can be suppressed.
【図1】本発明のヘテロ接合電界効果トランジスタの一
実施例を示す断面図である。FIG. 1 is a sectional view showing an embodiment of a heterojunction field effect transistor of the present invention.
【図2】本実施例のエネルギーバンド図である。FIG. 2 is an energy band diagram of this example.
【図3】本実施例のp型層の不純物濃度と厚さの範囲を
示す図である。FIG. 3 is a diagram showing an impurity concentration and a thickness range of a p-type layer of the present embodiment.
【図4】本実施例の界面トラップ効果に対する効果を説
明する図である。FIG. 4 is a diagram for explaining the effect of the present embodiment on the interface trap effect.
【図5】従来のヘテロ接合電界効果トランジスタの断面
図である。FIG. 5 is a cross-sectional view of a conventional heterojunction field effect transistor.
11,21,51 半絶縁性GaAs基板 13,23,53 p型GaAsバッファ層 52 アンドープGaAsバッファ層 14,24,54 アンドープGaAs電子走行層 15,25,55 n+ −Al0.2 Ga0.8 As電子供
給層 16,56 n+ −GaAsキャップ層 17,57 ソース電極 18,58 ドレイン電極 19,59 ゲート電極11, 21, 51 Semi-insulating GaAs substrate 13, 23, 53 p-type GaAs buffer layer 52 undoped GaAs buffer layer 14, 24, 54 undoped GaAs electron transit layer 15, 25, 55 n + -Al 0.2 Ga 0.8 As electron supply Layer 16,56 n + -GaAs cap layer 17,57 Source electrode 18,58 Drain electrode 19,59 Gate electrode
Claims (3)
ャル成長によって形成された電界効果トランジスタにお
いて、エピタキシャル層の半絶縁性基板に接する領域
が、活性層とは逆の導電型の半導体層で形成されてお
り、その不純物濃度が1×1017cm-3以上でかつ完全
に空乏化する厚さであることを特徴とする電界効果トラ
ンジスタ。1. A field effect transistor formed by epitaxial growth on a semi-insulating compound semiconductor substrate, wherein a region of the epitaxial layer in contact with the semi-insulating substrate is formed of a semiconductor layer having a conductivity type opposite to that of the active layer. The field effect transistor is characterized in that its impurity concentration is 1 × 10 17 cm −3 or more and the thickness is completely depleted.
ャル成長によって形成されたへテロ接合電界効果トラン
ジスタにおいて、エピタキシャル層の半絶縁性基板に接
する領域が、活性層とは逆の導電型の半導体層で形成さ
れており、その不純物濃度が1×1017cm-3以上でか
つ完全に空乏化する厚さであることを特徴とするへテロ
接合電界効果トランジスタ。2. In a heterojunction field effect transistor formed by epitaxial growth on a semi-insulating compound semiconductor substrate, a region of the epitaxial layer in contact with the semi-insulating substrate is a semiconductor layer having a conductivity type opposite to that of the active layer. A heterojunction field effect transistor which is formed, has an impurity concentration of 1 × 10 17 cm −3 or more, and has a thickness such that it is completely depleted.
ャル成長によって形成されたGaAsショットキゲート
電界効果トランジスタにおいて、エピタキシャル層の半
絶縁性基板に接する領域が、活性層とは逆の導電型の半
導体層で形成されており、その不純物濃度が1×1017
cm-3以上でかつ完全に空乏化する厚さであることを特
徴とするGaAsショットキーゲート電界効果トランジ
スタ。3. In a GaAs Schottky gate field effect transistor formed by epitaxial growth on a semi-insulating compound semiconductor substrate, a region of the epitaxial layer in contact with the semi-insulating substrate is a semiconductor layer having a conductivity type opposite to that of the active layer. Formed, and the impurity concentration is 1 × 10 17
A GaAs Schottky gate field effect transistor characterized by having a thickness of not less than cm −3 and completely depleted.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6225129A JP2658898B2 (en) | 1994-09-20 | 1994-09-20 | field effect transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6225129A JP2658898B2 (en) | 1994-09-20 | 1994-09-20 | field effect transistor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0888353A true JPH0888353A (en) | 1996-04-02 |
JP2658898B2 JP2658898B2 (en) | 1997-09-30 |
Family
ID=16824421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6225129A Expired - Lifetime JP2658898B2 (en) | 1994-09-20 | 1994-09-20 | field effect transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2658898B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011027577A1 (en) * | 2009-09-07 | 2011-03-10 | 住友化学株式会社 | Field effect transistor, semiconductor substrate, method for manufacturing field effect transistor, and method for producing semiconductor substrate |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02174247A (en) * | 1988-12-27 | 1990-07-05 | Nippon Telegr & Teleph Corp <Ntt> | Semiconductor substrate |
JPH07135219A (en) * | 1993-06-16 | 1995-05-23 | Yokogawa Electric Corp | Field-effect transistor |
-
1994
- 1994-09-20 JP JP6225129A patent/JP2658898B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02174247A (en) * | 1988-12-27 | 1990-07-05 | Nippon Telegr & Teleph Corp <Ntt> | Semiconductor substrate |
JPH07135219A (en) * | 1993-06-16 | 1995-05-23 | Yokogawa Electric Corp | Field-effect transistor |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011027577A1 (en) * | 2009-09-07 | 2011-03-10 | 住友化学株式会社 | Field effect transistor, semiconductor substrate, method for manufacturing field effect transistor, and method for producing semiconductor substrate |
JP2011077516A (en) * | 2009-09-07 | 2011-04-14 | Sumitomo Chemical Co Ltd | Field-effect transistor, semiconductor substrate, and method of manufacturing field-effect transistor |
CN102484077A (en) * | 2009-09-07 | 2012-05-30 | 住友化学株式会社 | Field effect transistor, semiconductor substrate, method for manufacturing field effect transistor, and method for producing semiconductor substrate |
US8779471B2 (en) | 2009-09-07 | 2014-07-15 | Sumitomo Chemical Company, Limited | Field-effect transistor, semiconductor wafer, method for producing field-effect transistor and method for producing semiconductor wafer |
Also Published As
Publication number | Publication date |
---|---|
JP2658898B2 (en) | 1997-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ismail et al. | High-transconductance n-type Si/SiGe modulation-doped field-effect transistors | |
US4471366A (en) | Field effect transistor with high cut-off frequency and process for forming same | |
JP2581355B2 (en) | Complementary heterojunction field-effect transistor with anisotropic N + gate for P-channel devices | |
US6914273B2 (en) | GaN-type enhancement MOSFET using hetero structure | |
EP0165798B1 (en) | Semiconductor device comprising n-channel and p-channel transistors and production method | |
US5448086A (en) | Field effect transistor | |
US6653667B2 (en) | GaAs-based semiconductor field-effect transistor | |
JP2000349096A (en) | Compound field effect transistor and method of manufacturing the same | |
Ezis et al. | Backgating characteristics of MODFET structures | |
JP2658898B2 (en) | field effect transistor | |
JPH1154527A (en) | Field effect transistor and method of manufacturing the same | |
JP3653652B2 (en) | Semiconductor device | |
JPH02111073A (en) | Insulated gate field effect transistor and its integrated circuit device | |
Uemura et al. | First demonstration of a planar-type surface tunnel transistor (STT): Lateral interband tunnel device | |
JPH05175494A (en) | Tunnel transistor | |
JPS63244779A (en) | field effect transistor | |
Prost et al. | High speed, high gain InP-based heterostructure FETs with high breakdown voltage and low leakage | |
JP2553673B2 (en) | Field effect transistor | |
JPH05102190A (en) | Compound-semiconductor heterojunction-gate field-effect transistor | |
JPH05275464A (en) | Manufacture of compound semiconductor integrated circuit device | |
JPH0513462A (en) | Compound semiconductor structure | |
JP2834172B2 (en) | Field effect transistor | |
JPH0797633B2 (en) | Field effect transistor | |
JPH06209019A (en) | Hetero junction field-effect transistor | |
JPH03129835A (en) | Field-effect transistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19970506 |