JPH0867315A - Storage cabinet - Google Patents
Storage cabinetInfo
- Publication number
- JPH0867315A JPH0867315A JP20508794A JP20508794A JPH0867315A JP H0867315 A JPH0867315 A JP H0867315A JP 20508794 A JP20508794 A JP 20508794A JP 20508794 A JP20508794 A JP 20508794A JP H0867315 A JPH0867315 A JP H0867315A
- Authority
- JP
- Japan
- Prior art keywords
- coal
- coal layer
- high temperature
- antennas
- change
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 claims abstract description 30
- 239000003245 coal Substances 0.000 abstract description 72
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 22
- 230000005540 biological transmission Effects 0.000 abstract description 4
- 239000006185 dispersion Substances 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 4
- 235000013339 cereals Nutrition 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
Landscapes
- Arrangements For Transmission Of Measured Signals (AREA)
- Measurement Of Resistance Or Impedance (AREA)
- Details Of Aerials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、庫内の昇温を確実に検
知することができるようにした石炭サイロ、穀物サイ
ロ、パルプサイロ等の貯蔵庫に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a storage for coal silo, grain silo, pulp silo, etc., capable of reliably detecting the temperature rise in the cold storage.
【0002】[0002]
【従来の技術】図3に従来の石炭サイロを示す。1はサ
イロ本体である。2は石炭をサイロ本体1の上部へ搬入
する石炭搬入装置であり、サイロ本体1内に搬入された
石炭3はサイロ内に貯蔵される。4はサイロ本体1の壁
である。5A,5B,5Cは壁4に設置された温度計で
ある。7はサイロ本体1の底部に設けられた石炭払出し
部である。6は石炭払出し部7からの石炭を受けて搬出
する石炭搬出コンベアである。2. Description of the Related Art FIG. 3 shows a conventional coal silo. 1 is the silo body. Reference numeral 2 is a coal carry-in device that carries coal into the upper part of the silo body 1, and the coal 3 carried into the silo body 1 is stored in the silo. Reference numeral 4 is a wall of the silo body 1. Reference numerals 5A, 5B and 5C are thermometers installed on the wall 4. Reference numeral 7 is a coal dispensing unit provided at the bottom of the silo body 1. Reference numeral 6 denotes a coal unloading conveyor that receives and unloads the coal from the coal unloading unit 7.
【0003】この石炭サイロにおいては、石炭の貯蔵期
間が2〜3ケ月以上になると、サイロ本体1内で石炭の
成分が酸化発熱して自然発火する場合がある。この温度
上昇を検知するため、従来のサイロでは、前記のよう
に、壁4に温度計5A,5B,5Cを設置している。In this coal silo, when the storage period of the coal exceeds two to three months, the components of the coal in the silo body 1 may oxidize and generate heat to spontaneously ignite. In order to detect this temperature rise, in the conventional silo, the thermometers 5A, 5B and 5C are installed on the wall 4 as described above.
【0004】図4にそのブロック図を示す。温度計5
A,5B,5Cで計測した信号を信号処理装置12に集
め、温度上昇をとらえる。もし、温度上昇が感知された
場合、石炭払出し部7よりサイロ本体1内の石炭全量を
払出して冷却し、石炭搬入装置2から冷却された石炭を
再度投入するようにしている。FIG. 4 shows a block diagram thereof. Thermometer 5
The signals measured by A, 5B, and 5C are collected in the signal processing device 12, and the temperature rise is captured. If a temperature rise is detected, the coal discharging unit 7 discharges the entire amount of coal in the silo main body 1 for cooling, and the cooled coal is again charged from the coal carry-in device 2.
【0005】[0005]
【発明が解決しようとする課題】石炭自体の熱伝導率が
低く、また粒状物の集合では熱伝導率はさらに低いた
め、サイロ内の石炭層は実質的には断熱体である。The coal bed in the silo is essentially a heat insulator because of the low thermal conductivity of the coal itself, and even lower thermal conductivity of the aggregates of particulates.
【0006】したがって、前記の温度計5A,5B,5
Cによって温度上昇を検知する従来の石炭サイロでは、
サイロ内の石炭の一部に高温が生じても壁面でこの昇温
を充分にとらえることはできず、前記の従来の装置は有
効に作用せず防災の役目をはたすことは困難な事態が生
起する問題点がある。Therefore, the above-mentioned thermometers 5A, 5B, 5
In the conventional coal silo that detects the temperature rise by C,
Even if a high temperature occurs in a part of the coal in the silo, this temperature rise cannot be sufficiently caught on the wall surface, and the conventional device described above does not work effectively, and it is difficult to fulfill the role of disaster prevention. There is a problem to do.
【0007】本発明は以上の問題点を解決することがで
きる貯蔵庫を提供しようとするものである。The present invention intends to provide a storage that can solve the above problems.
【0008】[0008]
【課題を解決するための手段】本発明の貯蔵庫は、次の
手段を講じた。 (1)庫内に貯蔵された材料へ向って電波を発射する発
信装置、及び前記発信装置より発射され前記材料を通っ
た電波を受信する受信装置を備えた。 (2)前記(1)の本発明において、前記発信装置は5
00KHz〜1GHzの周波数の電波を発射するように
した。 (3)前記(1)の本発明において、前記発信装置は5
00KHz〜100MHzの周波数の電波を発射するよ
うにした。[Means for Solving the Problems] The storage of the present invention has the following means. (1) It is provided with a transmitter that emits an electric wave toward the material stored in the refrigerator, and a receiver that receives the electric wave emitted from the transmitter and passed through the material. (2) In the present invention according to (1) above, the transmission device is 5
Radio waves with a frequency of 00 KHz to 1 GHz are emitted. (3) In the present invention according to (1) above, the transmission device is 5
Radio waves with a frequency of 00 KHz to 100 MHz are emitted.
【0009】[0009]
【作用】前記(1)の本発明は、次の作用を有する。す
なわち、貯蔵庫に貯蔵されている材料には通常水分が含
まれている。例えば石炭の場合には、通常10%内外の
水分が含まれている。貯蔵庫内の材料層内の一部に高温
が発生した場合、高温部では水分が蒸発し乾燥が進む。
蒸発した水蒸気は高温部の上部の材料層に捕集される。
このように、貯蔵庫内の材料に高温の部分が発生する
と、同材料内の水分の分布に変化が現れる。材料と水の
電波特性(誘電率、導電率等)には差があるため、発信
装置から材料に向って発射された電波を受信装置で受信
する時には受信電波には材料層内の水分分布の変化に伴
う変化が現われることになる。このようにして、貯蔵庫
を一定の貯蔵状態において受信装置の受信電波の変化を
把握することにより、貯蔵庫内の材料内の水分分布の変
化をとらえることができ、これによって同材料層内での
高温部の発生を検知することができる。The function (1) of the present invention has the following function. That is, the material stored in the storage usually contains water. For example, in the case of coal, water content of 10% is usually contained. When a high temperature is generated in a part of the material layer in the storage, moisture evaporates in the high temperature portion and drying progresses.
The vaporized water vapor is collected in the material layer above the high temperature portion.
Thus, when a high temperature portion is generated in the material in the storage, the distribution of water in the material changes. Since the radio wave characteristics (dielectric constant, conductivity, etc.) of the material and water are different, when the radio wave emitted from the transmitter toward the material is received by the receiver, the received radio wave shows the distribution of water content in the material layer. The changes that accompany changes will appear. In this way, by grasping the change in the reception radio wave of the receiving device in a storage state with a constant storage state, it is possible to capture the change in the moisture distribution in the material in the storage chamber, and thereby the high temperature in the same material layer. It is possible to detect the occurrence of parts.
【0010】貯蔵庫に貯蔵された石炭、穀物、パルプ等
の材料の水分分布をとらえるために使用される電波の周
波数は、材料中での電波の減衰特性、被検出部の寸法及
びアンテナ長さ等より決められる。電波の減衰特性は次
の数1の浸透深さdによって表わされる。The frequency of the radio wave used to detect the moisture distribution of materials such as coal, grain, pulp, etc. stored in the storage is the attenuation characteristic of the radio wave in the material, the size of the detected part, the antenna length, etc. Determined by The attenuation characteristic of the radio wave is expressed by the penetration depth d of the following equation 1.
【0011】[0011]
【数1】 [Equation 1]
【0012】前記数1より、電波の周波数が高いほど石
炭等の材料層内での減衰が大きいことが判る。しかし、
周波数が1GHzを越えると減衰が大きく、通常の貯蔵
庫では使用することができない。一方、石炭と水又は乾
燥炭と水分を含んだ通常炭等の材料と共に水が存在する
場合においては、材料と水又は乾燥材料と水分を含んだ
材料の前記εγとtanδの値の違いによって水分分
布、即ち乾燥部の発生を検知することができる。従っ
て、被検出部の長さに比して浸透深さが大きいもので
は、減衰が弱く変化を検出できず、500KHzより低
い周波数域の電波では分解能が低く実用に適さない。From the above equation 1, it can be seen that the higher the frequency of the radio wave, the greater the attenuation in the material layer such as coal. But,
If the frequency exceeds 1 GHz, the attenuation is large and it cannot be used in a normal storage. On the other hand, in the case where water is present together with materials such as coal and water or dry coal and normal coal containing water, the water content may differ due to the difference between the values of εγ and tanδ of the material and water or the material containing dry material and water. It is possible to detect the distribution, that is, the occurrence of the dry portion. Therefore, if the penetration depth is large compared to the length of the detected part, the attenuation is weak and the change cannot be detected, and the radio wave in the frequency range lower than 500 KHz has low resolution and is not suitable for practical use.
【0013】以上の理由によって、前記本発明(2)に
おいては500KHz/1GHzの範囲の周波数をもつ
電波を採用した。これによって材料の水分分布をとらえ
ることができる。For the above reasons, in the present invention (2), radio waves having a frequency in the range of 500 KHz / 1 GHz are adopted. This allows the moisture distribution of the material to be captured.
【0014】また更に、現在の計測系では、電波の周波
数が100MHz以下の場合に電波の減衰を容易に計測
することができる。従って、前記本発明(3)において
は500KHz〜100MHzの範囲の周波数をもつ電
波を採用した。これによって材料の水分分布を確実にと
らえることができる。Furthermore, the current measurement system can easily measure the attenuation of radio waves when the frequency of the radio waves is 100 MHz or less. Therefore, in the present invention (3), radio waves having a frequency in the range of 500 KHz to 100 MHz are adopted. This ensures that the moisture distribution of the material can be captured.
【0015】[0015]
【実施例】本発明の一実施例を、図1及び図2によって
説明する。1はサイロ本体、2は石炭をサイロ本体1の
上部へ搬入する石炭搬入装置、3はサイロ本体1内に貯
蔵された石炭層、4はサイロ本体1の外壁、7はサイロ
本体1の底部に設けられた石炭払出し部、6は石炭払出
し部7からの石炭を受けて搬出する石炭搬出コンベアで
ある。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. DESCRIPTION OF SYMBOLS 1 is a silo main body, 2 is a coal carrying-in device which carries in coal to the upper part of the silo main body 1, 3 is a coal layer stored in the silo main body 1, 4 is the outer wall of the silo main body 1, 7 is the bottom of the silo main body 1. The coal delivery unit 6 provided is a coal delivery conveyor that receives and delivers the coal from the coal delivery unit 7.
【0016】8A,8B,8C,8Dは外壁4の一部に
外壁から凸出するように設けられた凹状構造部であり、
内部には、アンテナ9A,9B,9C,9Dが設けられ
ている。前記凹状構造部8A,8Bは外壁4の一側に、
また凹状構造物8C,8Dは外壁の他側に、それぞれ石
炭層3をはさんで対向するように配置され、かつ、凹状
構造部8Aと8Cは同じ高さにあり、また凹状構造部8
Bと8Dは同じ高さにある。Reference numerals 8A, 8B, 8C and 8D denote concave structure portions provided on a part of the outer wall 4 so as to project from the outer wall,
Antennas 9A, 9B, 9C and 9D are provided inside. The concave structure portions 8A and 8B are provided on one side of the outer wall 4,
The concave structures 8C and 8D are arranged on the other side of the outer wall so as to face each other with the coal layer 3 in between, and the concave structures 8A and 8C are at the same height.
B and 8D are at the same height.
【0017】前記アンテナ9Aよりは石炭サイロ本体1
内の石炭層へ向って電波を発射し、前記アンテナ9B,
9C,9Dは石炭層を通った電波を受信するようになっ
ている。前記アンテナ9A,9B,9C,9Dは、図2
に示すように信号線によって信号処理装置12に接続さ
れている。また、前記アンテナ9Aより発射される電波
としては、石炭層3内の水分分布によって受信電波の変
化(信号強度、位相差およびそれらの周波数特性差)が
大きく、かつ、現在の測定系で電波の減衰を容易に計測
することができる500KHz〜100MHzの範囲の
周波数を有するものが用いられる。Coal silo main body 1 rather than the antenna 9A
Radio waves are emitted toward the inner coal layer, and the antenna 9B,
9C and 9D are designed to receive radio waves that have passed through the coal seam. The antennas 9A, 9B, 9C and 9D are shown in FIG.
As shown in, the signal line is connected to the signal processing device 12. As for the radio wave emitted from the antenna 9A, the change of the received radio wave (signal strength, phase difference and their frequency characteristic difference) is large due to the moisture distribution in the coal layer 3, and the radio wave of the current measurement system is Those having a frequency in the range of 500 KHz to 100 MHz that can easily measure the attenuation are used.
【0018】石炭層3内に図2に示すように高温部10
が発生した場合、高温部10より水分が蒸発する。斜線
で示される部分11は高温部10の上部に接する低温部
分であるが、高温部10から蒸発した水分は、高温部1
0に比較して低温の低温部分11の石炭表面に凝縮、捕
集される。時間の経過に従い、高温部10は乾燥し、そ
の上部の低温部11では水分が増加する形で、水分の分
布に変化が生ずる。As shown in FIG. 2, the high temperature portion 10 is provided in the coal bed 3.
When occurs, water evaporates from the high temperature section 10. A portion 11 indicated by diagonal lines is a low temperature portion in contact with the upper portion of the high temperature portion 10, but the water evaporated from the high temperature portion 10 is
It is condensed and collected on the coal surface of the low temperature portion 11 having a lower temperature than 0. With the passage of time, the high temperature part 10 dries, and in the low temperature part 11 above the high temperature part 10, the water content increases so that the distribution of the water content changes.
【0019】本実施例では、アンテナ9Aより電波を石
炭層3へ向って発射し、アンテナ9B,9C,9Dで石
炭層3を通った電波を受信する。電波は石炭層3内で伝
搬、減衰、分散、回折を繰返した後、アンテナ9B,9
C,9Dに受信され、その信号が信号処理装置12に送
られ、石炭層3内の温度上昇がとらえられる。In this embodiment, radio waves are emitted from the antenna 9A toward the coal layer 3, and the radio waves passing through the coal layer 3 are received by the antennas 9B, 9C and 9D. The radio waves are repeatedly propagated, attenuated, dispersed, and diffracted in the coal layer 3, and then the antennas 9B, 9
The signal is received by C and 9D, the signal is sent to the signal processing device 12, and the temperature rise in the coal seam 3 is captured.
【0020】先ず貯蔵初期に石炭層が力学的に安定した
時点で、アンテナ9Aから電波を発射し、アンテナ9
B,9C,9Dで受信し、信号処理装置12においてデ
ータを記録・保存しておく。First, when the coal bed is mechanically stabilized in the initial stage of storage, radio waves are emitted from the antenna 9A to
The signals are received by B, 9C, and 9D, and the data is recorded and saved in the signal processing device 12.
【0021】その後、定時刻毎に同様の計測を行う。石
炭層3内に高温部10が発生した場合には、前記の水分
分布の変化が生ずる。水と石炭の電波特性には差がある
ため、前記石炭層3における水分分布の変化は、受信を
行うアンテナ9B,9C,9Dにおける受信電波の変化
(信号強度、位相差およびそれらの周波数特性差)とし
て現われる。After that, the same measurement is performed at regular time intervals. When the high temperature part 10 is generated in the coal layer 3, the above-mentioned change in water distribution occurs. Since there is a difference in the radio wave characteristics between water and coal, the change in the water distribution in the coal layer 3 is caused by the change in the received radio waves in the antennas 9B, 9C, 9D that perform reception (signal strength, phase difference and their frequency characteristic differences). ) Appears as.
【0022】しかも、本実施例では、石炭層3内の水分
分布の変化によって受信電波の変化が大きい500KH
z〜100MHzの範囲の周波数をもつ電波を用いてい
るために、石炭層3における水分分布の変化に伴う受信
電波の変化を大きくすることができる。Moreover, in the present embodiment, the change of the received radio wave is large at 500 KH due to the change of the water distribution in the coal layer 3.
Since a radio wave having a frequency in the range of z to 100 MHz is used, it is possible to increase the change in the received radio wave due to the change in the moisture distribution in the coal layer 3.
【0023】以上の定時計測結果を初期値および前時刻
までの計測値と比較することによって、石炭層3におけ
る水分変化の状態を把握することができる。これにより
石炭層3内での高温・乾燥部の発生を検知することがで
きる。検知後は、適宜の防災処置を実施することにより
石炭の自然発火を防止することができる。By comparing the above regular measurement results with the initial value and the measured values up to the previous time, the state of water change in the coal seam 3 can be grasped. As a result, it is possible to detect the occurrence of a high temperature / drying section in the coal layer 3. After detection, it is possible to prevent spontaneous ignition of coal by implementing appropriate disaster prevention measures.
【0024】前記実施例では、アンテナを9A,9B,
9C,9Dの4個としたが、アンテナの個数はこれに限
るものでなく、受発信を同時に行うものであれば、1個
でもよい。また、アンテナの個数が多くなれば、信号処
理の手間は増えるが、細かな変化を把えることが可能に
なる。したがって、本発明では所要精度に応じアンテナ
の数を増減する。In the above embodiment, the antennas 9A, 9B,
Although four antennas 9C and 9D are used, the number of antennas is not limited to this, and one antenna may be used as long as simultaneous reception and transmission are performed. Also, if the number of antennas increases, the time and effort for signal processing increases, but it becomes possible to grasp small changes. Therefore, in the present invention, the number of antennas is increased or decreased according to the required accuracy.
【0025】また、前記実施例では、サイロ内の貯蔵物
を石炭としたが、本発明はこれに限られるものではな
く、小麦、大豆等の穀類、パルプ、乾草等貯蔵庫内に貯
蔵される粉、粒体に広く本発明を適用することができ
る。In the above embodiment, coal was used as the stored material in the silo, but the present invention is not limited to this, and wheat, soybeans and other grains, pulp, hay and other powders stored in a storage container The present invention can be widely applied to granules.
【0026】また更に、本発明において用いられる電波
の周波数は500KHz〜100MHzに限られず、
「作用」欄で説明したように、500KHz〜1GHz
の範囲の周波数のものを用いることができる。Furthermore, the frequency of the radio wave used in the present invention is not limited to 500 KHz to 100 MHz,
As described in the "Operation" column, 500 KHz to 1 GHz
It is possible to use one having a frequency in the range of.
【0027】[0027]
【発明の効果】本発明は、請求項1に記載したように、
庫内に収容された材料に向って電波を発射する発信装置
と、前記発信装置より発射され前記材料を通った電波を
受信する受信装置を備え、また、請求項2及び請求項3
に記載されたように適当な周波数の電波を用いることに
よって、庫内に貯蔵された材料の水分分布をとらえ、高
温部の発生を確実に検知することができる。According to the present invention, as described in claim 1,
The transmitting device which emits an electric wave toward the material housed in the refrigerator, and the receiving device which receives the electric wave emitted from the transmitting device and passed through the material, further comprising:
As described above, by using a radio wave having an appropriate frequency, it is possible to catch the moisture distribution of the material stored in the refrigerator and reliably detect the generation of the high temperature part.
【図1】本発明の一実施例の1部を破断して示す概略図
である。FIG. 1 is a schematic view showing a part of an embodiment of the present invention in a cutaway manner.
【図2】同実施例の信号のブロック図である。FIG. 2 is a block diagram of signals in the embodiment.
【図3】従来の石炭サイロの1部を破断して示す概略図
である。FIG. 3 is a schematic view showing a part of a conventional coal silo, broken away.
【図4】同従来の石炭サイロにおける信号処理を示すブ
ロック図である。FIG. 4 is a block diagram showing signal processing in the conventional coal silo.
1 石炭サイロ本体 2 石炭搬入装置 3 石炭層 4 サイロ本体の外壁 5A〜5C 温度計 6 石炭搬出コンベア 7 石炭払出し部 8A,8B,8C,8D 凹状構造部 9A,9B,9C,9D アンテナ 10 石炭層内に発生した高温部 11 石炭層内の低温部 12 信号処理装置 DESCRIPTION OF SYMBOLS 1 Coal silo main body 2 Coal carry-in device 3 Coal layer 4 Outer wall of silo main body 5A to 5C Thermometer 6 Coal unloading conveyor 7 Coal discharging part 8A, 8B, 8C, 8D Recessed structure part 9A, 9B, 9C, 9D Antenna 10 Coal layer High temperature part generated inside 11 Low temperature part inside coal bed 12 Signal processing device
フロントページの続き (72)発明者 氏原 隆澄 広島市西区観音新町四丁目6番22号 三菱 重工業株式会社広島製作所内 (72)発明者 山田 勝彦 広島市西区観音新町四丁目6番22号 三菱 重工業株式会社広島研究所内Front Page Continuation (72) Inventor Takasumi Ujihara 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City Mitsubishi Heavy Industries, Ltd. Hiroshima Works (72) Inventor Katsuhiko Yamada 4-6-22 Kannon-shinmachi, Nishi-ku, Hiroshima City Mitsubishi Heavy Industries Shares Company Hiroshima Institute
Claims (3)
射する発信装置、及び前記発信装置より発射され前記材
料を通った電波を受信する受信装置を備えたことを特徴
とする貯蔵庫。1. A storage characterized by comprising: a transmitter that emits an electric wave toward a material stored in the store; and a receiver that receives a radio wave emitted from the transmitter and passed through the material.
の周波数の電波を発射することを特徴とする請求項1に
記載の貯蔵庫。2. The transmitter is 500 KHz to 1 GHz.
The storehouse according to claim 1, which emits radio waves of the frequency.
Hzの周波数の電波を発射することを特徴とする請求項
1に記載の貯蔵庫。3. The transmitter is 500 KHz to 100 M
The storage according to claim 1, which emits radio waves having a frequency of Hz.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20508794A JPH0867315A (en) | 1994-08-30 | 1994-08-30 | Storage cabinet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20508794A JPH0867315A (en) | 1994-08-30 | 1994-08-30 | Storage cabinet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0867315A true JPH0867315A (en) | 1996-03-12 |
Family
ID=16501216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20508794A Pending JPH0867315A (en) | 1994-08-30 | 1994-08-30 | Storage cabinet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0867315A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016068865A1 (en) * | 2014-10-28 | 2016-05-06 | Halliburton Energy Services, Inc. | Identification of material type and condition in a dry bulk material storage bin |
WO2016068868A1 (en) * | 2014-10-28 | 2016-05-06 | Halliburton Energy Services, Inc. | Identification of material type and condition in a dry bulk material hopper |
-
1994
- 1994-08-30 JP JP20508794A patent/JPH0867315A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016068865A1 (en) * | 2014-10-28 | 2016-05-06 | Halliburton Energy Services, Inc. | Identification of material type and condition in a dry bulk material storage bin |
WO2016068868A1 (en) * | 2014-10-28 | 2016-05-06 | Halliburton Energy Services, Inc. | Identification of material type and condition in a dry bulk material hopper |
GB2545836A (en) * | 2014-10-28 | 2017-06-28 | Halliburton Energy Services Inc | Identification of material type and condition in a dry bulk material hopper |
GB2546191A (en) * | 2014-10-28 | 2017-07-12 | Halliburton Energy Services Inc | Identification of material type and condition in a dry bulk material storage bin |
US9719938B2 (en) | 2014-10-28 | 2017-08-01 | Halliburton Energy Services, Inc. | Identification of material type and condition in a dry bulk material hopper |
US9772294B2 (en) | 2014-10-28 | 2017-09-26 | Halliburton Energy Services, Inc. | Identification of material type and condition in a dry bulk material storage bin |
US10274434B2 (en) | 2014-10-28 | 2019-04-30 | Halliburton Energy Services, Inc. | Identification of material type and condition in a dry bulk material storage bin |
GB2545836B (en) * | 2014-10-28 | 2021-01-13 | Halliburton Energy Services Inc | Identification of material type and condition in a dry bulk material hopper |
GB2546191B (en) * | 2014-10-28 | 2021-04-28 | Halliburton Energy Services Inc | Identification of material type and condition in a dry bulk material storage bin |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6147503A (en) | Method for the simultaneous and independent determination of moisture content and density of particulate materials from radio-frequency permittivity measurements | |
JPS54134479A (en) | Wireless temperature measuring device | |
Lawrence et al. | Radio-frequency density-independent moisture determination in wheat | |
JPH0697476B2 (en) | Variable radio frequency electronic article surveillance | |
US20200393557A1 (en) | Dual Detector With Transverse Coils | |
Abegaonkar et al. | A microwave microstrip ring resonator as a moisture sensor for biomaterials: application to wheat grains | |
JPH0867315A (en) | Storage cabinet | |
Trabelsi et al. | Determining physical properties of grain by microwave permittivity measurements | |
Trabelsi et al. | Microwave dielectric properties of shelled, yellow-dent field corn | |
Achammer et al. | Snow dielectric properties: from DC to microwave X-band | |
FI3725003T3 (en) | Dual detector with transverse coils | |
US6278412B1 (en) | Method and means for moisture measurement | |
US11982180B2 (en) | Arrangement, drill rig and method therein for detection of water in material flow | |
Van Lint | Electromagnetic emission from chemical explosions | |
US20090199638A1 (en) | Measuring physical quantities using resonant structures | |
JPH08219893A (en) | Temperature detecting apparatus for container of granular material | |
Nelson et al. | Sensing grain moisture content through dielectric properties | |
JPH0646219B2 (en) | Bottom and side detectors for continuous unloader | |
US6008661A (en) | Field strength gap tester | |
Boccard et al. | Far-field passive temperature sensing up to 700 C using a dielectric resonator | |
Trabelsi et al. | Microwave moisture meter for rapid and nondestructive grading of peanuts | |
Toropainen | Measurement of the properties of granular materials by microwave backscattering | |
Wang et al. | Study on the frequency bands applied in grains' moisture measurement | |
RU2316728C1 (en) | Board device for measuring oil film on water | |
EP0809784B1 (en) | Proximity fuse with passive unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20001114 |