[go: up one dir, main page]

JPH0867513A - Molecular sieve carbon and its production - Google Patents

Molecular sieve carbon and its production

Info

Publication number
JPH0867513A
JPH0867513A JP6205064A JP20506494A JPH0867513A JP H0867513 A JPH0867513 A JP H0867513A JP 6205064 A JP6205064 A JP 6205064A JP 20506494 A JP20506494 A JP 20506494A JP H0867513 A JPH0867513 A JP H0867513A
Authority
JP
Japan
Prior art keywords
molecular sieve
phenol resin
sieve carbon
molded product
pore volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6205064A
Other languages
Japanese (ja)
Inventor
Yoshimune Matsuda
嘉宗 松田
Mikako Saeki
美香子 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Risho Kogyo Co Ltd
Original Assignee
Risho Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Risho Kogyo Co Ltd filed Critical Risho Kogyo Co Ltd
Priority to JP6205064A priority Critical patent/JPH0867513A/en
Publication of JPH0867513A publication Critical patent/JPH0867513A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE: To obtain high-quality molecular sieve carbon having uniform pore diameters. CONSTITUTION: A heated and pressurized molded article of a pulp fiber material containing a phenol resin is carbonized to give molecular sieve carbon having a whole pore volume of >=0.2ml/g, a ratio of ultramicro pore volume having <=10Å to the whole pore volume of >=75% and the center of the pore diameter distribution in the range of 3-5Å.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、分子篩作用を有する
多孔質の炭素、即ち、分子篩炭素とその製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to porous carbon having a molecular sieving action, that is, molecular sieving carbon and a method for producing the same.

【0002】[0002]

【従来の技術とその課題】分子篩炭素は、耐熱性、耐薬
品性に優れ、極性物質の存在下においても使用可能であ
るところから、水素の精製や窒素製造プロセスに用いら
れている。また、近年は、地球温暖化問題との関連か
ら、二酸化炭素とメタンの分離、回収、二酸化炭素の回
収への適用も注目されている。
2. Description of the Related Art Molecular sieve carbon has been used in hydrogen purification and nitrogen production processes because it has excellent heat resistance and chemical resistance and can be used even in the presence of polar substances. Further, in recent years, attention has been paid to its application to the separation and recovery of carbon dioxide and methane, and the recovery of carbon dioxide, in relation to the problem of global warming.

【0003】ところで、従来、分子篩炭素を製造する方
法としては、次のような方法がある。
By the way, conventionally, there have been the following methods for producing molecular sieve carbon.

【0004】(1) 熱分解法:一般に、木材、果実殻、石
炭あるいは、サラン、塩化ビニリデンなどの合成樹脂を
熱分解処理して炭化する方法。
(1) Pyrolysis method: In general, a method of pyrolyzing and carbonizing wood, fruit shells, coal, or synthetic resins such as saran and vinylidene chloride.

【0005】(2) 熱収縮法:活性炭、コークスあるいは
サラン炭などの微細な多孔質炭材を高温で焼成して細孔
を収縮させる方法。
(2) Heat shrinking method: A method in which fine porous carbonaceous material such as activated carbon, coke or Saran charcoal is fired at a high temperature to shrink the pores.

【0006】(3) ガス賦活法:果実殻、石炭あるいは合
成樹脂などの炭化物を厳密な条件下でゆるやかに賦活処
理して細孔を拡大する方法(例えば、特開昭53−11
95号公報)。
(3) Gas activation method: a method of gradually activating charcoal such as fruit shells, coal or synthetic resin under strict conditions to enlarge pores (for example, JP-A-53-11).
No. 95).

【0007】(4) 被覆法:条積多孔質炭材に、樹脂やタ
ール様高分子を加えて熱処理し、熱分解炭素で細孔を制
御する方法(例えば、特開昭49−106982号公
報、特開昭59−45914号公報)。
(4) Coating method: A method in which a resin or a tar-like polymer is added to a porous carbonaceous material for heat treatment and the pores are controlled by pyrolytic carbon (for example, JP-A-49-106982). , JP-A-59-45914).

【0008】(5) 蒸着法:各種多孔質炭材を400〜9
00℃に加熱し、ベンゼン、トルエンなどの炭化水素ガ
スの熱分解炭素を細孔壁に蒸着して、細孔径を減少させ
る方法(例えば、特開昭56−130226号公報)。
(5) Vapor deposition method: 400 to 9 of various porous carbon materials
A method of reducing the pore size by heating to 00 ° C. and depositing pyrolytic carbon of a hydrocarbon gas such as benzene or toluene on the pore walls (for example, JP-A-56-130226).

【0009】しかしながら、上記従来の方法で分子篩炭
素を工業的に製造するには、炭素表面の細孔の制御に煩
雑な工程を必要とし、上記従来の方法では、ゼオライト
系のモレキュラーシーブのように、均一な細孔分布を有
する分子篩炭素を製造することはなかなか困難であっ
た。
However, in order to industrially produce molecular sieve carbon by the above-mentioned conventional method, a complicated step is required to control the pores on the carbon surface, and in the above-mentioned conventional method, like the case of zeolite type molecular sieve. However, it has been difficult to produce molecular sieve carbon having a uniform pore distribution.

【0010】そこで、この発明は、均一な細孔分布を有
する品質の良好な分子篩炭素を、安価に製造することが
できる方法を提供しようとするものである。
Therefore, the present invention is intended to provide a method capable of inexpensively producing molecular sieve carbon having a uniform pore distribution and good quality.

【0011】[0011]

【課題を解決するための手段】この発明の分子篩炭素
は、フェノール樹脂を含有させたパルプ繊維体の加熱加
圧成形物を、不活性ガス雰囲気下で炭化することによっ
て得ることができる。
The molecular sieve carbon of the present invention can be obtained by carbonizing a heated and pressure-molded product of a pulp fiber body containing a phenol resin in an inert gas atmosphere.

【0012】上記フェノール樹脂を含有させるパルプ繊
維体としては、クラフト紙、リンター紙、再生紙などを
使用することができる。
Kraft paper, linter paper, recycled paper or the like can be used as the pulp fiber body containing the phenol resin.

【0013】また、フェノール樹脂としては、フェノー
ル・ホルムアルデヒド樹脂、あるいはフェノール類(フ
ェノール、クレゾール、アルキルフェノール等)、アル
デヒド類(ホルマリン、パラホルムアルデヒド等)、可
塑剤(桐油、脱水ヒマシ油、オイチシカ油、フェノール
化油等)を配合した変成フェノール樹脂を用いることが
できる。アルデヒド類の使用量は、フェノール類1モル
に対し、1.2〜1.8モル程度である。
Examples of the phenol resin include phenol / formaldehyde resin, phenols (phenol, cresol, alkylphenol, etc.), aldehydes (formalin, paraformaldehyde, etc.), plasticizers (tung oil, dehydrated castor oil, deer oil, phenol). A modified phenol resin containing a compounded oil or the like) can be used. The amount of aldehydes used is about 1.2 to 1.8 mol per mol of phenols.

【0014】上記フェノール樹脂をパルプ繊維体に含有
させる手段としては、フェノール樹脂の溶液を塗布、ま
たは含浸させる方法、レジトール(Bステージ)やプレ
ポリマーなどの反応中間物をパルプに混抄して抄紙する
方法等がある。
As means for incorporating the above-mentioned phenol resin into the pulp fibrous body, a method of coating or impregnating a solution of the phenol resin, a reaction intermediate such as resistol (B stage) or prepolymer is mixed with the pulp for papermaking. There are ways.

【0015】また、加熱加圧の条件としては、温度13
0〜170℃、圧力50〜100Kgf/cm2 、時間
40〜120分程度で、例えば、多段式油圧プレス機を
用いて行われる。
The conditions for heating and pressurizing are temperature 13
The pressure is 0 to 170 ° C., the pressure is 50 to 100 Kgf / cm 2 , and the time is about 40 to 120 minutes, for example, using a multi-stage hydraulic press machine.

【0016】上記加熱加圧された成形物中に含まれるフ
ェノール樹脂の配合割合は、23重量%〜70重量%の
範囲が望ましく、23重量%以下であると層間剥離が生
じて成形が困難であり、70重量%を超えると、炭化処
理した後に、10Å以下の超ミクロ細孔容積の占める割
合が75%以下となり、良質の分子篩炭素が得られなく
なる。
The mixing ratio of the phenol resin contained in the heated and pressed molded product is preferably in the range of 23% by weight to 70% by weight, and when it is 23% by weight or less, delamination occurs and molding is difficult. If it exceeds 70% by weight, the ratio of the volume of the ultramicropores of 10Å or less becomes 75% or less after the carbonization treatment, and it becomes impossible to obtain high-quality molecular sieve carbon.

【0017】上記成形物を炭化処理する場合には、ハン
マーミル等で適当な大きさに粉砕し、それからN2 ガス
等の不活性ガス雰囲気下で炭化処理を行う。炭化処理の
温度は、600〜900℃、好ましくは650〜800
℃であり、この範囲外であると、均一な細孔径を有する
良質の分子篩炭素が得られない。
When the above-mentioned molded product is carbonized, it is crushed to an appropriate size with a hammer mill or the like, and then carbonized in an inert gas atmosphere such as N 2 gas. The carbonization temperature is 600 to 900 ° C., preferably 650 to 800.
If it is outside the range, it is not possible to obtain a good quality molecular sieve carbon having a uniform pore size.

【0018】フェノール樹脂成形品を微粉末にし、バイ
ンダーにより造粒の後、N2 ガス等不活性ガス雰囲気下
で炭化処理を行なっても、本発明の均一な細孔径を有す
る良質の分子篩炭素が得られる。
Even when the phenol resin molded product is made into a fine powder, granulated with a binder and then carbonized in an inert gas atmosphere such as N 2 gas, the high-quality molecular sieve carbon of the present invention having a uniform pore size can be obtained. can get.

【0019】すなわち、フェノール樹脂成形品は、微粉
砕し好ましくは0.1〜300μm程度の粒径を有する
微粉末、最も好ましくは1〜150μm程度の粒径の微
粉末である。
That is, the phenol resin molded product is finely pulverized and is preferably a fine powder having a particle size of about 0.1 to 300 μm, and most preferably a fine powder having a particle size of about 1 to 150 μm.

【0020】フェノール樹脂成形品の微粉末を造粒成形
するために用いるバインダーとしては、例えばポリビニ
ルアルコール、デンプン、水溶性もしくは水膨潤性セル
ロース誘導体、フェノール樹脂、メラミン樹脂、尿素樹
脂等の熱硬化性樹脂、ベントナイト、コールタール、ピ
ッチ等が挙げられるが、水溶性フェノール樹脂及びメラ
ミン樹脂は、造粒成形物の硬度向上と好適なミクロ孔形
成の点で、またポリビニルアルコールは、造粒成形時の
作業性の点で好適である。水溶性フェノール樹脂は、通
常メチロール基に富む分子量600以下の自己熱架橋性
のレゾール樹脂で、アルデヒド類をフェノール1モルに
対し、1.2〜3.5モル、やや過剰のアルカリ触媒の
存在下で反応させて得られる。メラミン樹脂は、メラミ
ン−ホルムアルデヒドの初期縮合物であり、水溶液とし
て使用できる。さらにポリビニルアルコールとしては、
重合度100〜5000、ケン化度70%以上のものが
好適に使用される。造粒成形する場合には、通常フェノ
ール樹脂成形品の微粉末100重量部に対し20〜10
0重量部のバインダーを用いる。フェノール樹脂成形品
の微粉末とバインダーとは、通常リボンミキサー、ニー
ダー、ヘンシェルミキサー等で混合され、調製した均一
混合物は、次いで、二軸湿式押出造粒機、半乾式ディス
クペレッター等により造粒成形することができる。造粒
した粒状体は、円柱では直径0.5〜5mm、長さ1〜
10mm程度、球状の場合には、直径0.5〜10mm
程度が好ましい。
As the binder used for granulating and molding the fine powder of the phenol resin molded product, for example, polyvinyl alcohol, starch, water-soluble or water-swellable cellulose derivative, phenol resin, melamine resin, urea resin and the like thermosetting Resin, bentonite, coal tar, pitch and the like, water-soluble phenolic resin and melamine resin, in terms of hardness improvement of the granulated molded product and suitable micropore formation, and polyvinyl alcohol, granulation molding It is suitable in terms of workability. The water-soluble phenol resin is a self-heat-crosslinking resol resin having a molecular weight of 600 or less, which is usually rich in methylol groups, and contains 1.2 to 3.5 mol of aldehydes per mol of phenol in the presence of a slight excess of alkali catalyst. It is obtained by reacting with. The melamine resin is an initial condensate of melamine-formaldehyde and can be used as an aqueous solution. Furthermore, as polyvinyl alcohol,
Those having a degree of polymerization of 100 to 5,000 and a degree of saponification of 70% or more are preferably used. In the case of granulation molding, it is usually 20 to 10 with respect to 100 parts by weight of fine powder of a phenol resin molded product.
0 parts by weight of binder are used. The fine powder of the phenolic resin molded product and the binder are usually mixed with a ribbon mixer, a kneader, a Henschel mixer, etc., and the prepared homogeneous mixture is then granulated with a twin-screw wet extrusion granulator, a semi-dry disk pelleter, etc. It can be molded. Granulated granules have a diameter of 0.5-5 mm and a length of 1-
About 10 mm, in the case of spherical shape, the diameter is 0.5 to 10 mm
The degree is preferred.

【0021】なお、フェノール樹脂を含有させたパルプ
繊維体の加熱加圧成形物は、通常プリント配線板のドリ
ル穴あけ加工時に、ドリルに付着する削りカスを取り除
いたり、基板の銅箔のカエリを押えたり、基板の銅箔面
に傷がつかないように、基板の上下に重ね合わされるド
リル穴あけ加工用治具板や電気絶縁材料等に広く使用さ
れているが、このうち使用済のドリル穴あけ加工用治具
板を、この発明の分子篩炭素の原料として使用すると好
適である。
The heat and pressure molded product of the pulp fibrous body containing the phenol resin is usually used to remove shavings adhering to the drill or press the burrs of the copper foil of the substrate during the drilling process of the printed wiring board. It is widely used for drilling jig plates and electrical insulating materials that are stacked on top and bottom of the board so that the copper foil surface of the board is not scratched. The jig plate for use is preferably used as a raw material for the molecular sieve carbon of the present invention.

【0022】[0022]

【作用】上記の方法によると、全細孔容積が0.2ml
/g以上、10Å以下の超ミクロ細孔容積の占める割合
が全細孔容積の75%以上で、細孔径の分布の中心が3
〜5Åの範囲にある良質な分子篩炭素が得られるが、そ
の理由は次のように考えられる。
According to the above method, the total pore volume is 0.2 ml.
/ G or more and 10 Å or less of the ultra-micropore volume accounts for 75% or more of the total pore volume, and the center of the pore size distribution is 3
High quality molecular sieve carbon in the range of ~ 5Å can be obtained, and the reason is considered as follows.

【0023】まず、炭化処理を行う前駆体として、フェ
ノール樹脂を含有させたパルプ繊維体を加熱加圧した成
形物を使用している。
First, a molded product obtained by heating and pressing a pulp fibrous body containing a phenol resin is used as a precursor for carbonization.

【0024】このような加熱加圧成形物は、パルプ繊維
にフェノール樹脂が浸透した緻密な構造であり、これを
不活性ガス雰囲気下で炭化処理した場合、未だ炭化に至
らない昇温過程の段階(約250℃)において、パルプ
繊維中の水分(成形品の約3重量%〜7重量%)が水蒸
気化して体積膨張し、この膨張によって、緻密な構造の
成形物に多数の亀裂が生じて、水蒸気が抜け、細孔容積
が大きくなる。
Such a heat and pressure molded product has a dense structure in which the phenol resin has penetrated into the pulp fiber, and when it is carbonized in an inert gas atmosphere, it does not yet result in carbonization. At (about 250 ° C.), the moisture in the pulp fiber (about 3% by weight to 7% by weight of the molded product) vaporizes and expands in volume, and this expansion causes many cracks in the molded product having a dense structure. , The water vapor escapes and the pore volume increases.

【0025】引き続き、昇温過程の約290℃付近から
は、パルプ繊維が熱分解によって気化して体積膨張し、
これによって炭化処理過程にあるフェノール樹脂とパル
プ繊維の成形物の内部に、さらに亀裂が生じ、この亀裂
から気化ガスが抜け、細孔容積が更に拡大する。
Subsequently, from about 290 ° C. during the temperature raising process, the pulp fibers are vaporized by thermal decomposition and expand in volume,
As a result, a crack is further generated inside the molded product of the phenol resin and the pulp fiber in the carbonization process, vaporized gas escapes from this crack, and the pore volume further expands.

【0026】次いで、炭化処理過程の焼成により、炭化
物の結晶化が進行し、それまでに生じた多数の亀裂面が
互いに融合して、ミクロ細孔が形成される。
Next, calcination of the carbide progresses by calcination in the carbonization process, and a large number of crack surfaces generated so far are fused with each other to form micropores.

【0027】[0027]

【実施例】【Example】

(実施例1) 〈フェノール樹脂成形品の製造〉水溶性またはアルコー
ル溶性のレゾール樹脂からなるフェノール樹脂ワニスを
調製した後、塗布樹脂量が紙基材70重量部対し30重
量部となるようにクラフト紙(坪量200g/m2 )に
塗布、含浸させ、ついで温度160℃で乾燥してプリプ
レグを作製した。このプリプレグの多数枚を積層し、積
層物の上下をステンレススチール製の鏡面板で挟むと共
に、その両外側にクッション材を重ね、多段式油圧プレ
ス機の熱盤間にセットした。この状態で、温度140
℃、圧力70kgf/cm2 、時間90分の条件で熱プ
レスした後、解板、耳切りを行って、厚さ1.5mm、
寸法300mm×300mmのフェノール樹脂成形品を
得た。
(Example 1) <Production of Phenolic Resin Molded Article> After preparing a phenol resin varnish made of a water-soluble or alcohol-soluble resole resin, a resin is coated so that the coating resin amount is 30 parts by weight with respect to 70 parts by weight of a paper base material. Paper (basis weight: 200 g / m 2 ) was applied and impregnated, and then dried at a temperature of 160 ° C. to prepare a prepreg. A large number of these prepregs were laminated, and the top and bottom of the laminate were sandwiched by stainless steel mirror plates, and cushioning materials were placed on both outer sides of the laminate, and the cushion plates were set between the hot plates of a multi-stage hydraulic press machine. In this state, the temperature 140
After hot pressing under conditions of ℃, pressure 70 kgf / cm 2 and time 90 minutes, the plate is delaminated and the edges are trimmed to a thickness of 1.5 mm,
A phenol resin molded product having a size of 300 mm × 300 mm was obtained.

【0028】〈分子篩炭素の製造〉このフェノール樹脂
成形品をおよそ2.0φmmに粗粉砕してから、N2
ス雰囲気下に10℃/minで昇温し、温度750℃で
1時間炭化処理を行なった。比表面積、全細孔容積及び
10Å以下の細孔容積は、BELSORP28(日本ベ
ル社製)にてBET多点法及びDollimore a
nd Heal法を適用して求めた。また、細孔径およ
び細孔容積は、分子径の異なる4種のガスでの、吸着等
温線にDubinin−Astakhov式を適用して
各々のガスの極限吸着容積を求め、この極限吸着容積が
分子径以上の容積に対応するとして求めた。
<Production of Molecular Sieve Carbon> This phenol resin molded product was roughly crushed to about 2.0 mm and heated at 10 ° C./min in a N 2 gas atmosphere, and carbonized at 750 ° C. for 1 hour. I did. Specific surface area, total pore volume and pore volume of 10 Å or less are measured by BELSORP28 (manufactured by Bell Japan Ltd.) by BET multi-point method and Dollimore a
It was determined by applying the nd Heal method. Further, the pore diameter and the pore volume are determined by applying the Dubinin-Astakhov equation to the adsorption isotherms of four kinds of gases having different molecular diameters, and determining the ultimate adsorption volume of each gas. It was calculated as corresponding to the above volume.

【0029】(実施例2)フェノール樹脂成形品を平均
粒径約100μmに微粉砕したフェノール樹脂の微粉末
100重量部に、水溶性フェノール樹脂(昭和高分子株
式会社製、ショウノールBRL−2854、固形分濃度
60wt%)を40重量部とポリビニルアルコール(株
式会社クラレ製、ポバール217、固形分濃度20wt
%)を75重量部とをニーダーにて混合し、該混合組成
物を2軸押出造粒機(不二パウダル株式会社製、ペレッ
タ・ダブル)により押出した。押出によって得られた造
粒物を100℃で1時間乾燥し、2mmφ×3mmLの
造粒物を得た。
Example 2 A phenolic resin molded product was pulverized to an average particle size of about 100 μm, and 100 parts by weight of a fine powder of phenolic resin was added to a water-soluble phenolic resin (Showa Polymer Co., Ltd., Shonor BRL-2854, 40 parts by weight of solid content concentration of 60 wt% and polyvinyl alcohol (Kuraray Co., Ltd., Poval 217, solid content concentration of 20 wt%)
%) In a kneader, and the mixed composition was extruded by a twin-screw extrusion granulator (Peretta Double, manufactured by Fuji Paudal Co., Ltd.). The granulated product obtained by extrusion was dried at 100 ° C. for 1 hour to obtain a granulated product of 2 mmφ × 3 mmL.

【0030】実施例1におけるフェノール樹脂成形品の
粗粉砕に代えて、フェノール樹脂成形品の微粉末をバイ
ンダーによって造粒した粒状物を用いたほかは、実施例
1と同様にして炭化物を得た。
Carbide was obtained in the same manner as in Example 1 except that, instead of coarsely pulverizing the phenol resin molded article in Example 1, a fine powder of the phenol resin molded article was granulated with a binder. .

【0031】〔比較例1〕実施例1におけるフェノール
樹脂成形品の粗粉砕に代えて市販のフェノール樹脂粉末
を用いたほかは、実施例1と同様にして炭化物を得た。
[Comparative Example 1] A carbide was obtained in the same manner as in Example 1 except that a commercially available phenol resin powder was used instead of coarsely pulverizing the phenol resin molded article in Example 1.

【0032】〔比較例2〕実施例1におけるフェノール
樹脂成形品の粗粉砕に代えてパルプ(クラフト紙)を用
いたほかは、実施例1と同様にして炭化物を得た。
[Comparative Example 2] A carbide was obtained in the same manner as in Example 1 except that pulp (kraft paper) was used instead of coarsely crushing the phenol resin molded article in Example 1.

【0033】上記のようにして求めた、実施例1、実施
例2、比較例1、2の比表面積、全細孔容積、10Å以
下の細孔容積を表1に示す。また、実施例1の細孔径の
分布を図1に示す。
Table 1 shows the specific surface areas, the total pore volumes, and the pore volumes of 10 Å or less of Examples 1, 2 and Comparative Examples 1 and 2 which were obtained as described above. The distribution of the pore size of Example 1 is shown in FIG.

【0034】[0034]

【表1】 [Table 1]

【0035】表1から、フェノール樹脂成形物を用いて
製造した炭素材は、フェノール樹脂粉末またはパルプ
(クラフト紙)を原料として用いて製造した炭素材に比
し、10Å以下の細孔容積の占める割合が高いことがわ
かる。又、図1から3.5〜4.5Åに鋭いピークを持
つことがわかる。
From Table 1, the carbon material manufactured using the phenol resin molded product occupies a pore volume of 10 Å or less as compared with the carbon material manufactured using the phenol resin powder or pulp (kraft paper) as a raw material. You can see that the ratio is high. Further, it can be seen from FIG. 1 that there is a sharp peak at 3.5 to 4.5 liters.

【0036】[0036]

【発明の効果】以上のように、この発明によれば、全細
孔容積が0.2ml/g以上、10Å以下の超ミクロ細
孔容積の占める割合が全細孔容積の75%以上で、細孔
径の分布の中心が3〜5Åの範囲にある品質の良好な分
子篩炭素を得ることができる。
As described above, according to the present invention, the ratio of the ultramicropore volume of the total pore volume of 0.2 ml / g or more and 10Å or less is 75% or more of the total pore volume, It is possible to obtain a good quality molecular sieve carbon having a pore size distribution center in the range of 3 to 5Å.

【0037】また、この発明によれば、プリント配線板
のドリル穴あけ加工用治具板の使用済品、則ち、産業廃
棄物を分子篩炭素の原料として使用することが可能であ
るから、分子篩炭素を安価に製造することができ、かつ
産業廃棄物の有効利用が図れるという効果もある。
Further, according to the present invention, since the used product of the jig plate for drilling holes in the printed wiring board, that is, the industrial waste can be used as the raw material of the molecular sieve carbon, the molecular sieve carbon can be used. Can be manufactured at low cost and the industrial waste can be effectively used.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例の細孔容積の分布を示す図表FIG. 1 is a chart showing the distribution of pore volume in an example of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C04B 35/83 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location // C04B 35/83

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 フェノール樹脂を含有させたパルプ繊維
体の加熱加圧成形物を炭化した分子篩炭素。
1. A molecular sieve carbon obtained by carbonizing a heat-pressurized molded product of a pulp fiber body containing a phenol resin.
【請求項2】 全細孔容積が0.2ml/g以上、10
Å以下の超ミクロ細孔容積の占める割合が全細孔容積の
75%以上である請求項1記載の分子篩炭素。
2. The total pore volume is 0.2 ml / g or more, 10
The molecular sieve carbon according to claim 1, wherein the proportion of the ultramicropore volume of Å or less is 75% or more of the total pore volume.
【請求項3】 フェノール樹脂を含有させたパルプ繊維
体の加熱加圧成形物を、不活性ガス雰囲気下で炭化する
ことを特徴とする分子篩炭素の製造方法。
3. A method for producing molecular sieve carbon, which comprises carbonizing a heated and pressure-molded product of a pulp fiber body containing a phenol resin under an inert gas atmosphere.
【請求項4】 上記不活性ガスがN2 ガスである請求項
3記載の分子篩炭素の製造方法。
4. The method for producing molecular sieve carbon according to claim 3, wherein the inert gas is N 2 gas.
JP6205064A 1994-08-30 1994-08-30 Molecular sieve carbon and its production Pending JPH0867513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6205064A JPH0867513A (en) 1994-08-30 1994-08-30 Molecular sieve carbon and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6205064A JPH0867513A (en) 1994-08-30 1994-08-30 Molecular sieve carbon and its production

Publications (1)

Publication Number Publication Date
JPH0867513A true JPH0867513A (en) 1996-03-12

Family

ID=16500837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6205064A Pending JPH0867513A (en) 1994-08-30 1994-08-30 Molecular sieve carbon and its production

Country Status (1)

Country Link
JP (1) JPH0867513A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100369979B1 (en) * 2000-09-28 2003-02-11 유종성 Synthetic methods of highly ordered uniform nanoporous carbon molecular sieves using liquid carbon precursors
JP2009062268A (en) * 2007-08-09 2009-03-26 Tokyo Gas Co Ltd Molecular sieve carbon and method for producing the same
JP2009061448A (en) * 2007-08-09 2009-03-26 Tokyo Gas Co Ltd Molecular sieve carbon and method for producing the same
JP2011031055A (en) * 2010-09-27 2011-02-17 Mitsubishi Electric Corp Method for manufacturing electromagnetic induction heating cooker
US7947114B2 (en) 2005-08-05 2011-05-24 Ntnu Technology Transfer As Carbon membranes
JP2011167526A (en) * 2011-04-04 2011-09-01 Mitsubishi Electric Corp Method for electromagnetic induction cooker
JP2022047788A (en) * 2020-09-14 2022-03-25 株式会社オメガ Production method of adsorbent

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100369979B1 (en) * 2000-09-28 2003-02-11 유종성 Synthetic methods of highly ordered uniform nanoporous carbon molecular sieves using liquid carbon precursors
US7947114B2 (en) 2005-08-05 2011-05-24 Ntnu Technology Transfer As Carbon membranes
JP2009062268A (en) * 2007-08-09 2009-03-26 Tokyo Gas Co Ltd Molecular sieve carbon and method for producing the same
JP2009061448A (en) * 2007-08-09 2009-03-26 Tokyo Gas Co Ltd Molecular sieve carbon and method for producing the same
JP2011031055A (en) * 2010-09-27 2011-02-17 Mitsubishi Electric Corp Method for manufacturing electromagnetic induction heating cooker
JP2011167526A (en) * 2011-04-04 2011-09-01 Mitsubishi Electric Corp Method for electromagnetic induction cooker
JP2022047788A (en) * 2020-09-14 2022-03-25 株式会社オメガ Production method of adsorbent

Similar Documents

Publication Publication Date Title
KR100374779B1 (en) An extrusion molding structure made from a thermosetting resin
EP2089925B1 (en) Electrode substrate for electrochemical cell from carbon and cross-linkable resin fibers
US4466932A (en) Process for producing carbon articles
US6187713B1 (en) Method of making activated carbon bodies having improved adsorption properties
US6024899A (en) Method of making mesoporous carbon using pore formers
EA009837B1 (en) Method for producing a porous, carbon-based material
Wang et al. A porous carbon foam prepared from liquefied birch sawdust
TW390866B (en) Method of making activated carbon bodies having improved adsorption properties
JPH0867513A (en) Molecular sieve carbon and its production
WO2004087612A1 (en) Shaped porous materials
US6090362A (en) Method of producing free-flowing carbon
JPH0559867B2 (en)
JPH0147433B2 (en)
JP2001130962A (en) Carbide shaped product
CN107661745A (en) A kind of preparation method of the compound desulfurization sorbing material of attapulgite/carbon molecular sieve
JPH0851045A (en) Carbon material for electric double layer capacitors
JPH11139871A (en) Porous carbon material and method for producing the same
JP3233922B2 (en) Method for producing honeycomb-shaped activated carbon
JPS6059168B2 (en) Manufacturing method of carbon porous material
JPH07187634A (en) Activated carbon and its production
JPH07187635A (en) Production of molecular sieving carbon
JPH11228119A (en) Adsorbent and method for producing the same
JP2004230611A (en) Non-combustible decorative panel
JPS6132250B2 (en)
JPS5930708A (en) Manufacture of carbon product having porous-dense structure