[go: up one dir, main page]

JPH0875709A - Method and device for identifying defect type by ultrasonic flaw detection - Google Patents

Method and device for identifying defect type by ultrasonic flaw detection

Info

Publication number
JPH0875709A
JPH0875709A JP6213792A JP21379294A JPH0875709A JP H0875709 A JPH0875709 A JP H0875709A JP 6213792 A JP6213792 A JP 6213792A JP 21379294 A JP21379294 A JP 21379294A JP H0875709 A JPH0875709 A JP H0875709A
Authority
JP
Japan
Prior art keywords
defect
flaw
area
type
inclusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6213792A
Other languages
Japanese (ja)
Inventor
Hiroyuki Okubo
寛之 大久保
Ritsuo Mitsunari
律夫 光成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6213792A priority Critical patent/JPH0875709A/en
Publication of JPH0875709A publication Critical patent/JPH0875709A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

(57)【要約】 【目的】 少ない特徴量で高精度に欠陥種を判別し得、
判別処理の処理時間が短い超音波探傷による欠陥種判別
方法及びその実施に使用する装置を提供する。 【構成】 波形特徴量抽出回路7はピークアンプリチュ
ードPA を抽出して第1疵種判定回路9に与えると共に
支配的周波数帯域WL を求め、それを第2疵種判定回路
10に与える。信号処理装置8にはコントローラ3から走
査器2の走査情報が与えられるようになっており、信号
処理装置8は欠陥面積SK を算出し、それを第1疵種判
定回路9及び第2疵種判定回路10に与える。第1疵種判
定回路9は、ピークアンプリチュードPA 及び欠陥面積
K に基づいて、当該欠陥が割れ欠陥であるか、介在物
であるかを判別し、介在物であると判別されると、第2
疵種判定回路10は、支配的周波数帯域WL 及び欠陥面積
K に基づいて当該介在物種を判別しその判別結果をデ
ィスク11に記録する。
(57) [Summary] [Purpose] Defect types can be identified with high accuracy with a small amount of features,
(EN) Provided are a defect type discrimination method by ultrasonic flaw detection and a device used for carrying out the method, in which the discrimination processing time is short. [Structure] A waveform feature amount extraction circuit 7 extracts a peak amplitude P A and supplies it to a first flaw type determination circuit 9 and also obtains a dominant frequency band W L , which is then determined by a second flaw type determination circuit.
Give to 10. The controller 3 supplies the scanning information of the scanner 2 to the signal processing device 8, and the signal processing device 8 calculates the defect area S K, and uses it to calculate the first defect type determination circuit 9 and the second defect type. It is given to the seed determination circuit 10. The first flaw type determining circuit 9 determines whether the defect is a cracking defect or an inclusion based on the peak amplitude P A and the defect area S K , and when it is determined to be an inclusion. , Second
The defect type determination circuit 10 determines the type of the inclusion based on the dominant frequency band W L and the defect area S K , and records the determination result on the disk 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超音波探傷の結果に基
づいて欠陥種を判別する方法及びその実施に使用する装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of discriminating a defect type on the basis of the result of ultrasonic flaw detection and an apparatus used for carrying out the method.

【0002】[0002]

【従来の技術】従来の超音波探傷による欠陥種判別方法
として、特開昭53−143386号公報に記載されている方法
がある。これは、探触子から被探傷材へ超音波を、入射
角が0°から45°の範囲,及び45°から90°の範
囲となるように入射してエコーをそれぞれ受信し、その
受信信号と標準信号との差信号をそれぞれ得る。一方、
両受信信号について、信号間隔及び信号継続時間の特徴
量を算出し、算出した特徴量に基づいて、両差信号にお
ける比較領域を特定する。そして比較領域における差信
号の波形及び予め定めた基準波形に基づいて介在物によ
る欠陥であるか否かを判別するものである。
2. Description of the Related Art As a conventional defect type discriminating method by ultrasonic flaw detection, there is a method described in JP-A-53-143386. This is because ultrasonic waves are incident on the material to be detected from the probe so that the incident angles are in the range of 0 ° to 45 ° and 45 ° to 90 °, and the echo is received. And the difference signal between the standard signal and the standard signal, respectively. on the other hand,
The feature amount of the signal interval and the signal duration is calculated for both received signals, and the comparison area in the difference signal is specified based on the calculated feature amount. Then, based on the waveform of the difference signal in the comparison area and a predetermined reference waveform, it is determined whether or not the defect is due to inclusions.

【0003】しかし上述した方法にあっては、欠陥種判
別の結果を高精度に得るために2以上の入射角で超音波
を被探傷材に入射しなければならず、探傷に長時間を要
するという問題があった。
However, in the method described above, ultrasonic waves must be incident on the material to be inspected at two or more incident angles in order to obtain the result of defect type discrimination with high accuracy, and it takes a long time for flaw detection. There was a problem.

【0004】この問題を解決するために、特願平 5−17
1117号に記載されている方法が提案されている。これ
は、鋼板等の被探傷材上に移動可能に配置した探触子か
ら被探傷材に一つの入射角で超音波を入射してエコーを
受信し、その受信信号が所定のS/N比を越えた場合に
欠陥であると判断する。そして欠陥であると判断された
場合、受信信号の周波数帯域の中心周波数,ピーク周波
数,ピーク信号強度,信号持続時間,受信信号の立ち上
がり時間,及び立ち下がり時間の計6種類の特徴量を求
める。また、前記探触子の移動順に得られる複数の受信
信号に基づいて、前記欠陥の面積を求める。そして求め
た特徴量及び欠陥面積をニューロ回路に与えてその欠陥
種を判別するものである。これによって一入射角で探傷
を行っても高精度に欠陥種を判別することが可能とな
り、探傷時間が短縮される。
In order to solve this problem, Japanese Patent Application No. 5-17
The method described in 1117 is proposed. This is because ultrasonic waves are incident on a flaw-detecting material at a single incident angle from a probe movably arranged on the flaw-detecting material such as a steel plate, and an echo is received, and the received signal has a predetermined S / N ratio. If it exceeds, it is judged as a defect. When it is determined that there is a defect, a total of six types of feature quantities including the center frequency of the frequency band of the received signal, the peak frequency, the peak signal strength, the signal duration, the received signal rising time, and the falling time are obtained. Further, the area of the defect is obtained based on a plurality of received signals obtained in the moving order of the probe. Then, the obtained feature amount and defect area are given to the neuro circuit to determine the defect type. As a result, even if the flaw detection is performed at one incident angle, the defect type can be accurately determined, and the flaw detection time is shortened.

【0005】[0005]

【発明が解決しようとする課題】しかしながら前述した
方法にあっては、判別に要する特徴量の数が多いため、
判別処理の処理時間が多大になり、判別処理のスループ
ットが低いという問題があった。本発明はかかる問題に
鑑みてなされたものであって、その目的とするところは
欠陥に係るエコーの受信信号の最大信号強度,支配的周
波数帯域及び当該欠陥の面積に基づいて欠陥種を判別す
ることによって、少ない特徴量によって高精度に欠陥種
を判別し得、判別処理の処理時間を短縮して、判別処理
のスループットが高い超音波探傷による欠陥種判別方法
及びその実施に使用する装置を提供することにある。
However, in the above-mentioned method, since the number of feature amounts required for discrimination is large,
There has been a problem that the processing time of the discrimination processing becomes long and the throughput of the discrimination processing is low. The present invention has been made in view of the above problems, and an object thereof is to determine a defect type based on the maximum signal intensity of a received signal of an echo related to a defect, a dominant frequency band, and the area of the defect. Accordingly, a defect type can be accurately determined with a small amount of features, the processing time of the determination process can be shortened, and a defect type determination method by ultrasonic flaw detection with high throughput of the determination process and an apparatus used for the implementation are provided. To do.

【0006】[0006]

【課題を解決するための手段】第1発明に係る超音波探
傷による欠陥種判別方法は、探触子又は被探傷材を移動
させつつ前記探触子から被探傷材に超音波を所定周期で
入射し、各エコーを受信して被探傷材中の欠陥を探傷
し、欠陥に係るエコーの受信信号複数に基づいてその欠
陥種を判別する方法において、各受信信号の所定強度以
上の領域である欠陥幅に基づいて当該欠陥の面積を算出
し、当該欠陥に係る受信信号の最大信号強度を抽出し、
前記欠陥の面積,最大信号強度,及び予め設定した閾値
に基づいて当該欠陥が割れ欠陥であるか介在物であるか
を判別し、更に、前記最大信号強度に係る受信信号の周
波数解析を行い、その結果に基づいて、信号強度が相対
的に高い支配的周波数帯域を求め、介在物であると判別
された場合、前記欠陥の面積,支配的周波数帯域,及び
予め設定した閾値に基づいて介在物種を判別することを
特徴とする。
According to a first aspect of the present invention, there is provided a defect type discrimination method using ultrasonic flaw detection, wherein ultrasonic waves are transmitted from the probe to the flaw detection material at a predetermined cycle while moving the probe or the flaw detection material. In the method of detecting the defect in the material to be inspected by receiving each echo and receiving the echo, and determining the defect type based on a plurality of received signals of the echo related to the defect, it is an area having a predetermined intensity or more of each received signal. Calculate the area of the defect based on the defect width, extract the maximum signal strength of the received signal related to the defect,
The defect area, maximum signal strength, and whether the defect is a cracking defect or an inclusion is determined based on a preset threshold value, and further, frequency analysis of the received signal relating to the maximum signal strength is performed, Based on the result, a dominant frequency band having a relatively high signal strength is obtained, and when it is determined that the inclusion is an inclusion, the inclusion type is determined based on the area of the defect, the dominant frequency band, and a preset threshold value. Is characterized in that

【0007】第2発明に係る超音波探傷による欠陥種判
別装置は、探触子又は被探傷材を移動させつつ前記探触
子から被探傷材に超音波を所定周期で入射し、各エコー
を受信して被探傷材中の欠陥を探傷し、欠陥に係るエコ
ーの受信信号複数に基づいてその欠陥種を判別する装置
において、各受信信号の所定強度以上の領域である欠陥
幅に基づいて当該欠陥の面積を算出する手段と、当該欠
陥に係る受信信号の最大信号強度を抽出する手段と、前
記欠陥の面積,最大信号強度,及び予め設定した閾値に
基づいて当該欠陥が割れ欠陥であるか介在物であるかを
判別する手段と、更に、前記最大信号強度に係る受信信
号の周波数解析を行う手段と、その結果に基づいて、信
号強度が相対的に高い支配的周波数帯域を求める手段
と、介在物であると判別された場合、前記欠陥の面積,
支配的周波数帯域,及び予め設定した閾値に基づいて介
在物種を判別する手段とを備えることを特徴とする。
In the defect type identification apparatus using ultrasonic flaw detection according to the second aspect of the present invention, while moving the probe or the flaw-detecting material, ultrasonic waves are incident on the flaw-detecting material from the probe at a predetermined cycle, and each echo is generated. In an apparatus for detecting a defect in a material to be inspected by receiving, and for determining the defect type based on a plurality of received signals of echoes related to the defect, based on a defect width which is an area having a predetermined intensity or more of each received signal, A means for calculating the area of the defect, a means for extracting the maximum signal intensity of the received signal relating to the defect, and whether the defect is a cracking defect based on the area of the defect, the maximum signal intensity, and a preset threshold value. Means for determining whether it is an inclusion, further means for performing a frequency analysis of the received signal relating to the maximum signal strength, and means for obtaining a dominant frequency band in which the signal strength is relatively high based on the result , As an inclusion If another has been the area of the defect,
It is characterized by comprising means for discriminating the type of inclusion based on a dominant frequency band and a preset threshold value.

【0008】[0008]

【作用】図3は被探傷材に入射した超音波のエコーの受
信信号強度を経時的に測定した結果を示すグラフであ
り、縦軸は受信信号強度を,横軸は時間をそれぞれ示し
ている。図2の如く、受信信号強度は欠陥を示す所定値
以上の複数のピークが現れている。所定値以上の信号強
度である領域によって欠陥の幅を求めることができ、探
触子又は被探傷材の移動順に得られる複数の受信信号に
基づいて当該欠陥の幅をそれぞれ積分することによって
欠陥の面積を求める。そして欠陥の面積と当該欠陥に係
る受信信号強度の最大ピーク(ピークアンプリチュー
ド)との間には次のような関係がある。
FIG. 3 is a graph showing the results of time-dependent measurement of the received signal intensity of the echo of the ultrasonic wave incident on the material to be inspected, where the vertical axis shows the received signal intensity and the horizontal axis shows the time. . As shown in FIG. 2, the received signal strength has a plurality of peaks having a predetermined value or more, which indicate defects. The width of the defect can be obtained by a region having a signal intensity equal to or higher than a predetermined value, and the defect width can be calculated by integrating the width of the defect based on a plurality of received signals obtained in the moving order of the probe or the material to be inspected. Find the area. The following relationship exists between the defect area and the maximum peak (peak amplitude) of the received signal strength related to the defect.

【0009】図4は割れ欠陥及び介在物欠陥におけるピ
ークアンプリチュードと欠陥面積との関係を示すグラフ
であり、図中、実線は割れ欠陥を示しており、破線は介
在物を示している。前述した受信信号の強度は次の
(1)式によって求められる被探傷材に入射した超音波
の音圧反射率rp に比例する。 rp =(Z2 −Z1 )/(Z1 +Z2 ) …(1) Z=ρc 但し、 Z :音響インピーダンス Z1 :第1物質の音響インピーダンス Z2 :第2物質の音響インピーダンス ρ :密度 c :音速
FIG. 4 is a graph showing the relationship between the peak amplitude and the defect area in crack defects and inclusion defects. In the figure, the solid line indicates crack defects and the broken line indicates inclusions. The intensity of the received signal described above is proportional to the sound pressure reflectance r p of the ultrasonic wave incident on the flaw detection target material, which is obtained by the following equation (1). r p = (Z 2 −Z 1 ) / (Z 1 + Z 2 ) ... (1) Z = ρc where Z: acoustic impedance Z 1 : acoustic impedance of the first substance Z 2 : acoustic impedance of the second substance ρ: Density c: speed of sound

【0010】欠陥中に空間が存在する割れ欠陥の音響イ
ンピーダンスと、空間が存在しない介在物の音響インピ
ーダンスと、被探傷材として例えば鋼材の音響インピー
ダンスとの関係は、次の(2)式のようである。 介在物>鋼材>>>空気 …(2) また鋼材から空気へ,及び鋼材から介在物への音圧反射
率は次の(3)式のようである。 (鋼材→空気)>> (鋼材→介在物) …(3) 従って、同一面積における割れ欠陥及び介在物欠陥のピ
ークアンプリチュードは、図4の如く、割れ欠陥>>介
在物である。そして、当該欠陥に係る受信信号において
所定値以上のピークアンプリチュードであった場合に割
れ欠陥であると判別する。
The relationship between the acoustic impedance of a crack defect having a space in the defect, the acoustic impedance of an inclusion having no space, and the acoustic impedance of, for example, a steel material as the flaw detection material is expressed by the following equation (2). Is. Inclusions> Steels >>>> Air (2) Further, the sound pressure reflectance from steel to air and from steel to inclusions is expressed by the following equation (3). (Steel material → air) >> (Steel material → inclusions) (3) Therefore, the peak amplitudes of cracking defects and inclusion defects in the same area are cracking defects >> inclusions, as shown in FIG. Then, when the received signal related to the defect has a peak amplitude of a predetermined value or more, it is determined to be a crack defect.

【0011】一方、割れ欠陥ではなく介在物であると判
別されたときは、以下のようにして介在物種を判別す
る。
On the other hand, when it is determined that it is not a cracking defect but an inclusion, the type of inclusion is determined as follows.

【0012】介在物種として、主にアルミナ系介在物及
びマンガン系介在物が挙げられる。これらの介在物は疵
の形態が異なっており、前者はクラスタ状に点在してお
り、後者はクラスタ状にはならない。そのため、所要の
周波数帯域の超音波を被探傷在に入射してそのエコーを
検出すると、アルミナ系介在物は高周波成分が多く、マ
ンガン系介在物は低周波領域に正規分布的に拡がる成分
が多い。
The types of inclusions mainly include alumina-based inclusions and manganese-based inclusions. These inclusions have different flaws, the former is scattered in clusters, and the latter is not clustered. Therefore, when ultrasonic waves of the required frequency band are incident on the flaw-detected object and its echo is detected, alumina-based inclusions have many high-frequency components, and manganese-based inclusions have many components that spread normally in the low-frequency region. .

【0013】図5はエコーの受信信号の周波数解析例を
示すグラフであり、縦軸は受信信号強度を、横軸は周波
数をそれぞれ示している。エコーの受信信号の周波数帯
域を超音波の周波数に応じて例えば10MHz毎に分割
し、低周波数側から高周波数側へ順に領域A,領域B,
…とする。本例では、図5に示した如く、信号強度のピ
ークが領域Bにあり、ピークに次ぐ信号強度を示す部分
が領域C,領域D及び領域Eにわたる広い領域にある。
そして、各領域における信号強度を積分し、それぞれの
値の内の最大の領域を演出することによって支配的周波
数帯域を求める。つまり、支配的周波数帯域は前述した
各領域毎に求めた面積の内の最大値であった領域であ
る。このようにして求めた支配的周波数帯域は領域Dで
あり、図5から明らかな如く、受信信号における中心的
な周波数帯域を表している。
FIG. 5 is a graph showing an example of frequency analysis of a received signal of an echo. The vertical axis shows the received signal strength and the horizontal axis shows the frequency. The frequency band of the received signal of the echo is divided into, for example, every 10 MHz according to the frequency of the ultrasonic wave, and the region A, the region B, and
... In this example, as shown in FIG. 5, the peak of the signal intensity is in the region B, and the portion showing the signal intensity next to the peak is in the wide region including the regions C, D, and E.
Then, the dominant frequency band is obtained by integrating the signal strength in each area and rendering the maximum area of the respective values. That is, the dominant frequency band is the region having the maximum value in the area obtained for each region described above. The dominant frequency band obtained in this way is the region D, and as is clear from FIG. 5, it represents the central frequency band in the received signal.

【0014】図6は介在物の欠陥面積と支配的周波数帯
域との関係を示すグラフであり、図中、実線はアルミナ
系介在物を、また破線はマンガン系介在物をそれぞれ示
している。図6から明らかな如く、同一面積における支
配的周波数帯域はアルミナ系介在物の方がマンガン系介
在物より周波数が高い。従って、受信信号の周波数解析
を行った結果に基づいて支配的周波数帯域を求め、該支
配的周波数帯域が所定の周波数以上であった場合はアル
ミナ系介在物であり、そうでない場合はマンガン系介在
物であると判別する。
FIG. 6 is a graph showing the relationship between the defect area of inclusions and the dominant frequency band. In the figure, the solid line indicates alumina-based inclusions and the broken line indicates manganese-based inclusions. As is clear from FIG. 6, in the dominant frequency band in the same area, the frequency of alumina inclusions is higher than that of manganese inclusions. Therefore, the dominant frequency band is obtained based on the result of the frequency analysis of the received signal, and if the dominant frequency band is equal to or higher than a predetermined frequency, it is an alumina-based inclusion, and if not, a manganese-based inclusion. It is determined to be a thing.

【0015】[0015]

【実施例】以下本発明をその実施例を示す図面に基づい
て具体的に説明する。図1は本発明の実施に使用する装
置の構成を示すブロックであり、図中1は超音波を送受
信する探触子である。探触子1は鋼板等の被探傷材Tと
対向して所定の角度,例えば90°となるように、被探
傷材T上を走査する走査器2に取付けてあり、走査器2
はコントローラ3によってその動作が制御されるように
なっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings showing the embodiments thereof. FIG. 1 is a block diagram showing the configuration of an apparatus used for implementing the present invention, and in the figure, 1 is a probe for transmitting and receiving ultrasonic waves. The probe 1 is attached to a scanner 2 which scans the flaw-detecting material T so as to face the flaw-detecting material T such as a steel plate at a predetermined angle, for example, 90 °.
The operation is controlled by the controller 3.

【0016】走査器2が被探傷材T上を走査しつつ探触
子1から被探傷材Tに所定周期で入射された超音波のエ
コーは探触子1に受信され、パルサレシーバ4によって
受信信号に変換される。この受信信号はアナログ/ディ
ジタル(A/D)変換器5に与えられ、そこでディジタ
ル信号に変換されて波形採取回路6に与えられる。波形
採取回路6には予め基準S/N比が設定されており、波
形採取回路6はA/D変換器5から与えられた信号のS
/N比が基準S/N比以上であったとき該信号を採取・
保存する。
While the scanner 2 scans the material T to be inspected, echoes of ultrasonic waves which are incident on the material T to be inspected from the probe 1 at a predetermined cycle are received by the probe 1 and received by the pulsar receiver 4. Converted to a signal. This received signal is given to the analog / digital (A / D) converter 5, where it is converted into a digital signal and given to the waveform sampling circuit 6. The reference S / N ratio is preset in the waveform sampling circuit 6, and the waveform sampling circuit 6 uses the S / N ratio of the signal given from the A / D converter 5.
When the / N ratio is higher than the reference S / N ratio, the signal is sampled.
save.

【0017】波形採取回路6に採取・保存された信号は
波形特徴量抽出回路7及び信号処理装置8に与えられ
る。波形特徴量抽出回路7は与えられた信号の強度のピ
ーク値が前回記憶したピーク値より大きかったとき該ピ
ーク値を更新し、当該欠陥の探傷が終了したときに記憶
されているピーク値をピークアンプリチュードPA とし
てそれを第1疵種判定回路9に与えると共に、ピークア
ンプリチュードPA に係る信号を高速フーリエ変換によ
り周波数解析を行った結果に基づいてその支配的周波数
帯域WL を求め、それを第2疵種判定回路10に与える。
一方、信号処理装置8にはコントローラ3から走査器2
の走査情報が与えられるようになっており、信号処理装
置8は波形採取回路6から与えられた信号の強度を補正
した後、該補正信号及び走査情報に基づいて欠陥面積S
K を算出し、それを第1疵種判定回路9及び第2疵種判
定回路10に与える。
The signals sampled and stored in the waveform sampling circuit 6 are given to the waveform feature amount extraction circuit 7 and the signal processing device 8. The waveform feature amount extraction circuit 7 updates the peak value of the intensity of the given signal when it is larger than the peak value stored previously, and peaks the peak value stored when flaw detection of the defect is completed. The predominant frequency band W L is obtained based on the result of frequency analysis of the signal related to the peak amplitude P A by the fast Fourier transform, while giving it as the amplitude P A to the first flaw type determination circuit 9. It is given to the second flaw type judging circuit 10.
On the other hand, the signal processing device 8 includes the controller 3 to the scanner 2
Scanning information is given, and the signal processing device 8 corrects the intensity of the signal given from the waveform sampling circuit 6, and then the defect area S based on the correction signal and the scanning information.
K is calculated and given to the first flaw type determining circuit 9 and the second flaw type determining circuit 10.

【0018】第1疵種判定回路9は、波形特徴量抽出回
路7から与えられたピークアンプリチュードPA 、及び
信号処理装置8から与えられた欠陥面積SK に基づい
て、当該欠陥が割れ欠陥であるか、介在物であるかを判
別し、その判別結果をディスク11に記録する。第1疵種
判定回路9によって介在物であると判別されると、第2
疵種判定回路10は、波形特徴量抽出回路7から与えられ
た支配的周波数帯域WL、及び信号処理装置8から与え
られた欠陥面積SK に基づいて当該介在物種が判別さ
れ、その判別結果をディスク11に記録する。
The first flaw type determining circuit 9 is based on the peak amplitude P A given from the waveform feature amount extracting circuit 7 and the defect area S K given from the signal processing device 8 and the defect is a cracking defect. It is discriminated whether or not it is an inclusion, and the discrimination result is recorded on the disk 11. When it is determined by the first flaw type determination circuit 9 that it is an inclusion, the second
The defect type determination circuit 10 determines the inclusion type based on the dominant frequency band W L given from the waveform feature amount extraction circuit 7 and the defect area S K given from the signal processing device 8, and the determination result Is recorded on the disk 11.

【0019】なお、本実施例では探触子を走査器によっ
て走査させるようになっているが、本発明はこれに限ら
ず、被探傷材を移送するようにしてもよいことはいうま
でもない。
In the present embodiment, the probe is scanned by the scanner, but the present invention is not limited to this, and it goes without saying that the material to be detected may be transferred. .

【0020】図2は図1に示した装置による欠陥種の判
別手順を示すフローチャートである。波形採取回路6か
ら欠陥に係る受信信号を、コントローラ3から走査情報
を読み込むと(ステップS1)、信号処理装置8はこれ
らの情報に基づいて当該欠陥の面積SK を算出する(ス
テップS2)。また、波形特徴量抽出回路7は受信信号
強度のピーク値を更新してゆくことによってピークアン
プリチュードPA を抽出し(ステップS3)、またピー
クアンプリチュードPA に係る受信信号の周波数解析を
行い、その結果に基づいて支配的周波数帯域WL を求め
る(ステップS4)。
FIG. 2 is a flow chart showing a procedure for discriminating a defect type by the apparatus shown in FIG. When the received signal relating to the defect is read from the waveform sampling circuit 6 and the scanning information is read from the controller 3 (step S1), the signal processing device 8 calculates the area S K of the defect based on the information (step S2). Further, the waveform feature amount extraction circuit 7 extracts the peak amplitude P A by updating the peak value of the received signal strength (step S3), and also performs the frequency analysis of the received signal related to the peak amplitude P A. , The dominant frequency band W L is obtained based on the result (step S4).

【0021】第1疵種判定回路9は、当該欠陥の面積S
K 内におけるピークアンプリチュードPA が所定値を以
上であるか否かを判断し(ステップS5)、所定値以上
であった場合、当該欠陥は割れ欠陥であると判別する
(ステップS6)。一方、所定値以上でなかった場合、
第2疵種判定回路10は、当該欠陥の面積SK における支
配的周波数帯域WL が所定の周波数以上であるか否を判
断し(ステップS7)、所定の周波数以上である場合
は、当該欠陥はアルミナ系介在物であると判別し(ステ
ップS8)、所定の周波数以上でなかった場合は、マン
ガン系介在物であると判別する(ステップS9)。
The first flaw type determination circuit 9 determines the area S of the defect.
It is determined whether or not the peak amplitude P A within K is greater than or equal to a predetermined value (step S5), and if it is greater than or equal to the predetermined value, it is determined that the defect is a cracking defect (step S6). On the other hand, if it is not more than the predetermined value,
The second flaw type judging circuit 10 judges whether or not the dominant frequency band W L in the area S K of the defect is equal to or higher than a predetermined frequency (step S7). Is determined to be an alumina-based inclusion (step S8), and is determined to be a manganese-based inclusion if the frequency is not higher than a predetermined frequency (step S9).

【0022】次に本発明を用いて欠陥を判別した結果に
ついて説明する。次の材質の鋼板に生じた複数の欠陥に
ついて割れ欠陥であるか介在物であるかを判別し、介在
物である場合は更にAl2 3 であるかMnSであるか
を判別した後、各欠陥部分を切断して顕微鏡による観察
等に基づいてその疵種を決定し、疵種判別の的中率を算
出した。その結果、割れ欠陥及び介在物の判別の的中率
は80%程度であり、Al2 3 及びMnSの判別の的
中率は90%以上であった。また、この判別に要した時
間は従来のニューロ回路を用いる方法の略1/2であっ
た。
Next, the result of discriminating defects using the present invention will be described. Regarding the plurality of defects occurring in the steel sheet of the following materials, it is determined whether they are cracking defects or inclusions, and if they are inclusions, it is further determined whether they are Al 2 O 3 or MnS. The defective part was cut, the defect type was determined based on observation with a microscope, etc., and the hit rate for determining the defect type was calculated. As a result, the accuracy of discrimination of crack defects and inclusions was about 80%, and the accuracy of discrimination of Al 2 O 3 and MnS was 90% or more. In addition, the time required for this determination was about half that of the method using the conventional neuro circuit.

【0023】[0023]

【発明の効果】以上詳述した如く、本発明にあっては欠
陥の面積,最大受信信号強度,及び受信信号の支配的周
波数帯域に基づいて欠陥種を判別するため、高精度に欠
陥種を判別し得ると共に、欠陥種判別に要する特徴量が
少なく、判別処理の処理時間が短縮されて、判別処理の
スループットが高い等、本発明は優れた効果を奏する。
As described above in detail, in the present invention, the defect type is discriminated on the basis of the defect area, the maximum received signal strength, and the dominant frequency band of the received signal. The present invention has excellent effects such that the determination can be performed, the feature amount required for the defect type determination is small, the processing time of the determination processing is shortened, and the throughput of the determination processing is high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施に使用する装置の構成を示すブロ
ックである。
FIG. 1 is a block diagram showing the configuration of an apparatus used for implementing the present invention.

【図2】図1に示した装置による欠陥種の判別手順を示
すフローチャートである。
FIG. 2 is a flowchart showing a procedure for discriminating defect types by the apparatus shown in FIG.

【図3】被探傷材に入射した超音波のエコーの受信信号
強度を経時的に測定した結果を示すグラフである。
FIG. 3 is a graph showing a result of time-dependent measurement of received signal strength of an echo of an ultrasonic wave incident on a flaw detection target material.

【図4】割れ欠陥及び介在物欠陥におけるピークアンプ
リチュードと欠陥面積との関係を示すグラフである。
FIG. 4 is a graph showing a relationship between a peak amplitude and a defect area in a crack defect and an inclusion defect.

【図5】エコーの受信信号の周波数解析例を示すグラフ
である。
FIG. 5 is a graph showing an example of frequency analysis of echo reception signals.

【図6】介在物の欠陥面積と支配的周波数帯域との関係
を示すグラフである。
FIG. 6 is a graph showing the relationship between the defect area of inclusions and the dominant frequency band.

【符号の説明】[Explanation of symbols]

1 探触子 2 走査器 3 コントローラ 4 パルサレシーバ 6 波形採取回路 7 波形特徴量抽出回路 8 信号処理装置 9 第1疵種判定回路 10 第2疵種判定回路 DESCRIPTION OF SYMBOLS 1 probe 2 scanner 3 controller 4 pulser receiver 6 waveform sampling circuit 7 waveform characteristic amount extraction circuit 8 signal processing device 9 first flaw type determination circuit 10 second flaw type determination circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 探触子又は被探傷材を移動させつつ前記
探触子から被探傷材に超音波を所定周期で入射し、各エ
コーを受信して被探傷材中の欠陥を探傷し、欠陥に係る
エコーの受信信号複数に基づいてその欠陥種を判別する
方法において、 各受信信号の所定強度以上の領域である欠陥幅に基づい
て当該欠陥の面積を算出し、当該欠陥に係る受信信号の
最大信号強度を抽出し、前記欠陥の面積,最大信号強
度,及び予め設定した閾値に基づいて当該欠陥が割れ欠
陥であるか介在物であるかを判別し、更に、前記最大信
号強度に係る受信信号の周波数解析を行い、その結果に
基づいて、信号強度が相対的に高い支配的周波数帯域を
求め、介在物であると判別された場合、前記欠陥の面
積,支配的周波数帯域,及び予め設定した閾値に基づい
て介在物種を判別することを特徴とする超音波探傷によ
る欠陥種判別方法。
1. An ultrasonic wave is incident on a flaw-detected material from the probe at a predetermined cycle while moving the probe or the flaw-detected material, and each echo is received to detect a defect in the flaw-detected material, In a method for determining the defect type based on a plurality of received signals of echoes related to a defect, the area of the defect is calculated based on the defect width which is a region having a predetermined intensity or more of each received signal, and the received signal related to the defect is calculated. The maximum signal intensity of the defect is extracted, and it is determined whether the defect is a cracking defect or an inclusion based on the area of the defect, the maximum signal intensity, and a preset threshold value. The frequency analysis of the received signal is performed, and based on the result, the dominant frequency band having a relatively high signal strength is obtained, and when it is determined to be an inclusion, the area of the defect, the dominant frequency band, and the Intervene based on the set threshold Defect type determination method according to the ultrasonic flaw detection, characterized in that to determine the species.
【請求項2】 探触子又は被探傷材を移動させつつ前記
探触子から被探傷材に超音波を所定周期で入射し、各エ
コーを受信して被探傷材中の欠陥を探傷し、欠陥に係る
エコーの受信信号複数に基づいてその欠陥種を判別する
装置において、各受信信号の所定強度以上の領域である
欠陥幅に基づいて当該欠陥の面積を算出する手段と、当
該欠陥に係る受信信号の最大信号強度を抽出する手段
と、前記欠陥の面積,最大信号強度,及び予め設定した
閾値に基づいて当該欠陥が割れ欠陥であるか介在物であ
るかを判別する手段と、更に、前記最大信号強度に係る
受信信号の周波数解析を行う手段と、その結果に基づい
て、信号強度が相対的に高い支配的周波数帯域を求める
手段と、介在物であると判別された場合、前記欠陥の面
積,支配的周波数帯域,及び予め設定した閾値に基づい
て介在物種を判別する手段とを備えることを特徴とする
超音波探傷による欠陥種判別装置。
2. An ultrasonic wave is incident on the flaw-detected material from the probe at a predetermined cycle while moving the probe or the flaw-detected material, and each echo is received to detect a defect in the flaw-detected material, In a device for determining the defect type based on a plurality of received signals of echoes related to a defect, a means for calculating the area of the defect based on the defect width which is a region having a predetermined intensity or more of each received signal, and Means for extracting the maximum signal intensity of the received signal, means for determining whether the defect is a cracking defect or an inclusion based on the area of the defect, the maximum signal intensity, and a preset threshold value, Means for performing frequency analysis of the received signal relating to the maximum signal strength, means for obtaining a dominant frequency band in which the signal strength is relatively high based on the result, and the defect if it is determined to be an inclusion Area, dominant frequency band And a means for discriminating the type of inclusions based on a preset threshold value, and a defect type discriminating apparatus by ultrasonic flaw detection.
JP6213792A 1994-09-07 1994-09-07 Method and device for identifying defect type by ultrasonic flaw detection Pending JPH0875709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6213792A JPH0875709A (en) 1994-09-07 1994-09-07 Method and device for identifying defect type by ultrasonic flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6213792A JPH0875709A (en) 1994-09-07 1994-09-07 Method and device for identifying defect type by ultrasonic flaw detection

Publications (1)

Publication Number Publication Date
JPH0875709A true JPH0875709A (en) 1996-03-22

Family

ID=16645133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6213792A Pending JPH0875709A (en) 1994-09-07 1994-09-07 Method and device for identifying defect type by ultrasonic flaw detection

Country Status (1)

Country Link
JP (1) JPH0875709A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2527827A4 (en) * 2010-01-22 2017-03-15 IHI Inspection and Instrumentation Co., Ltd. Testing method using guided wave
EP2527826A4 (en) * 2010-01-21 2017-03-15 IHI Inspection and Instrumentation Co., Ltd. Testing method using guided wave
CN119492804A (en) * 2025-01-17 2025-02-21 安测半导体技术(义乌)有限公司 Integrated circuit product testing method and device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2527826A4 (en) * 2010-01-21 2017-03-15 IHI Inspection and Instrumentation Co., Ltd. Testing method using guided wave
EP2527827A4 (en) * 2010-01-22 2017-03-15 IHI Inspection and Instrumentation Co., Ltd. Testing method using guided wave
CN119492804A (en) * 2025-01-17 2025-02-21 安测半导体技术(义乌)有限公司 Integrated circuit product testing method and device

Similar Documents

Publication Publication Date Title
JP2007500340A (en) Method and circuit apparatus for ultrasonic nondestructive testing of an object
US6739196B2 (en) Cleanliness evaluation in sputter targets using phase
US3453871A (en) Method and apparatus for detecting flaws in materials
JPH063305A (en) Method for non-destructively inspecting piezo-electric element for micro-crack
JPH0875709A (en) Method and device for identifying defect type by ultrasonic flaw detection
Karaojiuzt et al. Defect detection in concrete using split spectrum processing
JPH05203632A (en) Ultrasonic flaw detection device
JPWO2020184521A1 (en) Ultrasonic flaw detection method, ultrasonic flaw detector, steel material manufacturing equipment, steel material manufacturing method, and steel material quality control method
JPH09171005A (en) Defect type determination method by ultrasonic flaw detection
US4380929A (en) Method and apparatus for ultrasonic detection of near-surface discontinuities
JPH09138222A (en) Ultrasonic inspection of cast or rolled steel
US20220196398A1 (en) Automation of thickness measurements for noisy ultrasonic signals
JPS6229023B2 (en)
US6895342B2 (en) Method and apparatus for non-destructive target cleanliness characterization by types of flaws sorted by size and location
RU2000104686A (en) METHOD FOR DETERMINING SIZES OF DEFECTS AT ULTRASONIC CONTROL OF PRODUCTS
RU2472143C1 (en) Method of ultrasound control
JPH075155A (en) Ultrasonic automatic flaw type identification method
JP2002139478A (en) Method and apparatus for detecting creep damage of structural material
JPS61138160A (en) Ultrasonic flaw detector
CN111047547A (en) Combined defect quantification method based on multi-view TFM
CN114324598B (en) A high-quality imaging method and system for ultrasonic detection of bolts
JP3473435B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP7294283B2 (en) Ultrasonic flaw detection method, ultrasonic flaw detector, and steel manufacturing method
JP2001004602A (en) Ultrasonic flaw detection method and apparatus
JP3463729B2 (en) Non-destructive inspection method of internal organization