[go: up one dir, main page]

JPH0885154A - Electric fusion bonded joint, manufacture thereof and injection mold thereof - Google Patents

Electric fusion bonded joint, manufacture thereof and injection mold thereof

Info

Publication number
JPH0885154A
JPH0885154A JP7063783A JP6378395A JPH0885154A JP H0885154 A JPH0885154 A JP H0885154A JP 7063783 A JP7063783 A JP 7063783A JP 6378395 A JP6378395 A JP 6378395A JP H0885154 A JPH0885154 A JP H0885154A
Authority
JP
Japan
Prior art keywords
layer
joint
electric fusion
molded
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7063783A
Other languages
Japanese (ja)
Other versions
JP2849349B2 (en
Inventor
Saburo Akiyama
三郎 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP7063783A priority Critical patent/JP2849349B2/en
Priority to US08/504,866 priority patent/US5618065A/en
Priority to EP95111534A priority patent/EP0693652B1/en
Priority to DE69519833T priority patent/DE69519833T2/en
Publication of JPH0885154A publication Critical patent/JPH0885154A/en
Application granted granted Critical
Publication of JP2849349B2 publication Critical patent/JP2849349B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D23/00Producing tubular articles
    • B29D23/001Pipes; Pipe joints
    • B29D23/003Pipe joints, e.g. straight joints
    • B29D23/005Pipe joints, e.g. straight joints provided with electrical wiring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Branch Pipes, Bends, And The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PURPOSE: To obtain an excellent electric fusion-bonded joint in which no shrinkage, etc., occurs by forming the cylindrical member layer of the entire joint of three or more layers of multilayer resin layers including an inner cylindrical member layer in the joint in which a thermoplastic resin is molded on the outer surface of the inner cylindrical member layer in which an electric heating wire is embedded in its inner periphery to provide an outer cylindrical member layer. CONSTITUTION: Cavities A-C are provided in one set of molds, a mandrel 10 is mounted in the cavity A in which a melted resin injected from an inlet 11 can be charged in the cavities A-C via a runner 12 and a gate 13 to inject the resin. After the resin for molding an inner cylindrical member 21 is solidified, the member 21 with the mandrel 10 is removed from the molds, and an electric heating wire 22 is wound on the outer peripheral groove 23 of the member 21. Then, the member 21 with the wire 22 is mounted in the cavity B, the melted resin of an intermediate member layer 25 is injected to obtain an intermediate member 27. Thereafter, the member 27 is mounted in the cavity C, the resin of a final outer cylindrical member layer 26 is injected to obtain an electric fusion bonded joint 28.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱可塑性樹脂製の管を
融着接続するための熱可塑性樹脂製継手本体の内周部に
電熱線を埋設した電気融着継手とこの電気融着継手を得
る方法及びその射出成型用金型に関し、特に厚肉大口径
の電気融着継手でも内部欠陥がなく、能率良く製造出来
るものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric fusion joint in which a heating wire is embedded in an inner peripheral portion of a thermoplastic resin joint body for fusion splicing thermoplastic resin pipes and the electric fusion joint. And a metal mold for injection molding thereof, and more particularly to a thick and large-diameter electric fusion-bonded joint that can be efficiently manufactured without internal defects.

【0002】[0002]

【従来の技術】従来、熱可塑性の樹脂、例えばポリエチ
レン管を電気的に熱融着して接続する管継手として、特
開昭57−69010号公報で開示された電気融着式プ
ラスチック管継手がある。このものは図8に部分断面図
で示すごとく、一端から他端に亘って溝34を設け、こ
の溝34に電熱線33を巻回した内筒部材31と、この
内筒部材31の外面に同様の樹脂を一体成形した外方部
材32とによって設けた電気融着式プラスチック管継手
である。この管継手は、内周部に埋設した電熱線33に
通電することにより、管継手内に挿入した樹脂管と一体
に溶融して接続するものである。
2. Description of the Related Art Conventionally, an electric fusion type plastic pipe joint disclosed in JP-A-57-69010 has been used as a pipe joint for electrically connecting a thermoplastic resin such as a polyethylene pipe by heat fusion. is there. As shown in the partial cross-sectional view of FIG. 8, this is provided with a groove 34 extending from one end to the other end, and an inner cylinder member 31 having a heating wire 33 wound around the groove 34 and an outer surface of the inner cylinder member 31. It is an electric fusion type plastic pipe joint provided by the outer member 32 integrally formed with the same resin. This pipe joint is fused and connected integrally with the resin pipe inserted in the pipe joint by energizing the heating wire 33 buried in the inner peripheral portion.

【0003】上記プラスチック管継手は、電熱線33を
巻回した内筒部材31の外面に外方部材32を射出成形
して内筒部材31と外方部材32を一体化したものであ
るが、電熱線33は継手に挿入した接続樹脂管と継手内
周面との境界を加熱して両者を溶融するので、できる限
り継手内周面の近傍に設ける必要がある。このため内筒
部材31の電熱線33を収容する溝34底部の肉厚t
は、1mm以下の薄肉のものが用いられる。これに対し
て管継手の呼び径が大きくなると管継手自体の肉厚も大
きくなるので、外方部材32の肉厚Tも大きくなる。一
例としてこの2層からなるガス用ポリエチレン管接続用
管継手の呼び径別内筒部材と外方部材の肉厚寸法を図8
に示す。
In the above-mentioned plastic pipe joint, the outer member 32 is injection-molded on the outer surface of the inner cylindrical member 31 around which the heating wire 33 is wound, and the inner cylindrical member 31 and the outer member 32 are integrated. Since the heating wire 33 heats the boundary between the connection resin pipe inserted in the joint and the inner peripheral surface of the joint to melt them, it is necessary to provide the heating wire 33 as close to the inner peripheral surface of the joint as possible. Therefore, the wall thickness t of the bottom of the groove 34 that accommodates the heating wire 33 of the inner tubular member 31 is t.
Is a thin wall having a thickness of 1 mm or less. On the other hand, when the nominal diameter of the pipe joint increases, the wall thickness of the pipe joint itself also increases, so the wall thickness T of the outer member 32 also increases. As an example, the wall thickness dimensions of the inner tubular member and the outer member according to the nominal diameter of the two-layer polyethylene pipe connecting pipe for gas are shown in FIG.
Shown in

【0004】[0004]

【発明が解決しようとする課題】上記従来の薄肉の内筒
部材31の外面に大きな肉厚寸法の外方部材32を射出
成形すると、外方部材32の大きな射出圧力と熱容量に
よって内筒部材31が溶融し、内筒部材31の溝34に
巻回した電熱線33が不規則に移動し、管との接続作業
時に電熱線33同志が接触してショートし正常な加熱が
行われない不良を発生させる問題がある。また一般に合
成樹脂の熱伝導率は非常に悪く、更に溶融時から凝固時
への体積収縮もかなり大きい。この収縮率は樹脂の材質
によっては4%から10%に達するものもある。このた
め金型の射出成形の方案にもよるが、ゲートやランナー
の樹脂が固化した後もキャビテイー内の成形品の一部に
未固化樹脂部分があると、樹脂射出圧を更に加え続けて
いても溶融樹脂を成形品内の未固化樹脂部分に補給する
ことができず、凝固時の体積収縮によって樹脂層肉厚内
部にヒケが生じる。
When the outer member 32 having a large wall thickness is injection-molded on the outer surface of the conventional thin inner cylinder member 31, the inner cylinder member 31 is produced by the large injection pressure and heat capacity of the outer member 32. Is melted, the heating wire 33 wound around the groove 34 of the inner cylinder member 31 moves irregularly, and the heating wires 33 come into contact with each other during the connection work with the pipe, causing a short circuit and normal heating is not performed. There is a problem that causes it. In general, the thermal conductivity of synthetic resins is very poor, and the volume contraction from the melting to the solidification is quite large. This shrinkage ratio may reach 4% to 10% depending on the resin material. For this reason, depending on the mold injection molding method, if there is an unsolidified resin part in the molded product in the cavity even after the gate and runner resin has solidified, resin injection pressure will continue to be applied. However, the molten resin cannot be replenished to the non-solidified resin portion in the molded product, and a shrinkage occurs inside the wall thickness of the resin layer due to volume contraction during solidification.

【0005】ヒケを生じさせないためには、ゲートやラ
ンナーを太くし、樹脂の射出圧を大きくして長時間射出
圧を加えれば良いが、そうした場合、上記した薄肉の内
筒部材31が溶融して電熱線33の配置が移動してしま
ったり、肉厚T部の厚肉溶融樹脂が完全に凝固するまで
の時間が長いので成型タクトが長くなって能率を著しく
悪化させる問題がある。結果として薄肉の内筒部材に厚
肉の樹脂を射出成形するのは、製造上の管理が難しく、
品質が安定しない。この問題は外方部材32の最大肉厚
がTが10mm以上になる呼び径75A以上の継手に対
して著しく発生する。本発明は上記の問題を解消するも
ので、ヒケ等の欠陥が生じなく、品質上の優れた電気融
着継手とこの電気融着継手を能率良く製造出来る電気融
着継手の製造方法及びその射出成型用金型を提供するも
のである。
In order to prevent sink marks, the gate and runner may be made thicker and the injection pressure of the resin may be increased to apply the injection pressure for a long time. In such a case, the thin inner cylinder member 31 is melted. Therefore, there is a problem that the arrangement of the heating wire 33 is moved or the time for the thick molten resin in the thickness T portion to be completely solidified is long, resulting in a long molding tact and a marked deterioration in efficiency. As a result, injection molding a thick resin into a thin inner tubular member is difficult to control in manufacturing,
The quality is not stable. This problem remarkably occurs for a joint having a maximum wall thickness T of 10 mm or more and a nominal diameter of 75 A or more. The present invention is to solve the above problems, defects such as sink marks do not occur, an electric fusion joint excellent in quality and a method of manufacturing the electric fusion joint that can efficiently manufacture this electric fusion joint and its injection A molding die is provided.

【0006】[0006]

【課題を解決するための手段】本発明の要旨は、内周部
に電熱線を埋設した内筒部材層と、この内筒部材層の外
面に熱可塑性樹脂を成形して設けた外筒部材層とからな
る電気融着継手において、前記継手全体の円筒部材層が
前記内筒部材層を含めて3層以上の多層樹脂層からなる
ことを特徴とする電気融着継手である。この多層は樹脂
の材質や色が異なる樹脂で設けてもよい。また、呼び口
径が75A以上の大きさの継手について、継手全体の円
筒部材層が前記内筒部材層を含めて3層ないし5層の多
層樹脂層からなることを特徴とする電気融着継手であ
る。また、前記継手の外筒部材層の肉厚が10mm以上
の大きさの継手について、継手全体の円筒部材層が前記
内筒部材層を含めて3層ないし5層の多層樹脂層からな
り、1層当たりの肉厚が15mm以下であることを特徴
とする電気融着継手である。
DISCLOSURE OF THE INVENTION The gist of the present invention is to provide an inner cylinder member layer having a heating wire embedded in its inner peripheral portion, and an outer cylinder member formed by molding a thermoplastic resin on the outer surface of the inner cylinder member layer. In the electrofusion-bonding joint including layers, the cylindrical member layer of the entire joint is made up of three or more multilayer resin layers including the inner tubular member layer. This multi-layer may be provided with resins having different resin materials and colors. Further, in a joint having a nominal diameter of 75 A or more, an electro-fusion joint characterized in that the cylindrical member layer of the entire joint is composed of 3 to 5 multilayer resin layers including the inner cylindrical member layer. is there. Further, regarding the joint in which the thickness of the outer cylindrical member layer of the joint is 10 mm or more, the cylindrical member layer of the entire joint is composed of 3 to 5 multilayer resin layers including the inner cylindrical member layer. The electric fusion-bonded joint has a wall thickness of 15 mm or less per layer.

【0007】また、熱可塑性樹脂製継手本体の内周部に
電熱線を埋設した電気融着継手を得る方法であって、ま
ず継手本体の内周面を形成する電熱線を収容した内筒部
材を設け、この内筒部材を成形用金型のキャビテイー内
に装着し、内筒部材の外面に熱可塑性樹脂層を成形して
内筒部材と一体の中間部材を設け、この中間部材を成形
用金型のキャビテイー内に装着し、中間部材の外面に熱
可塑性樹脂層を成形して中間部材と一体の成形部材を設
け、以下成形した成型部材の外面に熱可塑性樹脂層を順
次成形して最終目的形状の電気融着継手を得ることを特
徴とする電気融着継手の製造方法である。
Further, there is provided a method for obtaining an electric fusion-bonded joint in which a heating wire is embedded in an inner peripheral portion of a thermoplastic resin joint body, wherein an inner tubular member accommodating the heating wire forming an inner peripheral surface of the joint body is first formed. The inner cylinder member is mounted in the cavity of the molding die, a thermoplastic resin layer is molded on the outer surface of the inner cylinder member, and an intermediate member integral with the inner cylinder member is provided. It is installed in the cavity of the mold, the thermoplastic resin layer is molded on the outer surface of the intermediate member to provide a molded member integral with the intermediate member, and the thermoplastic resin layer is sequentially molded on the outer surface of the molded member that is molded below. A method for manufacturing an electric fusion joint, which comprises obtaining an electric fusion joint having a target shape.

【0008】この電気融着継手の製造方法は、前記成形
用金型を1組又は複数組有し、この金型の夫々のキャビ
テイー部で内筒部材を得る工程と中間部材を得る工程と
順次成形部材を得る工程とを同期して行い、最終目的形
状の電気融着継手を得ることを特徴とする。
This method for manufacturing an electric fusion joint has one or a plurality of sets of the molding dies, and a step of obtaining an inner cylinder member and a step of obtaining an intermediate member in each cavity portion of the dies are sequentially performed. It is characterized in that the step of obtaining a molded member is performed in synchronism with each other to obtain an electric fusion joint having a final target shape.

【0009】また、熱可塑性樹脂製継手本体の内周部に
電熱線を埋設した電気融着継手を得る射出成形用金型で
あって、同じマンドレルを用いて溶融樹脂を射出成形で
きる複数のキャビテイー部を有し、このキャビテイー部
は、継手の内周面を形成し電熱線を収容する溝を設けた
内筒部材を形成する第1層のキャビテイー部と、このキ
ャビテイー部より一回り大きく前記内筒部材の外面に熱
可塑性樹脂層を射出成形できる第2層のキャビテイー
部、及びこの成形した外面に順次熱可塑性樹脂層を射出
成形できる第3層ないし第5層のキャビテイー部とを有
し、前記各層の1層当たりの肉厚が15mm以下になる
ように設けたことを特徴とする電気融着継手射出成形用
金型である。
Further, it is an injection molding die for obtaining an electric fusion joint in which a heating wire is embedded in an inner peripheral portion of a thermoplastic resin joint body, and a plurality of cavities capable of injection molding molten resin using the same mandrel. The cavity portion has a first-layer cavity portion that forms an inner cylindrical surface of the joint and that forms a groove for accommodating the heating wire, and a cavity portion that is one size larger than the cavity portion. A second layer cavity portion capable of injection molding a thermoplastic resin layer on the outer surface of the tubular member, and third to fifth cavity portions capable of sequentially injection molding the thermoplastic resin layer on the molded outer surface, An electrofusion-joint injection-molding die, characterized in that the thickness of each layer is 15 mm or less.

【0010】[0010]

【作用】本発明は上記の構成であり、薄肉の内筒部材層
の外面に従来の厚肉の外方部材層が複数回に分けて射出
成形されることにより、継手全体の円筒部材層が3層以
上の多層になった電気融着継手である。特に継手の呼び
口径が75A以上の大きさのものについて有効で、3層
ないし5層にすることによって大きな効果が得られる。
また電熱線を有する内筒部材層に対して外筒部材層の肉
厚が10mm以上の大きさの継手について、全体の継手
の円筒部を3層ないし5層の多層樹脂層にして、一層当
たりの肉厚を薄く、15mm以下にすることで品質の向
上及び成形時間の大幅な短縮が図れるものである。
The present invention has the above-described structure, and the conventional thick outer member layer is injection-molded on the outer surface of the thin inner cylindrical member layer a plurality of times to form a cylindrical member layer of the entire joint. It is a multi-layered electric fusion joint having three or more layers. In particular, it is effective for joints with a nominal diameter of 75 A or more, and a large effect can be obtained by using three or five layers.
Further, for a joint in which the thickness of the outer tubular member layer is 10 mm or more with respect to the inner tubular member layer having a heating wire, the entire tubular portion of the joint is formed of three to five multi-layered resin layers and By reducing the thickness of the product to 15 mm or less, the quality can be improved and the molding time can be greatly shortened.

【0011】このために、継手の内周面を形成するとと
もに内周部に電熱線を収容した内筒部材を設け、これを
成形用金型のキャビテイー部に装着して電熱線付内筒部
材の外面に熱可塑性溶融樹脂層を射出成形して内筒部材
と一体の中間部材を設け、この中間部材の外面に更に熱
可塑性樹脂層を射出成形して中間部材と一体の成形部材
を設け、この様に成形した成形部材の外面に順次樹脂層
を成形し、最終的に継手の樹脂層が3層ないし5層の多
層になった電気融着継手を得るものである。
To this end, an inner cylinder member which forms the inner peripheral surface of the joint and accommodates the heating wire is provided in the inner peripheral portion, and the inner cylinder member with the heating wire is attached to the cavity portion of the molding die. Injection molding a thermoplastic molten resin layer on the outer surface to provide an intermediate member integral with the inner cylinder member, and further injection molding a thermoplastic resin layer on the outer surface of the intermediate member to provide a molding member integral with the intermediate member, A resin layer is sequentially molded on the outer surface of the molded member molded in this manner, and finally an electric fusion-bonded joint in which the resin layer of the joint is a multilayer of 3 to 5 layers is obtained.

【0012】この3層ないし5層の層数は、電気融着継
手の形状や各層の成形作業取り扱い時間等を考慮して最
適な多層数にしたものである。3層以上であれば肉厚が
10mmを越える外方部材層を備えた継手の厚肉外方部
材層が複数層に分割されることになり内筒部材との肉厚
差が減少し、また1層当たりの肉厚及び樹脂容量が減少
するので射出圧力が小さくても済む。よって薄肉の内筒
部材が溶融される問題や電熱線の移動等の問題が生じな
く、射出後の冷却速度が早く冷却時間が短くなるのでヒ
ケ等の内部欠陥が生じない。この場合、各層の成形作業
は同期して行えるので、1層当たりの最も長い成形時間
が全体の成形タクトになり、上記10mm以上の厚肉外
方部材層を備えた継手の厚肉部が複数層に分割されるこ
とで一層当たりの肉厚が15mm以下になって樹脂容量
が減少し、肉厚減によって冷却速度が早くなり冷却時間
が大幅に短縮される。このため全体の電気融着継手を成
形するタクトが大幅に短縮される。
The number of layers from 3 to 5 is an optimum number in consideration of the shape of the electric fusion joint and the handling time of each layer during the molding work. If the number of layers is three or more, the thick outer member layer of the joint having the outer member layer having a wall thickness of more than 10 mm is divided into a plurality of layers, and the difference in wall thickness from the inner tubular member is reduced. Since the wall thickness and the resin capacity per layer are reduced, the injection pressure may be small. Therefore, problems such as melting of the thin inner cylinder member and movement of heating wires do not occur, and the cooling rate after injection is fast and the cooling time is short, so that internal defects such as sink marks do not occur. In this case, since the forming operation of each layer can be performed in synchronization, the longest forming time per layer is the whole forming tact, and the thick portion of the joint including the thick outer member layer of 10 mm or more is plural. By being divided into layers, the thickness of each layer is 15 mm or less and the resin capacity is reduced, and the cooling rate is increased and the cooling time is greatly shortened due to the reduced thickness. For this reason, the tact for molding the entire electric fusion joint is greatly shortened.

【0013】一般に溶融樹脂の金型内での冷却時間は、
金型からの取り出し温度にもよるが、理論的に成形品の
肉厚の2乗に比例する。従って一つのキャビテイー部で
の1層当たりの肉厚が半分になれば冷却時間は1/4に
なる。また一つのキャビテイー部での1層当たりの射出
溶融樹脂の容量が大幅に少なくなるので、射出した溶融
樹脂の冷却速度が早くなり、射出成形された樹脂各部の
冷却が均等に行われる。このため冷却時間が大幅に短縮
されると共に内部にヒケ等の欠陥が生じない。
Generally, the cooling time of the molten resin in the mold is
Although theoretically dependent on the temperature at which the product is taken out from the mold, it is theoretically proportional to the square of the wall thickness of the molded product. Therefore, if the thickness per layer in one cavity portion is halved, the cooling time will be 1/4. Further, since the volume of the injected molten resin per layer in one cavity portion is significantly reduced, the cooling rate of the injected molten resin is increased and the injection molded resin portions are uniformly cooled. For this reason, the cooling time is greatly shortened and defects such as sink marks are not generated inside.

【0014】従って従来のヒケ防止のために大きな射出
圧力や長時間の射出圧を加え続ける必要がなくなり、従
来より射出容量が小さくまた射出圧力の小さい樹脂成形
機であっても、大きな口径の電気融着継手を成形するこ
とができる。また一般に一つのキャビテイー部当たりの
1層の射出樹脂容量が多いと、成形時の樹脂温度や金型
の温度などの射出成形条件が成形後の品質に大きく影響
するが、全体を3ないし5層にすることで1層当たりの
肉厚が15mm以下になって射出樹脂容量が少なく肉厚
が均等になる。このため冷却時間が早くなり、射出成形
条件にあまり影響を受けず、成形作業が容易で、内部欠
陥のない良好な品質の電気融着継手が得られる。
Therefore, it is no longer necessary to continue to apply a large injection pressure or a long injection pressure to prevent sink marks, and even a resin molding machine having a smaller injection capacity and a smaller injection pressure than the conventional one has a large diameter of electricity. A fusion splice can be molded. In general, if the volume of injection resin in one layer per cavity is large, the injection molding conditions such as the resin temperature during molding and the temperature of the mold will greatly affect the quality after molding. By doing so, the wall thickness per layer is 15 mm or less, and the injection resin capacity is small and the wall thickness is uniform. Therefore, the cooling time becomes short, the injection molding conditions are not so much affected, the molding operation is easy, and an electric fusion-bonded joint of good quality without internal defects can be obtained.

【0015】[0015]

【実施例】以下本発明の一実施例を図面に基づいて説明
する。図1ないし図3は本発明の実施例を示す電気融着
継手射出成型用金型と電気融着継手の断面図である。図
4は本発明の実施例を従来技術と比較して説明する成形
状態の図で、(a)は従来の2層からなる成形状態を示
し、(b)は本実施例の3層からなる成形状態を示す図
である。図1において、一組の金型内に溶融樹脂を成形
する3か所のキャビテイー部A、B、Cを設けてあり、
各キャビテイー部は順に径方向が大きくなっている。ま
た各キャビテイー部について共通のマンドレル10を装
着して成形できるようにしてある。金型の入口11から
射出された溶融樹脂はランナー12、ゲート13を通っ
て各々のキャビテー部A、B、C内に充填される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. 1 to 3 are cross-sectional views of an electric fusion joint injection mold and an electric fusion joint showing an embodiment of the present invention. 4A and 4B are views showing a molding state in which an embodiment of the present invention is described in comparison with the prior art. FIG. 4A shows a conventional molding state having two layers, and FIG. It is a figure which shows a molding state. In FIG. 1, three cavity portions A, B and C for molding molten resin are provided in a set of molds,
The cavities each have a larger diameter in the radial direction. Further, a common mandrel 10 is attached to each of the cavities so that they can be molded. The molten resin injected from the mold inlet 11 passes through the runner 12 and the gate 13 and is filled in each of the cavitation parts A, B, and C.

【0016】キャビテイー部Aにマンドレル10を装着
して溶融樹脂を射出すると、図2、図3又は図4(b)
で示す電気融着継手の薄肉内筒部材21が成形される。
キャビテー部Aに射出成形された樹脂が固化した後、金
型内からマンドレル10付の内筒部材21が取り出さ
れ、マンドレル10付の状態で、薄肉内筒部材21の外
周溝23に電熱線22が巻回しされる。電熱線22は内
筒部材21の端部にコネクターピン24、24を挿入し
て固定し、コネクターピン24と結線される。
When the mandrel 10 is attached to the cavity portion A and the molten resin is injected, FIG. 2, FIG. 3 or FIG. 4 (b)
The thin inner cylindrical member 21 of the electric fusion joint shown by is molded.
After the resin injection-molded in the cavity portion A is solidified, the inner cylinder member 21 with the mandrel 10 is taken out of the mold, and the heating wire 22 is attached to the outer peripheral groove 23 of the thin inner cylinder member 21 with the mandrel 10 attached. Is wound. The heating wire 22 is connected to the connector pin 24 by inserting and fixing the connector pins 24, 24 at the end of the inner tubular member 21.

【0017】この様に成形された継手内面を形成する電
熱線22付内筒部材21を、次にマンドレル10付の状
態でBのキャビテー部に装着し、Bのキャビテイー部で
中間部材層25の溶融樹脂を射出成形して内筒部材21
付の中間部材27を得る。この中間部材層25を射出成
形している間も、キャビテイー部Aで前記の薄肉内筒部
材21が成形されている。キャビテー部Bで内筒部材付
の中間部材27を射出成形した後、前記同様金型内から
マンドレル10付の状態で成形された中間部材27が取
り出され、次にこの中間部材27をCのキャビテー部に
装着して中間部材27の外面に最終外筒部材層26の樹
脂を射出成形する。中間部材層25の外面に最終外筒部
材層26を成形した後、金型からマンドレル10付の状
態で成形品を取り出し、成形品からマンドレル10を抜
き取ると図2、図3又は図4(b)で示す電気融着継手
28が成形される。
The inner tubular member 21 with the heating wire 22 forming the inner surface of the joint thus formed is then attached to the B cavitating portion with the mandrel 10 attached, and the intermediate member layer 25 of the B cavitating portion is attached. The inner cylinder member 21 is formed by injection molding a molten resin.
The attached intermediate member 27 is obtained. Even during the injection molding of the intermediate member layer 25, the thin inner cylinder member 21 is molded at the cavity portion A. After the intermediate member 27 with the inner cylinder member is injection-molded in the cavity portion B, the intermediate member 27 formed with the mandrel 10 is taken out from the mold as in the above. Then, the resin of the final outer cylindrical member layer 26 is injection-molded on the outer surface of the intermediate member 27. After molding the final outer cylinder member layer 26 on the outer surface of the intermediate member layer 25, the molded product is taken out from the mold with the mandrel 10 attached, and the mandrel 10 is removed from the molded product as shown in FIG. 2, FIG. 3 or FIG. The electric fusion-bonded joint 28 shown in FIG.

【0018】この様に3層に成形された内筒部材層21
と中間部材層25と最終外筒部材層26の各樹脂層は、
各層の外面に射出された溶融樹脂の熱によって互いの接
触面が熱融着され、一体的に結合した電気融着継手28
が成形される。尚、内筒部材層21と中間部材層25を
純ポリエチレン樹脂材料で設け、最終外筒部材層26を
カーボンブラック入りの樹脂材料で設けることができ
る。この最終外方部材層26をキャビテー部Cで射出成
形している間にも、前記別のキャビテイー部Aで薄肉内
筒部材21と前記キャビテイー部Bで中間部材層25が
同期して成形されている。従って全体の射出成形タクト
としては、キャビテイー部A、B、Cで成形されるいず
れか最も長い成形時間が全体のタクトになり、各層の射
出成形時間が短縮すると全体の成形タクトは大きく短縮
される。
The inner cylinder member layer 21 thus formed into three layers
The resin layers of the intermediate member layer 25 and the final outer tubular member layer 26 are
The electric fusion-bonded joints 28 in which their contact surfaces are heat-fused by the heat of the molten resin injected to the outer surface of each layer and are integrally joined
Is molded. The inner cylinder member layer 21 and the intermediate member layer 25 may be made of a pure polyethylene resin material, and the final outer cylinder member layer 26 may be made of a resin material containing carbon black. Even while the final outer member layer 26 is being injection-molded in the cavity portion C, the thin inner cylinder member 21 in the other cavity portion A and the intermediate member layer 25 in the cavity portion B are synchronously formed. There is. Therefore, as the entire injection molding tact, the longest molding time of any of the cavities A, B, and C becomes the entire tact, and if the injection molding time of each layer is shortened, the entire molding tact is greatly shortened. .

【0019】図5は呼び150Aのソケット形電気融着
継手(外径207mm、長さ248mm)を図4(a)
で示す従来方式で行った場合の肉厚22mmの外方部材
32と、図4(b)で示す本実施例の肉厚11mmの最
終外筒部材層26との、金型内での冷却時間と冷却温度
の関係を測定した冷却線図である。図の冷却線イは肉厚
が22mmの従来方式の外方部材32の冷却線を表し、
ロは肉厚が11mmの本実施例の最終外筒部材26の冷
却線を表す。この冷却線図から判るように例えば金型か
らの取り出し温度を95℃とすると、イの従来方式では
溶融樹脂を射出してから金型内で95℃に冷却するまで
の時間は450秒で、ロの本実施例では95℃に冷却す
るまでの時間は150秒である。従って金型からの取り
出し温度を95℃とすれば、イの従来方式に比べてロの
本実施例では成形タクトが単純に1/3に短縮出来る。
FIG. 5 shows a socket type electric fusion joint (nominal 150A) (outer diameter 207 mm, length 248 mm) shown in FIG.
The cooling time in the mold of the outer member 32 having a wall thickness of 22 mm and the final outer cylinder member layer 26 having a wall thickness of 11 mm of this embodiment shown in FIG. It is a cooling diagram which measured the relationship between and cooling temperature. The cooling line a in the figure represents the cooling line of the conventional outer member 32 having a wall thickness of 22 mm,
B represents a cooling line of the final outer cylinder member 26 of this embodiment having a wall thickness of 11 mm. As can be seen from this cooling diagram, for example, if the temperature for taking out from the mold is 95 ° C., in the conventional method of (a), the time from the injection of the molten resin to the cooling in the mold to 95 ° C. is 450 seconds, In this embodiment (b), the time until cooling to 95 ° C. is 150 seconds. Therefore, if the temperature for taking out from the mold is set to 95 ° C., the molding tact can be simply shortened to 1/3 in the present embodiment (2), as compared with the conventional method (1).

【0020】図6は上記のように継手の肉厚と冷却温度
の関係を調べて求めた金型からの取り出し温度線図で、
樹脂成形肉厚と射出成型時間(冷却時間)の関係を説明
する図である。呼び口径が150Aのソケット形電気融
着継手の場合、図4(a)で示す従来方式では、図8で
示したごとく内筒部材層31の溝の底部の肉厚t(肉厚
最少部)は0.6mmで、溝の山部の肉厚最大部は5.
5mmである。この内筒部材層31の外面に成形する外
方部材層32の最大肉厚部Tは22mmである。この内
筒部材層31の射出成形する冷却時間は90秒で、外方
部材層32を射出成形する冷却時間は360秒であっ
た。この時の金型からの取り出し温度は135℃であ
る。この外方部材層32の成形状態をプロットしたのが
図6のE点である。図4(b)で示す本実施例では、内
筒部材層21は前記従来の内筒部材31の寸法と同じ
で、従来方式の外方部材層32の肉厚を中間部材層25
と最終外筒部材層26の2層に分割し、夫々の肉厚を従
来の半分の各11mmとした。その結果、中間部材層2
5と最終外筒部材層26の夫々の射出成形時間は100
秒になり、この時の金型からの取り出し温度は130℃
であった。またヒケ等の欠陥のない電気融着継手が得ら
れた。この状態をプロットしたのが図6のF点である。
FIG. 6 is a temperature diagram of the temperature taken out from the mold, which was obtained by investigating the relationship between the wall thickness of the joint and the cooling temperature as described above.
It is a figure explaining the relationship between resin molding thickness and injection molding time (cooling time). In the case of a socket-type electric fusion joint having a nominal diameter of 150 A, in the conventional method shown in FIG. 4 (a), as shown in FIG. 8, the wall thickness t of the groove of the inner tubular member layer 31 (the wall thickness minimum portion). Is 0.6 mm, and the maximum thickness of the groove is 5.
It is 5 mm. The maximum thickness portion T of the outer member layer 32 formed on the outer surface of the inner tubular member layer 31 is 22 mm. The cooling time for injection molding the inner tubular member layer 31 was 90 seconds, and the cooling time for injection molding the outer member layer 32 was 360 seconds. The take-out temperature from the mold at this time is 135 ° C. The point E in FIG. 6 is a plot of the molding state of the outer member layer 32. In this embodiment shown in FIG. 4B, the inner cylinder member layer 21 has the same size as the conventional inner cylinder member 31, and the thickness of the conventional outer member layer 32 is set to the intermediate member layer 25.
The final outer cylinder member layer 26 was divided into two layers, and the thickness of each layer was reduced to 11 mm, which is half the conventional thickness. As a result, the intermediate member layer 2
5 and the final outer cylinder member layer 26 have an injection molding time of 100, respectively.
Seconds, the temperature of taking out from the mold at this time is 130 ° C
Met. Moreover, an electric fusion-bonded joint having no defects such as sink marks was obtained. This state is plotted at point F in FIG.

【0021】また呼び口径が200Aのソケット形電気
融着継手(外径278mm、長さ321mm)の場合、
図4(a)で示す従来方式では、内筒部材層31の最小
肉厚部tは0.8mmで最大肉厚部は5.5mmであ
る。この内筒部材層31の外面に射出成形する外方部材
層32の肉厚Tは28mmである。内筒部材層31の射
出成形時間は100秒で、外方部材層32の射出成型時
間は図6のJ点で示すごとく900秒であった。この時
の金型からの取り出し温度は120℃である。一方図4
(b)で示す本実施例では、上記と同様に内筒部材層2
1は従来の内筒部材層31と同じ寸法で、従来の外方部
材層32の肉厚Tを中間部材層25と最終外筒部材層2
6の2層に分割して夫々の肉厚を従来の半分の14mm
とした。その結果、図6のK点で示すごとく、中間部材
層25と最終外筒部材層26の夫々の射出成形時間は1
50秒に大幅に短縮された。この時の金型からの取り出
し温度も従来方式より低く115℃である。またヒケ等
内外部とも欠陥のない電気融着継手が得られた。
In the case of a socket-type electric fusion-bonding joint (outer diameter 278 mm, length 321 mm) having a nominal diameter of 200 A,
In the conventional method shown in FIG. 4A, the minimum thickness part t of the inner tubular member layer 31 is 0.8 mm and the maximum thickness part is 5.5 mm. The thickness T of the outer member layer 32 injection-molded on the outer surface of the inner cylindrical member layer 31 is 28 mm. The injection molding time of the inner cylinder member layer 31 was 100 seconds, and the injection molding time of the outer member layer 32 was 900 seconds as indicated by the point J in FIG. The take-out temperature from the mold at this time is 120 ° C. Meanwhile, FIG.
In the present embodiment shown in (b), the inner tubular member layer 2 is similar to the above.
1 has the same size as that of the conventional inner tubular member layer 31, and the thickness T of the conventional outer tubular member layer 32 is the same as that of the intermediate member layer 25 and the final outer tubular member layer 2.
It is divided into 2 layers of 6 and the thickness of each is half that of the conventional one, 14 mm.
And As a result, the injection molding time of each of the intermediate member layer 25 and the final outer cylindrical member layer 26 is 1 as shown by the point K in FIG.
It was drastically shortened to 50 seconds. The take-out temperature from the mold at this time is 115 ° C., which is lower than that of the conventional method. Moreover, an electric fusion-bonded joint having no defects inside and outside the sink mark was obtained.

【0022】次に上記呼び口径が200Aのソケット形
電気融着継手について更に成形時間の短縮を図るために
継手の肉厚を4層に分割成形した実施例について説明す
る。図7は呼び口径200Aの継手を4層成形化した継
手の各層の断面図を示し、1層目41は前記実施例の内
筒部材層21のごとく溝内に電熱線22を巻回してあ
り、この外面に前記したごとく2層目42、3層目4
3、4層目44を順次射出成形して一体の電気融着継手
45を得るものである。この場合も2層目から4層目の
各層の肉厚は従来の外方部材層32の肉厚28mmの1
/3の約9.5mmにした。
Next, an embodiment in which the wall thickness of the socket type electric fusion splicing joint having the nominal diameter of 200 A is divided into four layers in order to further shorten the molding time will be described. FIG. 7 is a cross-sectional view of each layer of a joint formed by molding a joint having a nominal diameter of 200 A into four layers. The first layer 41 has a heating wire 22 wound in a groove like the inner tubular member layer 21 of the above-described embodiment. , The second layer 42 and the third layer 4 on the outer surface as described above.
The third and fourth layers 44 are sequentially injection-molded to obtain an integral electric fusion joint 45. Also in this case, the thickness of each of the second to fourth layers is 1 mm, which is the thickness of the conventional outer member layer 32 of 28 mm.
/ 3 of about 9.5 mm.

【0023】この実施例では2層目42と3層目43の
外面部にも凹凸を形成して、キャビテイー部内で射出成
形時に、金型キャビテイー部内面と接触する面積を多く
し、射出された樹脂の冷却効率を上げて冷却時間の短縮
を図っている。更に射出した各樹脂層間の接触面積が多
くなるようにして一体的に溶融する溶融密着強度を増し
ている。この実施例の射出成形後の金型からの取り出し
時間は、冷却時間が最も長い第2層目42の冷却時間が
115秒で、この時の温度が100℃であった。従って
前記従来方式の成形時間900秒と比較してこの実施例
の4層成形の場合では、900秒から115秒に大幅に
短縮することができ、金型からの取り出し温度も低下し
た。また上記3層からなる実施例の場合と比べても15
0秒から115秒に35秒間短縮することができた。
In this embodiment, unevenness is also formed on the outer surfaces of the second layer 42 and the third layer 43 to increase the area of contact with the inner surface of the mold cavity portion during injection molding in the cavity portion, and the injection is performed. The cooling efficiency of the resin is increased to reduce the cooling time. Further, the contact area between the injected resin layers is increased to increase the melt adhesion strength for melting integrally. The time taken out from the mold after injection molding of this example was 115 seconds for the second layer 42 having the longest cooling time, and the temperature at this time was 100 ° C. Therefore, in the case of the four-layer molding of this example, compared with the conventional molding time of 900 seconds, it was possible to significantly reduce the time from 900 seconds to 115 seconds, and the temperature for taking out from the mold was also lowered. In addition, compared with the case of the above three-layer embodiment,
It was possible to reduce the time from 0 seconds to 115 seconds by 35 seconds.

【0024】上記実施例では、継手の肉厚を3層又は4
層に成形する実施例について説明したが、継手の形状や
大きさ及び成型機の仕様などによっては5層に分割して
成形しても良い。この複数層は同一の樹脂材料でもよ
く、又樹脂の材質や色が異なる樹脂で成形しても良い。
更に何層になっても可能であるが、実用上継手の形状や
各層の成形作業取り扱い時間等も考慮すると3層ないし
5層が最も適当である。また図3や図7で示す電気融着
継手のごとく、径方向と共に継手の長手方向にも3ない
し5層に分割して成形しても良い。また1つの金型内に
複数層のキャビテイー部A、B、Cを設けた金型で説明
したが、夫々の層を射出成形するキャビテイー部A、
B、Cを個々に備えた複数組の金型を用いて順次多段成
形しても良いことは当然である。
In the above embodiment, the thickness of the joint is three layers or four.
Although the embodiment of forming into layers has been described, it may be divided into five layers and formed depending on the shape and size of the joint and the specifications of the forming machine. The plurality of layers may be made of the same resin material, or may be made of resins having different resin materials and colors.
Although it is possible to have any number of layers, 3 to 5 layers are most suitable in practical use in consideration of the shape of the joint and the handling time of the molding work of each layer. Further, as in the case of the electric fusion-bonded joint shown in FIGS. 3 and 7, the joint may be divided into 3 or 5 layers in the radial direction as well as in the longitudinal direction of the joint. In addition, although a mold in which a plurality of layers of cavity portions A, B, and C are provided in one mold has been described, the cavity portion A for injection molding each layer,
As a matter of course, it is possible to sequentially perform multi-stage molding using a plurality of sets of dies each having B and C individually.

【0025】[0025]

【発明の効果】本発明によれば、継手本体内に射出する
樹脂の肉厚を十分に小さく出来、また1回に射出する溶
融樹脂の容量を少なく出来るので、各層段階で射出成形
した溶融樹脂の冷却速度が早くなり、成形タクトが大幅
に短縮されて成形作業能率が向上する。また各部が均一
に冷却されるので従来のヒケ等の内部欠陥が生じない。
このため、品質の優れた電気融着継手を能率良く得るこ
とが出来る。
According to the present invention, since the thickness of the resin injected into the joint body can be made sufficiently small and the volume of the molten resin injected at one time can be reduced, the molten resin injection-molded in each layer stage can be reduced. The cooling rate is faster, the molding tact is greatly shortened, and the molding work efficiency is improved. Further, since each part is cooled uniformly, internal defects such as sink marks of the related art do not occur.
Therefore, it is possible to efficiently obtain an electric fusion joint having excellent quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例の電気融着継手射出成形用
金型の平面図である。
FIG. 1 is a plan view of an electric fusion joint injection molding die according to an embodiment of the present invention.

【図2】 本発明の一実施例の電気融着継手の断面図で
ある。
FIG. 2 is a sectional view of an electric fusion splicing joint according to an embodiment of the present invention.

【図3】 本発明の別の実施例の電気融着継手の断面図
である。
FIG. 3 is a cross-sectional view of an electric fusion splicing joint according to another embodiment of the present invention.

【図4】 従来方式(a)と本実施例方式(b)とを比
較して説明する各工程の成形品を示す図である。
FIG. 4 is a diagram showing a molded product in each step for comparing and explaining the conventional method (a) and the method of the present embodiment (b).

【図5】 従来方式と本実施例の金型内での冷却時間と
冷却温度の関係を示す図である。
FIG. 5 is a diagram showing the relationship between the cooling time and the cooling temperature in the mold of the conventional method and this embodiment.

【図6】 本発明の実施例と従来技術とを比較して説明
する金型からの取り出し時間に対する樹脂肉厚と射出成
形時間(冷却時間)の関係を示す図である。
FIG. 6 is a diagram showing the relationship between the resin wall thickness and the injection molding time (cooling time) with respect to the time taken out from the mold, which will be described by comparing the embodiment of the present invention with the prior art.

【図7】 本発明実施例の4層成形した電気融着継手の
断面図である。
FIG. 7 is a cross-sectional view of a four-layer molded electric fusion-bonded joint according to an embodiment of the present invention.

【図8】 従来の電気融着継手の部分断面図と各層の肉
厚T、t寸法を示す図である。
FIG. 8 is a partial cross-sectional view of a conventional electric fusion splicing joint and a view showing wall thicknesses T and t of each layer.

【符号の説明】[Explanation of symbols]

A、B、C 金型内の各キャビテイー部 10 マ
ンドレル 11 入口 12 ラ
ンナー 13 ゲート 21 内
筒部材層 22 電熱線 23 溝 24 コネクターピン 25 中
間部材層 26 最終外筒部材層 27 内
筒部材付の中間部材 28、45 成形後の電気融着継手 41 第
1層 42 第2層 43 第
3層 44 第4層
A, B, C Each cavity part in the mold 10 Mandrel 11 Inlet 12 Runner 13 Gate 21 Inner cylinder member layer 22 Heating wire 23 Groove 24 Connector pin 25 Intermediate member layer 26 Final outer cylinder member layer 27 Intermediate with inner cylinder member Member 28, 45 Electric fusion-bonded joint after molding 41 First layer 42 Second layer 43 Third layer 44 Fourth layer

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 内周部に電熱線を埋設した内筒部材層
と、この内筒部材層の外面に熱可塑性樹脂を成形して設
けた外筒部材層とからなる電気融着継手において、 前記継手全体の円筒部材層が前記内筒部材層を含めて3
層以上の多層樹脂層からなることを特徴とする電気融着
継手。
1. An electric fusion joint comprising an inner tubular member layer having a heating wire embedded in its inner peripheral portion and an outer tubular member layer formed by molding a thermoplastic resin on the outer surface of the inner tubular member layer, The cylindrical member layer of the entire joint including the inner cylindrical member layer is 3
An electric fusion-bonded joint, characterized by comprising a multilayer resin layer of at least one layer.
【請求項2】 呼び口径が75A以上の大きさの継手に
ついて、継手全体の円筒部材層が前記内筒部材層を含め
て3層ないし5層の多層樹脂層からなることを特徴とす
る請求項1記載の電気融着継手。
2. A joint having a nominal diameter of 75 A or more, wherein the cylindrical member layer of the entire joint is composed of 3 to 5 multilayer resin layers including the inner cylindrical member layer. 1. The electric fusion joint according to 1.
【請求項3】 前記継手の外筒部材層の肉厚が10mm
以上の大きさの継手について、継手全体の円筒部材層が
前記内筒部材層を含めて3層ないし5層の多層樹脂層か
らなり、1層当たりの肉厚が15mm以下であることを
特徴とする請求項1ないし2記載の電気融着継手。
3. The wall thickness of the outer cylinder member layer of the joint is 10 mm.
In the joint having the above size, the cylindrical member layer of the entire joint is composed of 3 to 5 multilayer resin layers including the inner cylindrical member layer, and the thickness of each layer is 15 mm or less. The electric fusion joint according to claim 1 or 2.
【請求項4】 熱可塑性樹脂製継手本体の内周部に電熱
線を埋設した電気融着継手を得る方法であって、 まず継手本体の内周面を形成する電熱線を収容した内筒
部材を設け、 この内筒部材を成形用金型のキャビテイー内に装着し、
内筒部材の外面に熱可塑性樹脂層を成形して内筒部材と
一体の中間部材を設け、 この中間部材を成形用金型のキャビテイー内に装着し、
中間部材の外面に熱可塑性樹脂層を成形して中間部材と
一体の成形部材を設け、 以下成形した成型部材の外面に熱可塑性樹脂層を順次成
形して最終目的形状の電気融着継手を得ることを特徴と
する電気融着継手の製造方法。
4. A method for obtaining an electric fusion joint in which a heating wire is embedded in an inner peripheral portion of a thermoplastic resin joint body, wherein an inner tubular member accommodating a heating wire forming an inner peripheral surface of the joint body is firstly provided. And install this inner cylinder member in the cavity of the molding die,
A thermoplastic resin layer is formed on the outer surface of the inner cylinder member to provide an intermediate member integral with the inner cylinder member, and the intermediate member is mounted in the cavity of the molding die,
A thermoplastic resin layer is molded on the outer surface of the intermediate member to provide a molded member integrated with the intermediate member, and then the thermoplastic resin layer is sequentially molded on the outer surface of the molded member to obtain an electric fusion joint having a final target shape. A method for manufacturing an electric fusion splicing joint, comprising:
【請求項5】 前記成形用金型は1組又は複数組有し、
この金型の夫々のキャビテイー部で内筒部材を得る工程
と中間部材を得る工程と順次成形部材を得る工程とを同
期して行い、最終目的形状の電気融着継手を得ることを
特徴とする請求項2記載の電気融着継手の製造方法。
5. The molding die has one set or a plurality of sets,
It is characterized in that the step of obtaining the inner cylindrical member, the step of obtaining the intermediate member, and the step of successively obtaining the molded member are performed in synchronization with each other in the cavity portion of the mold to obtain the electric fusion-bonded joint having the final target shape. The method for manufacturing an electric fusion joint according to claim 2.
【請求項6】 熱可塑性樹脂製継手本体の内周部に電熱
線を埋設した電気融着継手を得る射出成形用金型であっ
て、 同じマンドレルを用いて溶融樹脂を射出成形できる複数
のキャビテイー部を有し、このキャビテイー部は、継手
の内周面を形成し電熱線を収容する溝を設けた内筒部材
を形成する第1層のキャビテイー部と、このキャビテイ
ー部より一回り大きく前記内筒部材の外面に熱可塑性樹
脂層を射出成形できる第2層のキャビテイー部、及びこ
の成形した外面に順次熱可塑性樹脂層を射出成形できる
第3層ないし第5層のキャビテイー部とを有し、前記各
層の1層当たりの肉厚が15mm以下になるように設け
たことを特徴とする電気融着継手射出成形用金型。
6. An injection molding die for obtaining an electric fusion joint in which a heating wire is embedded in an inner peripheral portion of a thermoplastic resin joint body, wherein a plurality of cavities capable of injection molding molten resin using the same mandrel. The cavity portion has a first-layer cavity portion that forms an inner cylindrical surface of the joint and that forms a groove for accommodating the heating wire, and a cavity portion that is one size larger than the cavity portion. A second layer cavity portion capable of injection molding a thermoplastic resin layer on the outer surface of the tubular member, and third to fifth cavity portions capable of sequentially injection molding the thermoplastic resin layer on the molded outer surface, An electrofusion-joint injection-molding die, characterized in that the thickness of each layer is 15 mm or less.
JP7063783A 1994-03-25 1995-03-23 Electrofusion joint, method of manufacturing the same, and mold for injection molding Expired - Lifetime JP2849349B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7063783A JP2849349B2 (en) 1994-03-25 1995-03-23 Electrofusion joint, method of manufacturing the same, and mold for injection molding
US08/504,866 US5618065A (en) 1994-07-21 1995-07-20 Electric welding pipe joint having a two layer outer member
EP95111534A EP0693652B1 (en) 1994-07-21 1995-07-21 Electric welding pipe joint
DE69519833T DE69519833T2 (en) 1994-07-21 1995-07-21 Electric welding socket

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP5621494 1994-03-25
JP6-169253 1994-07-21
JP6-56214 1994-07-21
JP16925394 1994-07-21
JP7063783A JP2849349B2 (en) 1994-03-25 1995-03-23 Electrofusion joint, method of manufacturing the same, and mold for injection molding

Publications (2)

Publication Number Publication Date
JPH0885154A true JPH0885154A (en) 1996-04-02
JP2849349B2 JP2849349B2 (en) 1999-01-20

Family

ID=27295847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7063783A Expired - Lifetime JP2849349B2 (en) 1994-03-25 1995-03-23 Electrofusion joint, method of manufacturing the same, and mold for injection molding

Country Status (1)

Country Link
JP (1) JP2849349B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000213683A (en) * 1999-01-27 2000-08-02 Nkk Corp Manufacturing method of electric fusion joint
JP2005256934A (en) * 2004-03-11 2005-09-22 Mitsubishi Plastics Ind Ltd Electric fusion joint and manufacturing method thereof
JP2008121899A (en) * 1997-03-28 2008-05-29 Hitachi Metals Ltd Electric welding type plastic pipe joint and manufacturing method for it
CN110065201A (en) * 2019-05-31 2019-07-30 海力士五金机电(昆山)有限公司 A kind of mold core binding post automatic supplier

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121899A (en) * 1997-03-28 2008-05-29 Hitachi Metals Ltd Electric welding type plastic pipe joint and manufacturing method for it
JP2000213683A (en) * 1999-01-27 2000-08-02 Nkk Corp Manufacturing method of electric fusion joint
JP2005256934A (en) * 2004-03-11 2005-09-22 Mitsubishi Plastics Ind Ltd Electric fusion joint and manufacturing method thereof
CN110065201A (en) * 2019-05-31 2019-07-30 海力士五金机电(昆山)有限公司 A kind of mold core binding post automatic supplier
CN110065201B (en) * 2019-05-31 2024-02-27 海力士五金机电(昆山)有限公司 Automatic feeding device for mold core binding posts

Also Published As

Publication number Publication date
JP2849349B2 (en) 1999-01-20

Similar Documents

Publication Publication Date Title
EP0693652B1 (en) Electric welding pipe joint
JPH02304291A (en) Electric fusing pipe coupling
JP3855083B2 (en) Method and apparatus for forming hollow molded product
JP2729900B2 (en) Molding method and molding die for hollow product
JPH05157190A (en) Manufacture of electric fusion joint
JPH0885154A (en) Electric fusion bonded joint, manufacture thereof and injection mold thereof
JP2005125757A (en) Method for producing tube resin joint and tube resin joint produced by the method
JPH08296785A (en) Electric fusion joint and manufacture of the same
JP2001047464A (en) Production of electrofusion joint
JP4302127B2 (en) Hollow molded product
JP2939032B2 (en) Manufacturing method of electrofusion plastic pipe joint
JP6994683B2 (en) Resin suction pipe for vacuum cleaner
JPH09207224A (en) Electrofusion type pipe joint and method of manufacturing the same
JP2721465B2 (en) Electric fusion plastic pipe fittings
JP4000541B2 (en) Electric fusion joint and method for manufacturing the same
JP2000213684A (en) Electrodeposited coupling
JPH0727282A (en) Electro-fusion joint and its forming method
JPH1038175A (en) Electrofusion pipe joint and its manufacture
JPH079559A (en) Manufacture of electric fusion-bonding plastic tube joint
JPH1034719A (en) Manufacture of electric fusion bonded joint
JPS59143627A (en) Manufacture of hydraulic cylinder made of resin
JPH1016000A (en) Production of electric fusion joint
JPH05172289A (en) Electric fusion attach pipe fitting and manufacture thereof
JPH10648A (en) Manufacture of electric fusion bonding joint
JPH0780933A (en) Production of flanged resin lining steel pipe