[go: up one dir, main page]

JPH0875425A - Three-dimensional measuring device - Google Patents

Three-dimensional measuring device

Info

Publication number
JPH0875425A
JPH0875425A JP21583494A JP21583494A JPH0875425A JP H0875425 A JPH0875425 A JP H0875425A JP 21583494 A JP21583494 A JP 21583494A JP 21583494 A JP21583494 A JP 21583494A JP H0875425 A JPH0875425 A JP H0875425A
Authority
JP
Japan
Prior art keywords
image data
image
threshold value
line segment
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21583494A
Other languages
Japanese (ja)
Inventor
Takashi Senba
敬 銭場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP21583494A priority Critical patent/JPH0875425A/en
Publication of JPH0875425A publication Critical patent/JPH0875425A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE: To make a highly accurate measurement by applying a laser slit beam from the slant upper part of a member to be measured, and setting a binary threshold of an optical image in the direction of a linear part even if the concentration of a slit beam is varied according to the reflectance of the member to be measured, etc. CONSTITUTION: An image data input part 10 receives an image data from a focusing device 5. A linear direction threshold setting part 12 detects the direction of a laser slit beam 6 of the image data input into an input part 10, and outputs the threshold which varies according to its direction. Also, in a beam detecting part 11, a beam 6 is applied onto a member to be inspected 3, and the beam 6 with a density more than the threshold set at a setting part 12 is detected. A laser slit light source 4 is image-picked up by, for example, using a He-Ne laser or a semi-conductor laser with which detection can be made even in the dark with, the naked eyes. Then, a three-dimensional measuring part 14 converts the linear part 6 obtained by the detecting part 11 from an image coordinate system into an absolute coordinate system so as to measure the position, size, and form of the member 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は計測部材の光切断法によ
る三次元計測装置、特に計測部材に照射されたレーザス
リット光線分を撮像し、画像処理することにより計測部
材の位置や寸法、形状を計測する三次元計測装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional measuring device using a light cutting method for a measuring member, and particularly to a position, size and shape of the measuring member by picking up an image of a laser slit beam irradiated on the measuring member and processing the image. The present invention relates to a three-dimensional measuring device that measures the

【0002】[0002]

【従来の技術】通常、図9に示すようにコンベア1上の
計測部材3の三次元計測を行う場合、スリット光源4と
撮像装置5を用いて光切断法にて行われる場合が多い。
さらに詳細に述べると図10に示すように、撮像装置5
により計測部材3のスリット光線分6を撮像し、画像デ
ータ取り込み部10に取り込まれた画像データより線分
検出部11において一定値に設定された二値化しきい値
により検出されたスリット光線分6の二値画像により、
三次元計測部14において計測部材3の位置、寸法や断
面形状を計測していた。尚一例として図9(a)に示す
ように計測部材3のスリット光線分6は、計測部材平面
線3h、計測部材垂直線3v、端面平面線3c、基準線
3fに区分される。
2. Description of the Related Art Normally, as shown in FIG. 9, when three-dimensional measurement of a measuring member 3 on a conveyor 1 is performed, the slit light source 4 and an image pickup device 5 are often used by a light cutting method.
More specifically, as shown in FIG. 10, the imaging device 5
The slit ray segment 6 of the measurement member 3 is imaged by the slit ray segment 6 detected by the binarization threshold value set to a constant value in the line segment detection unit 11 from the image data captured by the image data capturing unit 10. The binary image of
The position, size, and cross-sectional shape of the measuring member 3 are measured by the three-dimensional measuring unit 14. As an example, as shown in FIG. 9A, the slit ray segment 6 of the measurement member 3 is divided into a measurement member plane line 3h, a measurement member vertical line 3v, an end face plane line 3c, and a reference line 3f.

【0003】一例としてコンベア1上の計測部材3を撮
像し、画像処理装置31内に画像データ取り込み部10
と線分検出部11と三次元計測部14とを有し、画像デ
ータ取り込み部10において撮像装置5より画像データ
を取り込み、線分検出部11において図9(c)に示す
ような多値画像より一定値に設定されたしきい値により
図9(d)に示すような二値画像であるレーザスリット
光線分6を検出し、三次元計測装置14において画像座
標系から絶対座標系へ変換し、計測部材3の位置や寸
法、形状を計測していた。
As an example, an image of the measuring member 3 on the conveyor 1 is picked up and the image data fetching unit 10 is installed in the image processing device 31.
And a line segment detecting unit 11 and a three-dimensional measuring unit 14, the image data capturing unit 10 captures image data from the image pickup device 5, and the line segment detecting unit 11 captures a multivalued image as shown in FIG. 9C. A laser slit ray component 6 which is a binary image as shown in FIG. 9 (d) is detected by a threshold value set to a more constant value, and converted from an image coordinate system to an absolute coordinate system in the three-dimensional measuring device 14. The position, size and shape of the measuring member 3 were measured.

【0004】この方法では線分検出部11の二値化しき
い値は図10において線分検出部11に示すように撮像
視野2内では一定であり、図9(c)に示すようにスリ
ット光線分6は計測部材3の各部や撮像視野2の位置及
び計測部材3のレーザスリット光線分6の反射率によっ
てはスリット光線分6の濃度が異なり、特に計測部材3
の垂直部は薄く、平面部は濃い場合があり、しきい値一
定では計測部材3の垂直部や平面部のスリット光線分6
を高精度に検出することは困難であった。
In this method, the binarization threshold value of the line segment detector 11 is constant in the imaging field of view 2 as shown by the line segment detector 11 in FIG. 10, and as shown in FIG. The density of the slit ray component 6 differs depending on the position of the measuring member 3 and the position of the imaging field of view 2 and the reflectance of the laser slit ray component 6 of the measuring member 3,
May have a thin vertical portion and a flat portion, and when the threshold value is constant, the slit ray component 6 of the vertical portion or the flat portion of the measuring member 3 is
Was difficult to detect with high precision.

【0005】光切断法で高精度の計測を行うには、背景
と明確に区別出来る濃度で、できる限り幅の狭い光切断
画像(スリット光線分6)を得る必要があるが、計測部
材3の表面の反射率は部分的に異るし、レーザスリット
光源のパワー分布は図11に示すようにガウス分布(正
規分布)をしており、計測物3と撮像装置5との距離も
異るので画像データ中の光切断画像の濃度は一様でなく
そのダイナミックレンジは一般に広い。
In order to perform highly accurate measurement by the light section method, it is necessary to obtain a light section image (slit ray portion 6) having a density that can be clearly distinguished from the background and having a width as narrow as possible. The reflectance of the surface is partially different, the power distribution of the laser slit light source is a Gaussian distribution (normal distribution) as shown in FIG. 11, and the distance between the measured object 3 and the imaging device 5 is also different. The density of the light section image in the image data is not uniform and its dynamic range is generally wide.

【0006】光切断画像の濃度が薄すぎると、背景の濃
度と区別しにくくなり、誤計測の原因となる。光切断画
像の濃度が濃すぎると撮像装置5においてその部分で飽
和が生じブルーミングやスミアが発生するので、光切断
画像の対応部分の濃度が明るくなるだけでなく、線幅が
太くなり計測部材3の三次元情報を正確に検出しにくく
なる。従って光切断画像の濃度はしきい値一定ではな
く、所定の濃度(出来る限り幅の狭い光切断画像)より
暗くてその中で最も明るい濃度、即ち最低しきい値濃度
のスリット光線分6を検出する必要がある。
If the density of the light-section image is too low, it becomes difficult to distinguish it from the background density, which causes erroneous measurement. If the density of the light section image is too high, saturation occurs in that part in the image pickup device 5 and blooming or smear occurs. Therefore, not only the density of the corresponding section of the light section image becomes bright, but also the line width becomes thick and the measuring member 3 It becomes difficult to accurately detect the three-dimensional information of. Therefore, the density of the light-section image is not constant in the threshold value, but the slit light ray portion 6 which is darker than the predetermined density (the light-section image having the narrowest width possible) and the brightest of the density, that is, the lowest threshold density is detected. There is a need to.

【0007】この課題を解決する一つの方法として特許
出願公開昭62−21011号公報にて述べられている
ように同一計測部材の同一部分についてスリット光強度
を変化させて上記撮像手段で撮られた複数の画像データ
を一時記憶する手段と上記複数の画像データの同一画素
アドレスの濃度を比較し、所定のしきい値より暗くてそ
の中で最も明るい濃度、即ち最低しきい値濃度をこの画
素アドレスの代表値として抽出する手段が考えられる
が、光源の濃度を変化させるのは安定するまでに時間
(数秒〜数10秒)がかかるのでオンライン計測では実
用化は困難であった。
As one method of solving this problem, as described in Japanese Patent Application Laid-Open No. 62-21011, the slit light intensity is changed for the same portion of the same measuring member and the image is taken by the image pickup means. A means for temporarily storing a plurality of image data is compared with the densities of the same pixel address of the plurality of image data, and the density which is darker than a predetermined threshold and is the brightest, that is, the lowest threshold density is the pixel address. Although it can be considered to extract as a representative value of, it takes time (several seconds to several tens of seconds) to stabilize the concentration of the light source, so that it is difficult to put it into practical use by online measurement.

【0008】[0008]

【発明が解決しようとする課題】従来、計測部材3を三
次元計測する場合、計測部材3上のスリット光線分6を
求めると計測部材3の各部や撮像視野2の位置や計測部
材3のスリット光線分6の反射率によってはスリット光
線分6の濃度が異なり、一例として垂直部は薄く平面部
は濃く、しきい値一定ではスリット光線分6を検出する
ことにより計測部材3の位置や寸法、形状を高精度に計
測することはなかなか困難であった。
Conventionally, when the measuring member 3 is three-dimensionally measured, if the slit ray component 6 on the measuring member 3 is obtained, each part of the measuring member 3, the position of the imaging visual field 2 and the slit of the measuring member 3 are determined. The density of the slit ray component 6 varies depending on the reflectance of the ray component 6, and as an example, the vertical portion is thin and the plane portion is thick, and the position and size of the measuring member 3 are detected by detecting the slit ray component 6 when the threshold value is constant. It was difficult to measure the shape with high accuracy.

【0009】本発明の目的は、計測部材上のスリット光
線分の濃度が計測部材の各部や撮像視野の位置や計測部
材のスリット光の線分の反射率によって異なるため、し
きい値一定では検出しにくい場合でも、しきい値を計測
部材の各部(平面部や垂直部)や撮像視野位置によって
設定することにより及びしきい値を複数回設定し、所定
の濃度(高精度に計測するために出来る限り幅の狭い部
分)より暗くてその中で最も明るい濃度、即ち最低しき
い値の濃度の光切断画像を抽出することにより、計測部
材の位置や寸法、形状を高精度に計測出来る三次元計測
を得ることを目的とする。
An object of the present invention is to detect a density of a slit ray on the measuring member at a constant threshold value because the density of the slit ray component on the measuring member varies depending on the position of the measuring member, the position of the imaging visual field and the reflectance of the line segment of the slit light on the measuring member. Even if it is difficult to do so, by setting the threshold value according to each part of the measurement member (planar part or vertical part) or the imaging visual field position and setting the threshold value multiple times, the predetermined density (for highly accurate measurement, 3D that can measure the position, size, and shape of the measurement member with high accuracy by extracting the light-section image that is darker than the narrowest part possible and has the brightest density, that is, the density of the lowest threshold. The purpose is to obtain measurement.

【0010】[0010]

【課題を解決するための手段】本発明の三次元計測装置
は、計測物に扇状に照射するレーザスリット光を撮像装
置により撮像して三次元計測するために、画像データ取
り込み部と線分検出部、線分方向しきい値設定部、及び
三次元計測部とを備える。
A three-dimensional measuring apparatus of the present invention is an image data capturing section and a line segment detector for three-dimensionally measuring an image of a laser slit light radiating a measurement object in a fan shape by an image pickup apparatus. Unit, a line segment direction threshold value setting unit, and a three-dimensional measuring unit.

【0011】またこの発明は画像データ取り込み部、線
分検出部、撮像視野位置しきい値設定部及び三次元計測
部とを備える。
The present invention further comprises an image data fetching section, a line segment detecting section, an imaging visual field position threshold setting section and a three-dimensional measuring section.

【0012】この発明は画像データ取り込み部、線分制
御部、しきい値レベル設定部及び三次元計測部とを備え
る。
The present invention comprises an image data capturing section, a line segment control section, a threshold level setting section and a three-dimensional measuring section.

【0013】またこの発明は画像データ取り込み部、線
分検出部、線分方向しきい値設定部、撮像視野位置しき
い値設定部及び三次元計測部とを備える。
The present invention further comprises an image data capturing section, a line segment detecting section, a line segment direction threshold setting section, an imaging visual field position threshold setting section and a three-dimensional measuring section.

【0014】この発明は画像データ取り込み部、線分制
御部、線分方向しきい値設定部、及びしきい値レベル設
定部及び三次元計測部とを備える。
The present invention comprises an image data fetching section, a line segment control section, a line segment direction threshold setting section, a threshold level setting section and a three-dimensional measuring section.

【0015】またこの発明は画像データ取り込み部、線
分制御部、撮像視野位置しきい値設定部、しきい値レベ
ル設定部及び三次元計測部とを備える。
The present invention further comprises an image data capturing section, a line segment control section, an imaging visual field position threshold setting section, a threshold level setting section and a three-dimensional measuring section.

【0016】[0016]

【作用】本発明は計測部材においてレーザスリット光の
光画像を撮像し、計測部材の光画像のしきい値を線分方
向によって設定し、スリット光線分を検出する。
According to the present invention, the optical image of the laser slit light is picked up by the measuring member, the threshold value of the optical image of the measuring member is set in the direction of the line segment, and the slit ray component is detected.

【0017】またこの発明は計測部材の光画像のしきい
値を撮像視野位置によって設定し、スリット光線分を検
出する。
Further, according to the present invention, the threshold value of the optical image of the measuring member is set by the image pickup visual field position, and the slit ray component is detected.

【0018】この発明は計測部材の光画像のしきい値を
複数回設定し、最低しきい値によりスリット光線分を検
出する。
According to the present invention, the threshold value of the optical image of the measuring member is set a plurality of times, and the slit ray component is detected by the lowest threshold value.

【0019】またこの発明は計測部材の光画像のしきい
値を線分方向、撮像視野位置よって設定し、スリット光
線分を検出する。
Further, according to the present invention, the threshold value of the optical image of the measuring member is set according to the line segment direction and the imaging visual field position, and the slit ray segment is detected.

【0020】この発明は計測部材の光画像のしきい値を
線分方向によって、複数回設定し、最低しきい値により
スリット光線分を検出する。
According to the present invention, the threshold value of the optical image of the measuring member is set a plurality of times in the direction of the line segment, and the slit ray segment is detected by the lowest threshold value.

【0021】またこの発明は計測部材の光画像のしきい
値を撮像視野位置によって、複数回設定し、最低しきい
値によりスリット光線分を検出する。
Further, according to the present invention, the threshold value of the optical image of the measuring member is set a plurality of times depending on the image pickup visual field position, and the slit ray component is detected by the lowest threshold value.

【0022】[0022]

【実施例】【Example】

実施例1.図1はこの発明の実施例を示す図で、図1に
おいてコンベア1上には、レーザスリット光線分6を照
射するレーザスリット光源4及び計測部材3を撮像する
撮像装置(1台のCCDカメラを具備している)5が配
置され、画像処理装置31内に画像データ取り込み部1
0と線分検出部11と線分方向しきい値設定部12と三
次元計測部14とを有することにより、計測部材3上の
スリット光線分6の二値画像を検出し、高精度に計測部
材3の三次元位置、寸法、形状を計測する。
Example 1. FIG. 1 is a diagram showing an embodiment of the present invention. In FIG. 1, an image pickup device for picking up an image of a laser slit light source 4 for irradiating a laser slit beam portion 6 and a measuring member 3 (one CCD camera 5) is arranged, and the image data capturing unit 1 is provided in the image processing apparatus 31.
By having 0, the line segment detection unit 11, the line segment direction threshold value setting unit 12, and the three-dimensional measurement unit 14, a binary image of the slit ray segment 6 on the measurement member 3 is detected and measured with high accuracy. The three-dimensional position, size and shape of the member 3 are measured.

【0023】図9に示すように一般に光切断法の原理に
て計測部材3の計測部の高さがコンベア1上の基準位置
3dと同じ高さの時は基準線3fとなり、3dより高く
なるときは、レーザ光源4側にスリット光線分6が屈折
し、コンベア1上の撮像視野2における基準線3fより
遠ざかり、計測部材3の平面部及び上部端面において平
面になるときは基準線3fと平行になり、下がる時は基
準位置3dに近ずくため、レーザスリット光線分6を撮
像することにより計測部材3の位置、寸法、形状を計測
することは可能である。
As shown in FIG. 9, in general, when the height of the measuring portion of the measuring member 3 is the same as the reference position 3d on the conveyor 1 according to the principle of the optical cutting method, it becomes the reference line 3f and is higher than 3d. At this time, the slit light ray component 6 is refracted toward the laser light source 4 side and moves away from the reference line 3f in the imaging field of view 2 on the conveyor 1 and becomes parallel to the reference line 3f when it becomes flat on the plane portion and the upper end face of the measurement member 3. Then, since it approaches the reference position 3d when it goes down, it is possible to measure the position, size, and shape of the measuring member 3 by imaging the laser slit ray component 6.

【0024】計測部材3の各部(一例として平面部や垂
直部)の位置によってスリット光線分の濃度が異なり、
一例として計測部材3の平面部では濃度が濃く、垂直部
では薄い場合は、しきい値一定ではスリット光線分6を
高精度に検出することは困難であったが、計測部材3の
平面部及び垂直部において、スリット光線分6の方向が
変るため方向を検出することによって、しきい値を変え
ることにより、スリット光線分6を高精度に検出するこ
とは可能である。
The density of the slit light beam differs depending on the position of each part of the measuring member 3 (for example, a plane part or a vertical part),
As an example, when the density is high in the flat portion of the measuring member 3 and thin in the vertical portion, it is difficult to detect the slit ray component 6 with high accuracy with a constant threshold value. Since the direction of the slit ray component 6 changes in the vertical portion, it is possible to detect the slit ray component 6 with high accuracy by changing the threshold value by detecting the direction.

【0025】図1において画像データ取り込み部10で
は撮像装置5より画像データを得る。線分方向しきい値
設定部12は画像データ取り込み部10に取り込んだ画
像データよりスリット光線分6の方向を検出し、その方
向によって変わるしきい値を出力する。図9(a)に示
すように線分の方向は計測部材3が平面なら基準線3f
と平行であり、垂直部では基準線と平行にならず、光源
4から扇状に照射するスリット光線によって定まる基準
線3fにある傾斜角を持つ直線となるため、前記画像デ
ータより検出した線分の方向(一例として平面部と垂直
部)によってしきい値を設定する。即ち平面部ではしき
い値を高く、垂直部では低く設定する。
In FIG. 1, the image data capturing section 10 obtains image data from the image pickup device 5. The line segment direction threshold value setting unit 12 detects the direction of the slit ray segment 6 from the image data captured by the image data capturing unit 10 and outputs a threshold value that changes depending on the direction. As shown in FIG. 9A, the direction of the line segment is the reference line 3f if the measurement member 3 is a plane.
Is parallel to the reference line in the vertical portion, and is a straight line having an inclination angle on the reference line 3f determined by the slit rays emitted from the light source 4 in a fan shape. Therefore, the line segment detected from the image data is The threshold value is set according to the direction (for example, the plane portion and the vertical portion). That is, the threshold value is set high in the plane portion and set low in the vertical portion.

【0026】線分検出部11は計測部材3にレーザスリ
ット光6が照射され、その照射されたスリット光線分6
から前記線分方向しきい値設定部12にて設定された、
しきい値以上の濃度のスリット光線分6を検出する信号
処理部である。
The line segment detector 11 irradiates the measuring member 3 with the laser slit light 6, and the illuminated slit light beam segment 6
From the line segment direction threshold value setting unit 12,
This is a signal processing unit for detecting the slit ray component 6 having a density equal to or higher than a threshold value.

【0027】レーザスリット光源4は一例として暗闇に
て肉眼で検出可能なHe−Neレーザ(0.63μ
m)、半導体レーザ(0.69μm)を使用することに
より撮像装置5にて撮像可能である。
The laser slit light source 4 is, for example, a He-Ne laser (0.63 μm) that can be detected by the naked eye in the dark.
m) and a semiconductor laser (0.69 μm) can be used for image pickup by the image pickup device 5.

【0028】三次元計測部14では線分検出部11で求
めたスリット光線分6を画像座標系から絶対座標系に変
換し、計測部材3の位置や寸法、形状を計測する。画像
座標系の平面の位置は同じ位置でも計測部材3の高さに
よって変るため、計測部材3の基準位置3dからの高さ
をスリット光平面方程式一定、撮像装置取付高さ一定に
より測定し、計測部材3は画像座標から絶対座標に変換
される。図2(a),(b)に一例として計測部材3と
撮像装置5の位置を示す。
The three-dimensional measuring unit 14 converts the slit ray segment 6 obtained by the line segment detecting unit 11 from the image coordinate system to the absolute coordinate system, and measures the position, size and shape of the measuring member 3. Since the position of the plane of the image coordinate system varies depending on the height of the measuring member 3 even at the same position, the height of the measuring member 3 from the reference position 3d is measured by the slit light plane equation constant and the imaging device mounting height constant and measured. The member 3 is converted from image coordinates to absolute coordinates. 2A and 2B show the positions of the measuring member 3 and the imaging device 5 as an example.

【0029】実施例2.図3はこの発明の他の実施例を
示す図で、図3において画像処理装置31内で画像デー
タ取り込み部10と線分検出部11と撮像視野位置しき
い値設定部15と三次元計測部14とを有することによ
り、撮像視野2の位置によりしきい値を設定することに
より計測部材3の光画像を撮像し、スリット光線分6を
検出する。
Example 2. 3 is a diagram showing another embodiment of the present invention. In FIG. 3, in the image processing apparatus 31, the image data capturing unit 10, the line segment detecting unit 11, the imaging visual field position threshold setting unit 15, and the three-dimensional measuring unit are shown. By including 14 and 14, the optical image of the measurement member 3 is captured by setting the threshold value according to the position of the imaging visual field 2, and the slit ray component 6 is detected.

【0030】図11に示すようにレーザスリット光源4
ではパワー分布がガウス分布(正規分布)をしているた
め均一ではなく、又計測部材3と撮像装置5との距離が
異ったり、撮像視野2の位置によってはスリット光線分
6の濃度が異なり、しきい値一定では精度よくスリット
光線分6を検出することは困難なため撮像視野2の位置
によりしきい値を変えて高精度にスリット光線分6を検
出することは可能である。
As shown in FIG. 11, the laser slit light source 4
However, the power distribution is not uniform because it has a Gaussian distribution (normal distribution), the distance between the measuring member 3 and the imaging device 5 is different, and the density of the slit ray component 6 is different depending on the position of the imaging visual field 2. It is difficult to detect the slit ray component 6 with high accuracy when the threshold value is constant. Therefore, it is possible to detect the slit ray component 6 with high accuracy by changing the threshold value depending on the position of the imaging visual field 2.

【0031】撮像視野位置しきい値設定部15は撮像視
野2の位置によってしきい値を設定する。撮像装置5の
位置により一例として撮像視野2の撮像装置5に近い側
は視野角度から検出しにくいためしきい値を低く、視野
2の撮像装置5より遠い側は視野角度から検出しやすい
ため、しきい値を高くする。またスリット光線分の中央
はパワーが高いため、しきい値を高くし、両端はパワー
が低いため、しきい値を低くする。
The imaging visual field position threshold setting unit 15 sets a threshold value according to the position of the imaging visual field 2. Depending on the position of the imaging device 5, for example, the side of the imaging field of view 2 closer to the imaging device 5 is difficult to detect from the viewing angle, so the threshold value is low, and the side of the field of view 2 farther than the imaging device 5 is easier to detect from the viewing angle. Increase the threshold. Further, since the power is high in the center of the slit ray portion, the threshold value is raised, and the power is low at both ends, so the threshold value is lowered.

【0032】従って一例として撮像視野2を3区分し、
撮像装置5に近い側はしきい値を低く、中央部では高
く、撮像装置5より遠い側では中位とする。コンベア1
と撮像視野2と計測部材3とスリット光源4と撮像装置
5と画像データ取り込み部10と線分検出部11と三次
元計測部14は実施例1と同じである。
Therefore, as an example, the imaging field of view 2 is divided into three,
The threshold value is low on the side close to the image pickup device 5, high in the central portion, and is middle on the side far from the image pickup device 5. Conveyor 1
The imaging field of view 2, the measuring member 3, the slit light source 4, the imaging device 5, the image data capturing unit 10, the line segment detecting unit 11, and the three-dimensional measuring unit 14 are the same as those in the first embodiment.

【0033】実施例3.図4はこの発明の他の実施例を
示す図で、図4において画像処理装置31内に画像デー
タ取り込み部10としきい値レベル設定部16と線分制
御部17と三次元制御部14とを有することにより、計
測部材3の各部や撮像視野2の位置や計測部材3のスリ
ット光線分6の反射率によってはスリット光線分6の濃
度が異るため、スリット光線分6の一定値であるしきい
値の濃度レベルを複数回変えることにより、線分制御部
17において計測部材3の各部(平面部、垂直部)にお
ける所定の濃度(高精度に計測するために出来る限り幅
の狭い線分)より暗くてその中で最も明るい濃度、即ち
最低しきい値濃度のスリット光線分6を抽出することに
より、スリット光線分6の濃度が、濃くても薄くても高
精度に検出可能である。
Example 3. FIG. 4 is a diagram showing another embodiment of the present invention. In FIG. 4, an image data capturing unit 10, a threshold level setting unit 16, a line segment control unit 17, and a three-dimensional control unit 14 are provided in the image processing apparatus 31. Since the density of the slit ray component 6 differs depending on the position of each part of the measuring member 3, the position of the imaging visual field 2, and the reflectance of the slit ray component 6 of the measuring member 3, the slit ray component 6 has a constant value. By changing the density level of the threshold value a plurality of times, the line segment control unit 17 causes a predetermined density in each portion (flat surface portion, vertical portion) of the measuring member 3 (a line segment that is as narrow as possible for highly accurate measurement). By extracting the darker and brightest slit ray component 6 among them, that is, the lowest threshold concentration, it is possible to detect with high accuracy whether the slit ray component 6 is dense or thin.

【0034】しきい値レベル設定部16はしきい値を複
数回設定するものであるが、回数を増やすと処理時間が
かかるため一例として高中低3レベル程度とする。(従
って処理時間0.2秒×3回=0.6秒程度位内とな
る。)
The threshold level setting unit 16 sets the threshold value a plurality of times, but if the number of times is increased, it takes processing time. (Thus, the processing time is 0.2 seconds x 3 times = within about 0.6 seconds.)

【0035】線分制御部17は光画像からしきい値レベ
ルを複数回設定することにより検出された濃度レベルの
内、同一画素のアドレスの濃度と比較し所定の濃度値よ
り暗くてその中で最も明るい濃度、即ち最低しきい値濃
度をこの画素アドレスの代表値としてスリット光線分6
を抽出する信号処理部である。
Of the density levels detected by setting the threshold level a plurality of times from the optical image, the line segment control unit 17 compares the density with the address of the same pixel and the density is darker than a predetermined density value. The brightest density, that is, the lowest threshold density, is used as a representative value of this pixel address, and the slit light ray component 6
Is a signal processing unit for extracting

【0036】例えば図5に示すように、しきい値レベル
を3回設定することにより3つの画像図5(a)(しき
い値レベル高)、図5(b)(中)、図5(c)(低)
を求め、この3つの画像より1つの合成画像図5(d)
を得、スリット光線分6を抽出する。
For example, as shown in FIG. 5, three threshold images are set by setting the threshold level three times. FIG. 5 (a) (high threshold level), FIG. 5 (b) (middle), FIG. c) (low)
Is obtained, and one composite image is obtained from these three images.
And the slit ray component 6 is extracted.

【0037】コンベア1と撮像視野2と計測部材3とレ
ーザスリット光源4と撮像装置5とスリット光線分6と
画像データ取り込み部10と三次元計測部14は実施例
1と同じである。
The conveyor 1, the imaging field of view 2, the measuring member 3, the laser slit light source 4, the imaging device 5, the slit ray component 6, the image data capturing section 10, and the three-dimensional measuring section 14 are the same as those in the first embodiment.

【0038】実施例4.図6はこの発明の他の実施例を
示す図で、図6において画像処理装置31内に画像デー
タ取り込み部10と線分方向しきい値設定部12と撮像
視野位置しきい値設定部15と線分検出部11とを有す
ることにより、スリット光線分6の濃度が計測部材3の
各部や撮像視野2の位置によって異なっても、スリット
光線分6を検出することを可能とする。
Example 4. FIG. 6 is a diagram showing another embodiment of the present invention. In FIG. 6, an image data capturing unit 10, a line segment direction threshold value setting unit 12, an imaging visual field position threshold value setting unit 15 are provided in the image processing apparatus 31. By including the line segment detection unit 11, it is possible to detect the slit light beam segment 6 even if the density of the slit light beam segment 6 differs depending on each part of the measurement member 3 and the position of the imaging visual field 2.

【0039】線分方向しきい値設定部12は画像データ
取り込み部10にて撮像装置5より取り込んだ画像デー
タから図9の計測部材3に示すように計測部材3の各部
位置(一例として平面部、垂直部)によってスリット光
線分6の方向が変わることからスリット光線分6の方向
によって、しきい値を設定可能とする。さらに撮像視野
位置しきい値設定部15は撮像視野2の位置によりスリ
ット光線分6の濃度が異ることから、撮像視野2の位置
によりしきい値を設定可能とする。
The line segment direction threshold value setting unit 12 uses the image data captured by the image data capturing unit 10 from the image data captured by the image pickup device 5 as shown in FIG. , The vertical direction) changes the direction of the slit ray component 6, so that the threshold value can be set depending on the direction of the slit ray component 6. Further, the image pickup visual field position threshold value setting unit 15 can set the threshold value depending on the position of the image pickup visual field 2 because the density of the slit ray component 6 varies depending on the position of the image pickup visual field 2.

【0040】従って線分検出部11において線分方向し
きい値設定部12においては計測部材3の平面部では高
く、垂直部では低く設定し、撮像視野位置しきい値設定
部15においては、撮像視野2を3区分し、撮像装置5
に近い側はしきい値を低く、中央部では高く、撮像装置
5より遠い側では中位のしきい値とし、図6に示すよう
に両者を接続することにより、即ち両者を相乗させるこ
とによって、しきい値レベルを変えることによりスリッ
ト光線分6を高精度に検出可能とする。
Therefore, in the line segment detection unit 11, the line segment direction threshold value setting unit 12 is set high in the plane portion of the measuring member 3 and is set low in the vertical portion, and the image pickup visual field position threshold value setting unit 15 sets the image pickup portion. The field of view 2 is divided into three, and the imaging device 5
By setting the threshold value lower on the side closer to, higher in the central portion and higher on the side farther from the image pickup apparatus 5 and by connecting them as shown in FIG. 6, that is, by synergizing the two. By changing the threshold level, the slit ray component 6 can be detected with high accuracy.

【0041】コンベア1と撮像視野2と計測部材3とレ
ーザスリット光源4と撮像装置5とスリット光線分6と
画像データ取り込み部10と線分検出部11と線分方向
しきい値設定部12と三次元計測部14は実施例1と同
じである。また撮像視野位置しきい値設定部15は実施
例2と同じである。
A conveyor 1, an imaging field of view 2, a measuring member 3, a laser slit light source 4, an imaging device 5, a slit ray segment 6, an image data capturing section 10, a line segment detecting section 11, and a line segment direction threshold setting section 12 are provided. The three-dimensional measuring unit 14 is the same as that in the first embodiment. The imaging visual field position threshold setting unit 15 is the same as that in the second embodiment.

【0042】実施例5.図7はこの発明の他の実施例を
示す図で、図7において画像処理装置31内に画像デー
タ取り込み部10と線分方向しきい値設定部12としき
い値レベル設定部16と線分制御部17とを有すること
により、スリット光線分6の濃度が、計測部材3の各部
において異なっても、スリット光線分6を高精度に検出
することを可能とする。
Example 5. FIG. 7 is a diagram showing another embodiment of the present invention. In FIG. 7, the image data capturing unit 10, the line segment direction threshold setting unit 12, the threshold level setting unit 16 and the line segment control in the image processing device 31 in FIG. By including the portion 17, even if the density of the slit ray component 6 is different in each part of the measuring member 3, it is possible to detect the slit ray component 6 with high accuracy.

【0043】計測部材3の各部の位置やさらに計測部材
3のスリット光線分6の反射率によってはスリット光線
分6の濃度が異なり、濃くなったり薄くなったりするた
め、しきい値を計測部材3の各部(平面部、垂直部)に
おいて変えるだけではスリット光線分6を高精度に検出
できないため、計測部材3の各部(平面部、垂直部)に
よるしきい値を複数回変えて所定の濃度(高精度に計測
するために出来る限り幅の狭い線分)より暗くてその中
で最も明るい濃度、即ち最低しきい値濃度のスリット光
線分6を抽出する必要がある。
The density of the slit ray component 6 differs depending on the position of each part of the measuring member 3 and the reflectance of the slit ray component 6 of the measuring member 3, and the density of the slit ray component 6 becomes thick or thin. Since it is not possible to detect the slit ray component 6 with high accuracy simply by changing the respective portions (planar portion, vertical portion) of, the threshold value for each portion (flat portion, vertical portion) of the measuring member 3 is changed a plurality of times to obtain a predetermined density ( In order to measure with high accuracy, it is necessary to extract the slit ray segment 6 that is darker than the line segment that is as narrow as possible and has the brightest density, that is, the lowest threshold density.

【0044】線分方向しきい値設定部12は画像データ
取り込み部10にて撮像装置5より取り込んだ画像デー
タを計測部材3の各部の位置によってしきい値を設定可
能とする。
The line segment direction threshold value setting unit 12 can set the threshold value of the image data captured by the image data capturing unit 10 from the image pickup device 5 according to the position of each portion of the measuring member 3.

【0045】線分制御部17は線分方向によりしきい値
を、即ち計測部材3の平面部では、しきい値を高く、垂
直部ではしきい値を低くし複数回(一例として高中低の
3回)設定することにより所定の濃度(高精度に計測す
るため出来る限り幅の狭い線分)より暗くてその中で最
も明るい濃度、即ち最低しきい値濃度のスリット光線分
6を抽出可能とする。
The line segment control unit 17 sets the threshold value in the direction of the line segment, that is, the threshold value is high in the plane portion of the measuring member 3 and is low in the vertical portion, and the threshold value is lowered a plurality of times (for example, high, middle, and low). By setting 3 times), it is possible to extract the slit ray segment 6 that is darker than a predetermined density (a line segment that is as narrow as possible for high-accuracy measurement) and that is the brightest of them, that is, the lowest threshold density. To do.

【0046】コンベア1と撮像視野2と計測部材3とレ
ーザスリット光源4と撮像装置5とスリット光線分6と
画像データ取り込み部10と線分方向しきい値設定部1
2と三次元計測部14は実施例1と同じである。またし
きい値レベル設定部16と線分制御部17は実施例3と
同じである。
The conveyor 1, the imaging field of view 2, the measuring member 3, the laser slit light source 4, the imaging device 5, the slit ray segment 6, the image data capturing section 10, and the line segment direction threshold setting section 1
2 and the three-dimensional measuring unit 14 are the same as in the first embodiment. The threshold level setting unit 16 and the line segment control unit 17 are the same as in the third embodiment.

【0047】実施例6.図8はこの発明の他の実施例を
示す図で、図8において画像処理装置31内に画像デー
タ取り込み部10と、しきい値レベル設定部16と撮像
視野位置しきい値設定部15と線分制御部17とを有す
ることにより、スリット光線分6の濃度が撮像視野2の
位置において異なっても、スリット光線分6を検出する
ことを可能とする。
Example 6. FIG. 8 is a diagram showing another embodiment of the present invention. In FIG. 8, the image data capturing unit 10, the threshold level setting unit 16, the imaging visual field position threshold setting unit 15 and the line in the image processing apparatus 31 in FIG. By including the minute control unit 17, it is possible to detect the slit ray component 6 even if the density of the slit ray component 6 differs at the position of the imaging visual field 2.

【0048】撮像視野位置しきい値設定部15は画像デ
ータ取り込み部10にて撮像装置5より取り込んだ画像
データを計測部材3の撮像視野2の位置によってしきい
値を設定可能とする。
The image pickup visual field position threshold value setting unit 15 can set the threshold value for the image data captured by the image data capturing unit 10 from the image pickup device 5 according to the position of the image pickup visual field 2 of the measuring member 3.

【0049】計測部材3の撮像視野2の位置や計測部材
3のスリット光6の反射率によってはスリット光線分6
の濃度が異なり、濃度が濃くなったり薄くなったりし
て、しきい値一定ではスリット光線分6が検出できない
ため撮像視野位置しきい値設定部15により計測部材3
の撮像視野2の位置によって、しきい値を複数回変えて
所定の濃度(高精度に計測するために出来る限り幅の狭
い線分)より暗くてその中で最も明るい濃度、即ち最低
しきい値濃度のスリット光線分を抽出する必要がある。
Depending on the position of the imaging field of view of the measuring member 3 and the reflectance of the slit light 6 of the measuring member 3, the slit ray component 6
Of the slit light beam 6 cannot be detected when the threshold value is constant because the density of the image is different and the density becomes thicker or thinner.
Depending on the position of the imaging field of view 2, the threshold value is changed a plurality of times and the density is darker than the predetermined density (the line segment that is as narrow as possible for high-accuracy measurement) and the brightest density, that is, the lowest threshold value. It is necessary to extract the density of slit rays.

【0050】線分制御部17は撮像視野2の位置により
しきい値を即ち撮像視野を3区分し、撮像装置5に近い
側はしきい値を低く、中央部では高く、撮像装置5より
遠い側では中位とし、複数回(一例として高中低の3
回)設定することにより所定の濃度(高精度に計測する
ために出来る限り幅の狭い線分)より暗くてその中で最
も明るい濃度、即ち最低しきい値濃度のスリット光線分
6を抽出可能とする。
The line segment control section 17 divides the threshold value, that is, the image pickup field into three, according to the position of the image pickup field 2. The side closer to the image pickup apparatus 5 has a lower threshold value, the central portion has a higher threshold value, and the image pickup apparatus 5 is further away. On the side, it is set to middle, and multiple times (for example, high, medium and low 3
By setting), it is possible to extract the slit ray segment 6 that is darker than a predetermined density (a line segment that is as narrow as possible for high-precision measurement) and that is the brightest, that is, the lowest threshold density. To do.

【0051】コンベア1と撮像視野2と計測部材3とレ
ーザスリット光源4と撮像装置5とスリット光源6と画
像データ取り込み部10と撮像視野位置しきい値設定部
15と三次元計測部14は実施例2と同じである。また
しきい値レベル設定部16と線分制御部17は実施例3
と同じである。
The conveyor 1, the imaging field of view 2, the measuring member 3, the laser slit light source 4, the imaging device 5, the slit light source 6, the image data capturing section 10, the imaging field of view position threshold setting section 15, and the three-dimensional measuring section 14 are implemented. Same as example 2. Further, the threshold level setting unit 16 and the line segment control unit 17 are the same as those in the third embodiment.
Is the same as

【0052】[0052]

【発明の効果】以上説明したように本発明装置によれ
ば、レーザスリット光を計測対象となる計測部材の斜め
上方より当てて、計測部材や撮像装置の位置や計測部材
のスリット光の反射率によってスリット光線分の濃度が
異なっても、光画像の2値化しきい値を線分の方向によ
り設定し、スリット光線分を検出可能とする。
As described above, according to the device of the present invention, the laser slit light is applied obliquely from above the measuring member to be measured, and the position of the measuring member and the image pickup device and the reflectance of the slit light of the measuring member. Even if the densities of the slit ray components differ, the binarization threshold value of the optical image is set in the direction of the line segment so that the slit ray components can be detected.

【0053】またこの発明は光画像の2値化しきい値を
撮像視野の位置により設定し、スリット光線分を検出可
能とする。
Further, according to the present invention, the binarization threshold value of the optical image is set according to the position of the imaging visual field so that the slit ray component can be detected.

【0054】この発明は光画像の2値化しきい値を複数
回設定し、スリット光線分を検出可能とする。
According to the present invention, the binarization threshold value of the optical image is set a plurality of times so that slit light rays can be detected.

【0055】またこの発明は光画像の2値化しきい値を
線分の方向と撮像視野の位置により設定し、スリット光
線分を検出可能とする。
Further, according to the present invention, the binarization threshold value of the optical image is set depending on the direction of the line segment and the position of the imaging visual field, and the slit ray segment can be detected.

【0056】この発明は光画像の2値化しきい値を線分
の方向により複数回設定してスリット光線分を検出可能
とする。
According to the present invention, the slit light ray segment can be detected by setting the binarization threshold value of the optical image a plurality of times depending on the direction of the line segment.

【0057】またこの発明は光画像の2値化しきい値を
撮像視野位置により複数回設定し、スリット光線分を検
出可能とする。
Further, according to the present invention, the binarization threshold value of the optical image is set a plurality of times depending on the image pickup visual field position, and the slit ray component can be detected.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1の概略構成を示すブロック
図である。
FIG. 1 is a block diagram showing a schematic configuration of a first embodiment of the present invention.

【図2】 本発明の撮像視野、撮像装置、レーザ光源の
配置を示す図である。
FIG. 2 is a diagram showing an arrangement of an imaging visual field, an imaging device, and a laser light source of the present invention.

【図3】 本発明の実施例2の概略構成を示すブロック
図である。
FIG. 3 is a block diagram showing a schematic configuration of a second embodiment of the present invention.

【図4】 本発明の実施例3の概略構成を示すブロック
図である。
FIG. 4 is a block diagram showing a schematic configuration of a third embodiment of the present invention.

【図5】 本発明の実施例3のしきい値変化の画像及び
合成画像を示す図である。
5A and 5B are diagrams showing a threshold value change image and a composite image according to a third embodiment of the present invention.

【図6】 本発明の実施例4の概略構成を示すブロック
図である。
FIG. 6 is a block diagram showing a schematic configuration of a fourth embodiment of the present invention.

【図7】 本発明の実施例5の概略構成を示すブロック
図である。
FIG. 7 is a block diagram showing a schematic configuration of a fifth embodiment of the present invention.

【図8】 本発明の実施例6の概略構成を示すブロック
図である。
FIG. 8 is a block diagram showing a schematic configuration of a sixth embodiment of the present invention.

【図9】 計測部材及び光画像例を示す図である。FIG. 9 is a diagram showing an example of a measuring member and an optical image.

【図10】 従来の三次元計測装置を示す図である。FIG. 10 is a diagram showing a conventional three-dimensional measuring device.

【図11】 レーザ光源のレーザパワー特性を示す図で
ある。
FIG. 11 is a diagram showing a laser power characteristic of a laser light source.

【符号の説明】[Explanation of symbols]

1 搬送コンベア、2 撮像視野、3 計測部材、4
レーザスリット光源、5 撮像装置、6 レーザスリッ
ト光線分、10 画像データ取り込み部、11線分検出
部、12 線分方向しきい値設定部、14 三次元計測
部、15 撮像視野位置しきい値設定部、16 しきい
値レベル設定部、17 線分制御部、31 画像処理装
置。
1 transport conveyor, 2 imaging field of view, 3 measuring member, 4
Laser slit light source, 5 imaging device, 6 laser slit light beam, 10 image data capturing unit, 11 line segment detecting unit, 12 line segment direction threshold setting unit, 14 three-dimensional measuring unit, 15 imaging visual field position threshold setting Section, 16 threshold level setting section, 17 line segment control section, 31 image processing apparatus.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 計測対象となる計測部材が配置される撮
像視野の斜め上方よりレーザスリット光を照射するレー
ザスリット光源と、前記計測部材の画像を撮像する撮像
装置と、前記撮像装置より画像データを取り込む画像デ
ータ取り込み部と、前記計測部材の画像データであるス
リット光線分の二値化しきい値を前記画像データである
スリット光線分の方向によって設定する線分方向しきい
値設定部と、前記画像データ取り込み部より得られた画
像データより前記線分方向しきい値設定部の出力により
前記スリット光線分の二値画像を検出する線分検出部
と、前記線分検出部の出力により前記計測部材の三次元
計測を行う三次元計測部とを具備したことを特徴とする
三次元計測装置。
1. A laser slit light source for irradiating a laser slit light obliquely above an imaging visual field in which a measurement member to be measured is arranged, an imaging device for imaging an image of the measurement member, and image data from the imaging device. A line segment direction threshold value setting unit for setting a binarization threshold value for a slit light ray that is image data of the measuring member by a direction of the slit light ray that is the image data; A line segment detection unit that detects the binary image of the slit ray segment by the output of the line segment direction threshold setting unit from the image data obtained from the image data acquisition unit, and the measurement by the output of the line segment detection unit. A three-dimensional measuring device comprising: a three-dimensional measuring unit that performs three-dimensional measurement of a member.
【請求項2】 計測対象となる計測部材が配置される撮
像視野の斜め上方よりレーザスリット光を照射するレー
ザスリット光源と、前記計測部材の画像を撮像する撮像
装置と、前記撮像装置より画像データを取り込む画像デ
ータ取り込み部と、前記計測部材の画像データであるス
リット光線分の二値化しきい値を前記計測部材の撮像位
置によって設定する撮像視野位置しきい値設定部と、前
記画像データ取り込み部より得られた画像データより前
記撮像視野位置しきい値設定部の出力により前記スリッ
ト光線分の二値画像を検出する線分検出部と、前記線分
検出部の出力により前記計測部材の三次元計測を行う三
次元計測部とを具備したことを特徴とする三次元計測装
置。
2. A laser slit light source for irradiating a laser slit light from obliquely above an imaging visual field in which a measurement member to be measured is arranged, an imaging device for capturing an image of the measurement member, and image data from the imaging device. An image data capturing section, an image capturing visual field position threshold setting section that sets a binarization threshold value for slit light rays that is image data of the measuring member according to an image capturing position of the measuring member, and the image data capturing section. A line segment detection unit that detects the binary image of the slit light ray component by the output of the imaging visual field position threshold setting unit from the image data obtained by the three-dimensional measurement member by the output of the line segment detection unit. A three-dimensional measuring device comprising: a three-dimensional measuring unit that performs measurement.
【請求項3】 計測対象となる計測部材が配置される撮
像視野の斜め上方よりレーザスリット光を照射するレー
ザスリット光源と、前記計測部材の画像を撮像する撮像
装置と、前記撮像装置より画像データを取り込む画像デ
ータ取り込み部と、前記計測部材の画像データであるス
リット光の線分の二値化しきい値を複数回設定可能とす
るしきい値レベル設定部と、前記画像データ取り込み部
より得られた画像データより前記しきい値レベル設定部
の出力により所定の濃度より暗くてその中で最も明るい
濃度、即ち最低しきい値濃度のスリット光線分を抽出す
る線分制御部と、前記線分制御部の出力により前記計測
部材の三次元計測を行う三次元計測部とを具備したこと
を特徴とする三次元計測装置。
3. A laser slit light source for irradiating a laser slit light obliquely above an imaging visual field in which a measurement member to be measured is arranged, an imaging device for imaging an image of the measurement member, and image data from the imaging device. Is obtained from the image data capturing unit, a threshold level setting unit capable of setting a binarization threshold of a line segment of slit light that is image data of the measuring member a plurality of times, and the image data capturing unit. From the image data, a line segment control unit for extracting a slit ray segment that is darker than a predetermined concentration and brightest among them, that is, a slit ray segment having the lowest threshold concentration by the output of the threshold level setting unit, and the line segment control. A three-dimensional measuring device comprising: a three-dimensional measuring unit that performs three-dimensional measurement of the measuring member based on an output of the unit.
【請求項4】 計測対象となる計測部材の画像データで
あるスリット光線分の二値化しきい値を前記計測部材の
撮像位置によって設定し、線分方向しきい値設定部へ出
力する撮像視野位置しきい値設定部を具備したことを特
徴とする請求項1記載の三次元計測装置。
4. An imaging field-of-view position for setting a binarization threshold value for a slit light ray, which is image data of a measurement member to be measured, according to an imaging position of the measurement member and outputting it to a line segment direction threshold value setting unit. The three-dimensional measuring apparatus according to claim 1, further comprising a threshold value setting unit.
【請求項5】 計測対象となる計測部材の画像データで
あるスリット光線分の二値化しきい値を前記計測部材の
スリット光線分の方向によって設定する線分方向しきい
値設定部を具備したことを特徴とする請求項3記載の三
次元計測装置。
5. A line segment direction threshold value setting unit for setting a binarization threshold value for a slit light ray which is image data of a measuring member to be measured according to a direction of the slit light ray of the measuring member. The three-dimensional measuring device according to claim 3, wherein
【請求項6】 計測対象となる計測部材の画像データで
あるスリット光線分の二値化しきい値を前記計測部材の
撮像位置によって設定する撮像視野位置しきい値設定部
を具備したことを特徴とする請求項3記載の三次元計測
装置。
6. An image pickup visual field position threshold value setting unit for setting a binarization threshold value for a slit light ray which is image data of a measurement member to be measured according to an image pickup position of the measurement member. The three-dimensional measuring device according to claim 3.
JP21583494A 1994-09-09 1994-09-09 Three-dimensional measuring device Pending JPH0875425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21583494A JPH0875425A (en) 1994-09-09 1994-09-09 Three-dimensional measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21583494A JPH0875425A (en) 1994-09-09 1994-09-09 Three-dimensional measuring device

Publications (1)

Publication Number Publication Date
JPH0875425A true JPH0875425A (en) 1996-03-22

Family

ID=16679043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21583494A Pending JPH0875425A (en) 1994-09-09 1994-09-09 Three-dimensional measuring device

Country Status (1)

Country Link
JP (1) JPH0875425A (en)

Similar Documents

Publication Publication Date Title
US5546189A (en) Triangulation-based 3D imaging and processing method and system
US4796997A (en) Method and system for high-speed, 3-D imaging of an object at a vision station
US5812269A (en) Triangulation-based 3-D imaging and processing method and system
US8139117B2 (en) Image quality analysis with test pattern
US6549288B1 (en) Structured-light, triangulation-based three-dimensional digitizer
IL138414A (en) Apparatus and method for optically measuring an object surface contour
US20180302605A1 (en) Three-dimensional inspection
US20080175466A1 (en) Inspection apparatus and inspection method
KR20000071087A (en) Outdoor range finder
US7315383B1 (en) Scanning 3D measurement technique using structured lighting and high-speed CMOS imager
RU2363018C1 (en) Method of selecting objects on remote background
US5880844A (en) Hybrid confocal microscopy
US4097750A (en) Method of orienting objects using optically smeared images
EP0916071B1 (en) Triangulation-based 3d imaging and processing method and system
CN100491986C (en) Automatic focusing and automatic detecting method for interference fringe
JPH0875425A (en) Three-dimensional measuring device
KR102234984B1 (en) Apparatus for detecting particle of a semiconductor wafer
EP0939294B1 (en) Determining topographical values
GB2204947A (en) Method and system for high speed, 3-D imaging of an object at a vision station
JP3184641B2 (en) Edge detecting device for tapered hole and its depth measuring device
JPH0749930B2 (en) Mounted board inspection device
JPH0794971B2 (en) Cross-section shape detection method
CN219641581U (en) Concave defect detection device
JP2715897B2 (en) IC foreign matter inspection apparatus and method
JPH0560559A (en) Height measuring device