[go: up one dir, main page]

JPH0869902A - Manufacture of thermistor ceramic - Google Patents

Manufacture of thermistor ceramic

Info

Publication number
JPH0869902A
JPH0869902A JP6203456A JP20345694A JPH0869902A JP H0869902 A JPH0869902 A JP H0869902A JP 6203456 A JP6203456 A JP 6203456A JP 20345694 A JP20345694 A JP 20345694A JP H0869902 A JPH0869902 A JP H0869902A
Authority
JP
Japan
Prior art keywords
oxide
manganese
nickel
added
thermistor ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6203456A
Other languages
Japanese (ja)
Inventor
Masanori Terasaki
正則 寺崎
雅幸 ▲高▼橋
Masayuki Takahashi
Norihiro Kawamura
典裕 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6203456A priority Critical patent/JPH0869902A/en
Publication of JPH0869902A publication Critical patent/JPH0869902A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE: To provide thermistor ceramic which is composed of a manganese- nickel-copper oxide and shows a small rate of resistance change under a high- temperature, high-humidity condition and the element assembly of which has a high mechanical strength. CONSTITUTION: The thermistor ceramic is manufactured in such a way that at least aluminum oxide or zirconium oxide is added to a manganese-nickel- copper oxide at a rate of 0.1-20.0wt.% at the time of grinding the oxide after calcination and the mixed powder is molded and burnt.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は例えば、温度センサ、パ
ワーサーミスタ、あるいは回路の温度補償用に用いられ
るサーミスタ磁器の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a temperature sensor, a power thermistor, or a thermistor porcelain used for temperature compensation of a circuit.

【0002】[0002]

【従来の技術】従来より、マンガン−ニッケル−銅系の
酸化物にアルミニウムなどを添加してサーミスタ磁器を
形成していた。
2. Description of the Related Art Conventionally, a thermistor porcelain has been formed by adding aluminum or the like to a manganese-nickel-copper oxide.

【0003】[0003]

【発明が解決しようとする課題】上記構成によるサーミ
スタ磁器は、高温高湿下の使用において、抵抗変化率が
小さいという効果があった。しかし、素体の機械的強度
が高いとは言えなかった。
The thermistor porcelain having the above-described structure has an effect that the resistance change rate is small when used under high temperature and high humidity. However, it cannot be said that the element body has high mechanical strength.

【0004】そこで、本発明は高温高湿下の使用におい
て、抵抗変化率が小さい上に、素体の機械的強度の高い
サーミスタ磁器を提供することを目的とするものであ
る。
Therefore, an object of the present invention is to provide a thermistor porcelain having a small resistance change rate and a high mechanical strength of an element body when used under high temperature and high humidity.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
に本発明は、マンガン−ニッケル−銅系酸化物を仮焼
後、粉砕する際に酸化アルミニウムあるいは酸化ジルコ
ニウムの内少なくとも一方を0.1〜20.0重量%添
加して成形し、その後焼成するものである。
In order to achieve this object, the present invention provides a method of calcining a manganese-nickel-copper oxide and then crushing it so that at least one of aluminum oxide and zirconium oxide is 0.1% or less. ˜20.0% by weight is added and molded, and then fired.

【0006】[0006]

【作用】この方法によると、酸化アルミニウムあるいは
酸化ジルコニウムが、マンガン−ニッケル−銅系酸化物
と固溶せず、粒界に分散して存在することとなる。その
結果、おそらくマンガン−ニッケル−銅系酸化物粒子の
結合力を高めることにより、素体の機械的強度を高める
とともに、高温下では外気の影響を防ぎ、高湿下では粒
内に水分が浸入するのを防ぎ、抵抗変化率を小さくする
ことができる。
According to this method, aluminum oxide or zirconium oxide does not form a solid solution with the manganese-nickel-copper oxide, but exists in a dispersed state at the grain boundary. As a result, perhaps by increasing the bonding strength of the manganese-nickel-copper oxide particles, the mechanical strength of the element body is increased, the influence of the outside air is prevented at high temperatures, and the moisture penetrates into the particles at high humidity. Can be prevented and the rate of resistance change can be reduced.

【0007】[0007]

【実施例】以下、本発明の一実施例を説明する。EXAMPLE An example of the present invention will be described below.

【0008】マンガン、ニッケル、銅の金属酸化物を酸
素以外の組成比が(表1)に示す組成になるように所定
量配合し、ボールミルにて16時間湿式混合を行い、乾
燥した後、800℃で2時間仮焼を行った。
[0008] Manganese, nickel and copper metal oxides were mixed in a predetermined amount so that the composition ratio other than oxygen was the composition shown in (Table 1), wet-mixed for 16 hours in a ball mill, dried and then 800 It was calcined at ℃ for 2 hours.

【0009】[0009]

【表1】 [Table 1]

【0010】次に、(表1)に示す金属酸化物(Al2
3,ZrO2)を添加し、ボールミルにて18時間粉砕
を行い、乾燥した後、10重量%のPVA(ポリビニル
アルコール)の水溶液を粉砕粉に対して10重量%添加
し、造粒を行った。
Next, the metal oxides (Al 2
O 3, ZrO 2) was added, subjected to 18 hours milling in a ball mill, dried, added 10% by weight relative to pulverized powder with an aqueous solution of 10 wt% of PVA (polyvinyl alcohol), subjected to granulation It was

【0011】その後、直径10mm、厚さ1mmのディ
スク形状に加圧成形した後、1100℃で2時間焼成し
て焼結体を得、その両面に電極ペーストを塗布し焼き付
けを行いディスク型試料を作成した。
After that, pressure molding was performed into a disk shape having a diameter of 10 mm and a thickness of 1 mm, followed by firing at 1100 ° C. for 2 hours to obtain a sintered body. The electrode paste was applied to both surfaces of the sintered body and baked to obtain a disk type sample. Created.

【0012】(表1)に完成した各試料の高温(150
℃)及び湿中(40℃90%Rh)での1000時間放
置後の抵抗変化率及び素体の抗折強度試験の結果を示
す。
The high temperature of each completed sample (Table 1) (150
The results of the resistance change rate and the bending strength test of the element after being left for 1000 hours in (° C.) and in humidity (40 ° C. 90% Rh) are shown.

【0013】また、比較のため、酸化アルミニウム、酸
化ジルコニウム無添加の試料の結果も*印付きで示す。
For comparison, the results of the samples containing no aluminum oxide or zirconium oxide are also marked with *.

【0014】(表1)に示すように、金属酸化物を添加
してない試料の高温、湿中1000時間放置後における
抵抗変化率が全て5%以上であるのに対し、金属酸化物
を添加した試料は5%以下に改善されている。また、素
体の機械的強度も金属酸化物を添加していない試料が全
て2kgf以下であるのに対し、金属酸化物を添加して
いる試料は2kgf以上に改善されている。
As shown in (Table 1), the resistance change rate of all the samples to which no metal oxide was added after being left in high temperature and humidity for 1000 hours was 5% or more, whereas the metal oxide was added. The samples that have been processed are improved to 5% or less. Further, the mechanical strength of the element body is 2 kgf or less for all the samples to which the metal oxide is not added, whereas the mechanical strength of the sample to which the metal oxide is added is improved to 2 kgf or more.

【0015】以上のように、マンガン−ニッケル−銅系
酸化物を仮焼後、粉砕時に、酸化アルミニウムあるいは
酸化ジルコニウムの内少なくとも一方を0.1〜20.
0重量%添加することにより高温高湿使用下での抵抗変
化率が小さく、素体機械的強度が高いサーミスタ磁器を
提供することができる。
As described above, after calcination of the manganese-nickel-copper oxide, at the time of pulverization, at least one of aluminum oxide and zirconium oxide is added to 0.1-20.
By adding 0% by weight, it is possible to provide a thermistor porcelain having a small resistance change rate under high temperature and high humidity use and a high element mechanical strength.

【0016】これは、現時点では、明らかではないが、
酸化アルミニウムあるいは酸化ジルコニウムがマンガン
−ニッケル−銅系酸化物と固溶せず、粒界に存在し、結
合力の弱いマンガン−ニッケル−銅系の粒子の結合力を
高めると共に、粒子の周囲を囲むことにより、外気の影
響や水分の浸入を防ぐためであると思われる。
Although this is not clear at this point,
Aluminum oxide or zirconium oxide does not form a solid solution with the manganese-nickel-copper oxide and exists at the grain boundary, and enhances the binding force of the manganese-nickel-copper system particles having a weak binding force and surrounds the periphery of the particles. This is to prevent the influence of outside air and the infiltration of water.

【0017】次に、数値限定の理由について説明する。
添加する金属酸化物が0.1重量%未満では高温高湿使
用下での抵抗変化率が小さく、素体機械的強度が高いサ
ーミスタ磁器を得るという効果はなく、一方20.0重
量%を越えると主成分である酸化物の抵抗が急激に大き
くなり、電気特性のバラツキも急激に大きくなるために
実用的ではなく、本発明の範囲以外とした。
Next, the reason for limiting the numerical values will be described.
If the added metal oxide is less than 0.1% by weight, the resistance change rate under high temperature and high humidity use is small, and there is no effect of obtaining a thermistor porcelain having high mechanical strength of the element body, while it exceeds 20.0% by weight. Since the resistance of the oxide, which is the main component, suddenly increases, and the variation in the electrical characteristics also rapidly increases, it is not practical and was outside the range of the present invention.

【0018】また、以上の実施例では、金属酸化物とし
て酸化アルミニウム、酸化ジルコニウムをそれぞれ1種
類用いた場合について説明したが、これは主成分に対
し、酸化アルミニウム、酸化ジルコニウムの2種類を添
加した場合にも同様の効果を得ることができる。形状に
おいても今回ディスク型を用いた場合について説明した
が、形状に左右されることなく同様の効果が得られる。
In the above examples, the case where one kind of each of aluminum oxide and zirconium oxide was used as the metal oxide was explained, but two kinds of aluminum oxide and zirconium oxide were added to the main component. In this case, the same effect can be obtained. As for the shape, the case of using the disk type has been described this time, but the same effect can be obtained regardless of the shape.

【0019】[0019]

【発明の効果】以上のように本発明は、マンガン−ニッ
ケル−銅系酸化物を仮焼後、粉砕時に酸化アルミニウム
あるいは酸化ジルコニウムの内少なくとも一方を0.1
〜20.0重量%添加することにより、焼結後、酸化ア
ルミニウム、酸化ジルコニウムが素体内に分散して存在
することによって高温高湿使用下での抵抗変化率が小さ
く、素体機械的強度が高いサーミスタ磁器を実現でき工
業的価値の大なるものである。
Industrial Applicability As described above, according to the present invention, at least one of aluminum oxide and zirconium oxide is 0.1% or more at the time of pulverization after calcination of the manganese-nickel-copper oxide.
By adding ~ 20.0% by weight, after sintering, aluminum oxide and zirconium oxide are dispersed and present in the element body, so that the resistance change rate under high temperature and high humidity use is small and the element body mechanical strength is low. It is possible to realize high thermistor porcelain and has great industrial value.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 マンガン−ニッケル−銅系酸化物を仮焼
し、粉砕する際に酸化アルミニウムあるいは酸化ジルコ
ニウムの内少なくとも一方を0.1〜20.0重量%添
加し、その後、成形し焼成するサーミスタ磁器の製造方
法。
1. A manganese-nickel-copper oxide is calcined, and when pulverized, at least one of aluminum oxide and zirconium oxide is added in an amount of 0.1 to 20.0% by weight, and then molded and fired. Manufacturing method of thermistor porcelain.
JP6203456A 1994-08-29 1994-08-29 Manufacture of thermistor ceramic Pending JPH0869902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6203456A JPH0869902A (en) 1994-08-29 1994-08-29 Manufacture of thermistor ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6203456A JPH0869902A (en) 1994-08-29 1994-08-29 Manufacture of thermistor ceramic

Publications (1)

Publication Number Publication Date
JPH0869902A true JPH0869902A (en) 1996-03-12

Family

ID=16474431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6203456A Pending JPH0869902A (en) 1994-08-29 1994-08-29 Manufacture of thermistor ceramic

Country Status (1)

Country Link
JP (1) JPH0869902A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012022624A1 (en) 2010-08-17 2012-02-23 Umicore Aluminum dry-coated and heat treated cathode material precursors
CN105788786A (en) * 2015-01-13 2016-07-20 株式会社村田制作所 Method of manufacturing NTC thermistor element
JPWO2017022373A1 (en) * 2015-07-31 2018-04-19 株式会社村田製作所 Temperature sensor
CN109265157A (en) * 2018-10-29 2019-01-25 惠州嘉科实业有限公司 Low-resistance NTC thermistor and preparation method thereof
CN112334430A (en) * 2018-06-27 2021-02-05 Tdk电子股份有限公司 NTC material, thermistor and method for producing the thermistor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012022624A1 (en) 2010-08-17 2012-02-23 Umicore Aluminum dry-coated and heat treated cathode material precursors
CN103081189A (en) * 2010-08-17 2013-05-01 尤米科尔公司 Aluminum dry-coated and heat treated cathode material precursors
JP2013541129A (en) * 2010-08-17 2013-11-07 ユミコア Cathode material precursor with aluminum dry coating and heat treatment
US9876226B2 (en) 2010-08-17 2018-01-23 Umicore Aluminum dry-coated and heat treated cathode material precursors
CN105788786A (en) * 2015-01-13 2016-07-20 株式会社村田制作所 Method of manufacturing NTC thermistor element
JP2016131195A (en) * 2015-01-13 2016-07-21 株式会社村田製作所 Manufacturing method of ntc thermistor element
JPWO2017022373A1 (en) * 2015-07-31 2018-04-19 株式会社村田製作所 Temperature sensor
US10983012B2 (en) 2015-07-31 2021-04-20 Murata Manufacturing Co., Ltd. Temperature sensor
CN112334430A (en) * 2018-06-27 2021-02-05 Tdk电子股份有限公司 NTC material, thermistor and method for producing the thermistor
JP2021520073A (en) * 2018-06-27 2021-08-12 ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフトTdk Electronics Ag NTC material, thermistor, and manufacturing method of the thermistor
US11929193B2 (en) 2018-06-27 2024-03-12 Tdk Electronics Ag NTC compound, thermistor and method for producing the thermistor
CN109265157A (en) * 2018-10-29 2019-01-25 惠州嘉科实业有限公司 Low-resistance NTC thermistor and preparation method thereof
CN109265157B (en) * 2018-10-29 2022-01-21 惠州嘉科实业有限公司 Low-resistance NTC thermistor with V-shaped pin and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH0869902A (en) Manufacture of thermistor ceramic
JP3201477B2 (en) Composition for thermistor
JP3202273B2 (en) Composition for thermistor
JP3202275B2 (en) Composition for thermistor
JP3202276B2 (en) Composition for thermistor
JP3202278B2 (en) Composition for thermistor
JP5309586B2 (en) Thermistor composition
JP3202274B2 (en) Composition for thermistor
KR970007509B1 (en) Negative Temperature Coefficient Thermistor
JP3970851B2 (en) Sintered body for thermistor element, manufacturing method thereof, and temperature sensor
JP3202277B2 (en) Composition for thermistor
JP3551269B2 (en) High temperature measurement thermistor
JPH0773081B2 (en) Method for manufacturing oxide semiconductor porcelain for thermistor
JPH034505B2 (en)
JPH0582310A (en) Composition for thermistor
JPH03271154A (en) Composition for thermistor
JPH05343204A (en) Oxide semiconductor for thermistor
JPH0354149A (en) Thermistor porcelain composition
JPH07211514A (en) Production of thermistor element
JPH11335163A (en) Composition for thermistor
JPS63284801A (en) Oxide semiconductor for thermistor
JPH06163207A (en) Thermistor element for high temperature
JPS63285903A (en) Oxide semiconductor for thermistor
JPS6145509A (en) Dielectric porcelain composition
JPH0354146A (en) Thermistor porcelain composition