JPH0866632A - Anode electrode catalyst for high-molecular solid electrolytic type fuel cell - Google Patents
Anode electrode catalyst for high-molecular solid electrolytic type fuel cellInfo
- Publication number
- JPH0866632A JPH0866632A JP6225840A JP22584094A JPH0866632A JP H0866632 A JPH0866632 A JP H0866632A JP 6225840 A JP6225840 A JP 6225840A JP 22584094 A JP22584094 A JP 22584094A JP H0866632 A JPH0866632 A JP H0866632A
- Authority
- JP
- Japan
- Prior art keywords
- platinum
- fuel cell
- catalyst
- alloy
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 52
- 239000000446 fuel Substances 0.000 title claims abstract description 48
- 239000007787 solid Substances 0.000 title description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 82
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 55
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 41
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 27
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 25
- 239000000956 alloy Substances 0.000 claims abstract description 25
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 16
- 239000010941 cobalt Substances 0.000 claims abstract description 16
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000010931 gold Substances 0.000 claims abstract description 16
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052737 gold Inorganic materials 0.000 claims abstract description 15
- 239000011572 manganese Substances 0.000 claims abstract description 15
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 14
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 8
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 8
- 229910052751 metal Inorganic materials 0.000 claims abstract description 7
- 239000002184 metal Substances 0.000 claims abstract description 7
- 239000005518 polymer electrolyte Substances 0.000 claims description 9
- 229910001260 Pt alloy Inorganic materials 0.000 claims description 5
- 239000010411 electrocatalyst Substances 0.000 claims description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 abstract description 17
- 229910002091 carbon monoxide Inorganic materials 0.000 abstract description 17
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 abstract description 12
- 208000005374 Poisoning Diseases 0.000 abstract description 9
- 231100000572 poisoning Toxicity 0.000 abstract description 9
- 230000000607 poisoning effect Effects 0.000 abstract description 9
- 208000001408 Carbon monoxide poisoning Diseases 0.000 abstract description 3
- 238000000746 purification Methods 0.000 abstract description 2
- 150000002739 metals Chemical class 0.000 abstract 1
- 230000004048 modification Effects 0.000 abstract 1
- 238000012986 modification Methods 0.000 abstract 1
- 229910000510 noble metal Inorganic materials 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 5
- 229910000990 Ni alloy Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229910052732 germanium Inorganic materials 0.000 description 5
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- 239000011733 molybdenum Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- 239000006229 carbon black Substances 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- PCLURTMBFDTLSK-UHFFFAOYSA-N nickel platinum Chemical compound [Ni].[Pt] PCLURTMBFDTLSK-UHFFFAOYSA-N 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000007784 solid electrolyte Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910001128 Sn alloy Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- AVMBSRQXOWNFTR-UHFFFAOYSA-N cobalt platinum Chemical compound [Pt][Co][Pt] AVMBSRQXOWNFTR-UHFFFAOYSA-N 0.000 description 2
- JUWSSMXCCAMYGX-UHFFFAOYSA-N gold platinum Chemical compound [Pt].[Au] JUWSSMXCCAMYGX-UHFFFAOYSA-N 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- IGOJMROYPFZEOR-UHFFFAOYSA-N manganese platinum Chemical compound [Mn].[Pt] IGOJMROYPFZEOR-UHFFFAOYSA-N 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000002407 reforming Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 229910000927 Ge alloy Inorganic materials 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 239000012050 conventional carrier Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- CKSRCDNUMJATGA-UHFFFAOYSA-N germanium platinum Chemical compound [Ge].[Pt] CKSRCDNUMJATGA-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- ZMCCBULBRKMZTH-UHFFFAOYSA-N molybdenum platinum Chemical compound [Mo].[Pt] ZMCCBULBRKMZTH-UHFFFAOYSA-N 0.000 description 1
- DEPMYWCZAIMWCR-UHFFFAOYSA-N nickel ruthenium Chemical compound [Ni].[Ru] DEPMYWCZAIMWCR-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- FHMDYDAXYDRBGZ-UHFFFAOYSA-N platinum tin Chemical compound [Sn].[Pt] FHMDYDAXYDRBGZ-UHFFFAOYSA-N 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/921—Alloys or mixtures with metallic elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M2004/8678—Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
- H01M2004/8684—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Catalysts (AREA)
- Inert Electrodes (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、燃料電池のアノードと
して使用するニッケル、コバルト及びマンガンの少なく
とも1種と貴金属の合金から成る電極触媒に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrocatalyst which is used as an anode of a fuel cell and which comprises an alloy of at least one of nickel, cobalt and manganese and a noble metal.
【0002】[0002]
【従来技術及び問題点】電気化学セル、例えば高分子固
体電解質型燃料電池はリン酸型燃料電池と比較してコン
パクトで高い電流密度を取り出せることから電気自動
車、宇宙船用の電源として注目されている。又この分野
の開発においても種々の電極構造や触媒作製方法、シス
テム構成等に関する提案がなされている。従来の燃料電
池の電極構造は、例えばカソード用集電体/カソード/
高分子固体電解質(イオン交換膜)/アノード/アノー
ド用集電体の5層サンドイッチ構造となっている。2. Description of the Related Art Electrochemical cells, such as polymer electrolyte fuel cells, are attracting attention as a power source for electric vehicles and spacecraft because they are more compact and have higher current densities than phosphoric acid fuel cells. . Also, in the development of this field, various electrode structures, catalyst production methods, system configurations, etc. have been proposed. The conventional fuel cell electrode structure is, for example, a collector for cathode / cathode /
It has a five-layer sandwich structure of polymer solid electrolyte (ion exchange membrane) / anode / collector for anode.
【0003】この燃料電池に供給される燃料は例えばメ
タノール改質により製造されるが、この燃料には水素の
他に二酸化炭素や一酸化炭素が含まれている。前記燃料
電池のアノードとして従来から、触媒を担持させたカー
ボンブラックとポリテトラフルオロエチレン(以下PT
FEという)の粉末混合物をガス透過性カーボン不織紙
の上に層状に形成したものが汎用されている。しかしな
がらこのアノード触媒は低温作動時に特に前記燃料中に
含有される一酸化炭素により被毒されて触媒活性が大き
く低下することが多かった。The fuel supplied to this fuel cell is produced, for example, by reforming methanol, and this fuel contains carbon dioxide and carbon monoxide in addition to hydrogen. Conventionally, carbon black supporting a catalyst and polytetrafluoroethylene (hereinafter referred to as PT) are used as the anode of the fuel cell.
A powder mixture of FE) formed on a gas-permeable carbon non-woven paper in layers is generally used. However, this anode catalyst is often poisoned by carbon monoxide contained in the fuel during low-temperature operation, and its catalytic activity is often greatly reduced.
【0004】この欠点を回避するためには、純粋な水素
を燃料とすることが望ましいが純粋な水素は高価である
だけでなくその貯蔵もコストが掛かり貯蔵タンク中から
大気中に飛散しやすく長期間の貯蔵が容易でない。前記
メタノール改質した燃料から一酸化炭素を除去すればタ
ンクから供給される純粋な水素の場合と同様に被毒の問
題は生じないが、純粋な水素を使用する場合と同様にコ
スト高となりしかも実際には多段階処理しても一酸化炭
素を完全に除去することは不可能に近い。従来から一酸
化炭素による燃料電池の電極の被毒を回避することは当
該分野における最大関心事であり、前記被毒は燃料電池
の実用化における重大な障害となっており、種々の電極
物質が提案されているにもかかわらず、十分な被毒耐性
を有する燃料電池用電極は依然として開発されていな
い。本発明者は被毒特性に優れたスズと貴金属の合金か
ら成る燃料電池用アノード電極触媒(特願平6−23776
号)及びゲルマニウム及び/又はモリブデンと貴金属の
合金から成る燃料電池用アノード電極触媒(特願平6−
114638号)を提案した。In order to avoid this drawback, it is desirable to use pure hydrogen as a fuel, but not only is pure hydrogen expensive, but also its storage is costly and easily scattered from the storage tank to the atmosphere for a long time. Not easy to store for a period. If carbon monoxide is removed from the methanol reformed fuel, the problem of poisoning does not occur as in the case of pure hydrogen supplied from the tank, but the cost is high as in the case of using pure hydrogen. Actually, it is almost impossible to completely remove carbon monoxide even by multi-step treatment. In the past, avoiding poisoning of fuel cell electrodes by carbon monoxide has been of utmost concern in the field, and the poisoning has been a serious obstacle to the practical application of fuel cells, and various electrode materials Despite the proposal, a fuel cell electrode having sufficient resistance to poisoning has not been developed yet. The present inventor has made an anode electrode catalyst for a fuel cell, which is composed of an alloy of tin and a noble metal having excellent poisoning characteristics (Japanese Patent Application No. 6-23776).
No.) and an alloy of a noble metal with germanium and / or molybdenum and an anode electrode catalyst for a fuel cell (Japanese Patent Application No. 6-
114638) was proposed.
【0005】[0005]
【発明の目的】本発明は、このスズ−貴金属触媒及びゲ
ルマニウム−モリブデン−貴金属触媒と同等の活性を有
する電極触媒を提供することを目的とする。OBJECTS OF THE INVENTION It is an object of the present invention to provide an electrode catalyst having an activity equivalent to that of the tin-noble metal catalyst and the germanium-molybdenum-noble metal catalyst.
【0006】[0006]
【問題点を解決するための手段】本発明は、1〜70原子
%のニッケル、コバルト,マンガン及び金の少なくとも
1種と、白金、パラジウム及びルテニウムの少なくとも
1種の金属との合金を含んで成る高分子固体電解質型燃
料電池用アノード電極触媒である。The present invention comprises an alloy of 1 to 70 atomic% of at least one of nickel, cobalt, manganese and gold and at least one metal of platinum, palladium and ruthenium. The present invention is an anode electrode catalyst for a polymer electrolyte fuel cell.
【0007】以下、本発明の詳細について説明する。本
発明に係わる高分子固体電解質型燃料電池用アノード電
極触媒は、1〜70原子%のニッケル、コバルト,マンガ
ン及び金の少なくとも1種と、白金、パラジウム及びル
テニウムの少なくとも1種の貴金属とから成る合金であ
り、本発明における合金とは通常の合金の他にアモルフ
ァスつまり非晶質合金、固溶体及び金属間化合物を含
む。従って本発明に係わる電極触媒は、ニッケル、コバ
ルト,マンガン及び金の少なくとも1種と貴金属を溶融
混和し更に冷却して得られるだけでなく、Coa Nib
Mnc Aud Mee (ここでMeは白金、パラジウム又
はルテニウムであり、0≦a,b,c,d<1、0<e
<1である)で表される金属間化合物を作製しそのまま
使用することもできる。The details of the present invention will be described below. The anode electrode catalyst for polymer electrolyte fuel cells according to the present invention comprises 1 to 70 atomic% of at least one of nickel, cobalt, manganese and gold and at least one noble metal of platinum, palladium and ruthenium. The alloy in the present invention includes an amorphous alloy, a solid solution, and an intermetallic compound in addition to a normal alloy. Therefore, the electrode catalyst according to the present invention is not only obtained by melt-mixing at least one of nickel, cobalt, manganese and gold and a noble metal and further cooling, but also Co a Ni b
Mn c Au d Me e (where Me is platinum, palladium or ruthenium, and 0 ≦ a, b, c, d <1, 0 <e
An intermetallic compound represented by <1) can be prepared and used as it is.
【0008】本発明の電極触媒ではニッケル、コバル
ト,マンガン及び金の少なくとも1種の原子%が1%未
満であると貴金属触媒被毒防止効果が殆どなく、70%を
越えると特に燃料電池の高分子固体電解質である陽イオ
ン交換膜が酸型の場合にニッケル等が電解質中に溶出し
やすくなり、更に主たる触媒物質である貴金属の絶対量
が不足して触媒活性が低下してしまう。本発明で使用す
る貴金属は白金、パラジウム及びルテニウムから選択さ
れ各金属単独又はそれらを組み合わせて使用し、特に好
ましい貴金属は白金である。通常ニッケル、コバルト,
マンガン及び金の少なくとも1種の成分をこれら貴金属
に添加して合金触媒を構成するが、他の成分例えばス
ズ、ゲルマニウム及びモリブデン等を若干量含有してい
ても良い。In the electrocatalyst of the present invention, if the atomic% of at least one of nickel, cobalt, manganese and gold is less than 1%, there is almost no effect of preventing poisoning of the noble metal catalyst. When the cation exchange membrane, which is a molecular solid electrolyte, is of an acid type, nickel and the like are likely to be eluted into the electrolyte, and the absolute amount of the noble metal, which is the main catalyst substance, is insufficient and the catalytic activity is reduced. The noble metal used in the present invention is selected from platinum, palladium and ruthenium, and each metal is used alone or in combination, and a particularly preferred noble metal is platinum. Usually nickel, cobalt,
At least one component of manganese and gold is added to these noble metals to form an alloy catalyst, but other components such as tin, germanium and molybdenum may be contained in a slight amount.
【0009】貴金属とニッケル、コバルト,マンガン及
び金の少なくとも1種の組合せつまり貴金属触媒にニッ
ケル等を添加することにより一酸化炭素被毒が抑制され
る理由は解明されていないが、一酸化炭素の吸着サイト
がニッケル等により占有されて一酸化炭素吸着量が減少
しあるいは吸着自体が防止されること及びニッケル等が
酸化触媒として機能して一旦吸着した一酸化炭素を二酸
化炭素へ酸化して一酸化炭素を除去することの両者の相
乗的効果であると推測される。ニッケル等の量にも依存
するが、本発明の電極触媒を使用して燃料電池を運転す
ると供給される燃料中に100 ppm程度の一酸化炭素を
含有していても触媒活性が低下する程度に触媒が被毒さ
れることが殆どなく、安定した運転を継続できる。The reason why carbon monoxide poisoning is suppressed by adding nickel or the like to a combination of a noble metal and at least one of nickel, cobalt, manganese, and gold, that is, a noble metal catalyst, has not been clarified. The adsorption site is occupied by nickel or the like to reduce the amount of adsorbed carbon monoxide, or the adsorption itself is prevented, and nickel or the like functions as an oxidation catalyst to oxidize carbon monoxide once adsorbed to carbon dioxide. It is speculated that it is a synergistic effect of both of removing carbon. Although it depends on the amount of nickel, etc., when the fuel cell is operated using the electrode catalyst of the present invention, even if the fuel supplied contains about 100 ppm of carbon monoxide, the catalytic activity is lowered to such an extent. The catalyst is hardly poisoned and stable operation can be continued.
【0010】前記触媒を燃料電池にアノードとして組み
込むには、例えば従来のようにカーボンブラック等の担
体に第1の金属を熱分解法等により担持した後、更に第
2の金属を担持して合金化し、それをイオン樹脂、PT
FE等で薄膜又は多孔質体として基体又は電解質膜上に
形成し、これを前記燃料電池の所定位置に固定し、ある
いは製造した合金をスパッタリングして基体又は電解質
膜上に該合金の薄膜を形成しこの基体又は合金触媒付き
電解質膜を集電体と共に燃料電池の所定箇所に設置す
る。In order to incorporate the above catalyst into a fuel cell as an anode, for example, a conventional carrier such as carbon black is loaded with a first metal by a thermal decomposition method or the like, and then a second metal is further loaded to form an alloy. Ionic resin, PT
It is formed as a thin film or a porous body on FE or the like on a substrate or an electrolyte membrane, and it is fixed at a predetermined position of the fuel cell, or the produced alloy is sputtered to form a thin film of the alloy on the substrate or the electrolyte membrane. The substrate or the electrolyte membrane with alloy catalyst is placed together with the current collector at a predetermined position of the fuel cell.
【0011】燃料電池の対極であるカソードは特に限定
されず、従来の電極例えば触媒を担持したカーボンブラ
ックとPTFEの粉末を混合し基体上に担持して焼成し
て作製したものを使用すればよい。このようにして作製
された燃料電池はアノードが本発明の電極触媒により構
成されているため、前述の通り燃料が100 ppm程度の
一酸化炭素を含有していても運転に影響が生ずることが
殆どない。メタノール改質により製造される燃料中の一
酸化炭素含有量は100 ppm程度まで比較的容易に低減
することが可能であるため、更に精製を行うことなく製
造された燃料をそのまま使用することができる。The cathode, which is the counter electrode of the fuel cell, is not particularly limited, and conventional electrodes such as those prepared by mixing catalyst-supporting carbon black and PTFE powder and supporting them on a substrate and firing them may be used. . Since the anode of the fuel cell produced in this manner is composed of the electrode catalyst of the present invention, as described above, even if the fuel contains carbon monoxide of about 100 ppm, the operation is hardly affected. Absent. Since the carbon monoxide content in the fuel produced by methanol reforming can be reduced to 100 ppm relatively easily, the produced fuel can be used as it is without further purification. .
【0012】[0012]
【実施例】次に本発明に係わる高分子固体電解質型燃料
電池用アノード電極触媒に関する実施例を説明するが、
本実施例は本発明を限定するものではない。[Examples] Examples of anode electrode catalysts for polymer solid oxide fuel cells according to the present invention will be described below.
This example does not limit the present invention.
【実施例1】白金及びニッケルのターゲットを減圧下の
チャンバー中で同時に直径10mmのリード端子付きガラ
ス板にアルゴンスパッタリングして厚さ0.5 μmの白金
−ニッケル合金薄膜を形成した。これを直径8mmのス
テンレス製ロット棒の片端面に固定し回転電極装置に装
着した。Example 1 A platinum and nickel target was simultaneously subjected to argon sputtering on a glass plate with a lead terminal having a diameter of 10 mm in a chamber under reduced pressure to form a platinum-nickel alloy thin film having a thickness of 0.5 μm. This was fixed to one end surface of a stainless steel rod having a diameter of 8 mm and attached to a rotary electrode device.
【0013】白金:ニッケル=76:24(原子%)の回転
電極を0.1 Mの過塩素酸水溶液中に浸漬し、一酸化炭素
を100 ppm含有する水素を1時間バブリングして被毒
し、その後バブリングを継続しながら白金電極を対極と
して1500r.p.m.の回転を行いながら前記回転電極の電流
の経時変化を測定した。その結果を図1に示す。図1か
ら得られる電流は運転時間の経過によって殆ど影響を受
けず約2.1 mAで一定していることが分かる。A rotating electrode of platinum: nickel = 76: 24 (atomic%) was immersed in a 0.1 M aqueous solution of perchloric acid, and hydrogen containing 100 ppm of carbon monoxide was bubbled for 1 hour for poisoning. While bubbling was continued, the change with time of the current of the rotating electrode was measured while rotating at 1500 rpm with the platinum electrode as the counter electrode. The result is shown in FIG. It can be seen from Fig. 1 that the current obtained is almost unchanged with the lapse of operating time and is constant at about 2.1 mA.
【0014】[0014]
【実施例2】白金:ニッケルの原子比が58:42となるよ
うにしたこと以外は実施例1と同様にして回転電極を製
造した。この回転電極を使用し実施例1と同一条件で電
流の経時変化を測定した。その結果を図1に示す。図1
から得られる電流は実施例1の場合より小さいが運転時
間の経過によって殆ど影響を受けず約1.9 mAで一定し
ていることが分かる。Example 2 A rotating electrode was produced in the same manner as in Example 1 except that the atomic ratio of platinum: nickel was set to 58:42. Using this rotating electrode, the change in current with time was measured under the same conditions as in Example 1. The result is shown in FIG. FIG.
It can be seen that although the current obtained from the above is smaller than that in Example 1, it is almost unaffected by the passage of operating time and is constant at about 1.9 mA.
【0015】[0015]
【比較例1】白金−ニッケル合金の代わりに単味白金を
使用したこと以外は実施例1と同様にして回転電極を製
造した。この回転電極を使用し、電流測定開始直前に電
極表面の被毒一酸化炭素の脱着処理を施したこと以外は
実施例1と同一条件で電流の経時変化を測定した。その
結果を図1に示す。図1から得られる電流の初期値は5.
0 mAと大きいが、短時間で失活し15分経過後には得ら
れる電流がゼロになることが分かる。Comparative Example 1 A rotary electrode was manufactured in the same manner as in Example 1 except that plain platinum was used instead of the platinum-nickel alloy. Using this rotating electrode, the change with time of the current was measured under the same conditions as in Example 1 except that the poisoning carbon monoxide on the electrode surface was desorbed immediately before the start of current measurement. The result is shown in FIG. The initial value of the current obtained from Fig. 1 is 5.
Although it is as large as 0 mA, it can be seen that the current obtained is deactivated in a short time and the obtained current becomes zero after 15 minutes.
【0016】[0016]
【実施例3】白金をパラジウムに代えたこと以外は実施
例1と同一方法でパラジウム−ニッケル合金を製造しか
つ該合金を使用して回転電極を製造し一酸化炭素を100
ppm含有する水素を燃料として前記回転電極の電流の
経時変化を測定した。得られた電流は実施例1の回転電
流より若干小さいものの長期間安定した電流を取り出す
ことができた。Example 3 A palladium-nickel alloy was produced in the same manner as in Example 1 except that platinum was replaced with palladium, and a rotating electrode was produced using the alloy to produce 100% carbon monoxide.
Using hydrogen containing ppm as a fuel, the change with time of the current of the rotating electrode was measured. Although the obtained current was slightly smaller than the rotating current of Example 1, a stable current could be taken out for a long period of time.
【0017】[0017]
【実施例4】白金をルテニウムに代えたこと以外は実施
例1と同一方法でルテニウム−ニッケル合金を製造しか
つ該合金を使用して回転電極を製造し一酸化炭素を100
ppm含有する水素を燃料として前記回転電極の電流の
経時変化を測定した。得られた電流は実施例2の回転電
極と実質的に同一であった。Example 4 A ruthenium-nickel alloy was produced in the same manner as in Example 1 except that platinum was replaced with ruthenium, and a rotating electrode was produced using the alloy to produce 100% carbon monoxide.
Using hydrogen containing ppm as a fuel, the change with time of the current of the rotating electrode was measured. The current obtained was substantially the same as the rotating electrode of Example 2.
【0018】[0018]
【実施例5】実施例1のニッケルターゲットの代わりに
コバルトターゲットを使用して白金:コバルト=82:18
(原子比)の回転電極を製造し、該回転電極を使用して
実施例1と同一条件で該回転電極で得られる電流の経時
変化を測定した。その結果を図2に示す。図2から得ら
れる電流は運転時間の経過によって殆ど影響を受けず約
2.0 mAで一定していることが分かる。[Example 5] Platinum: cobalt = 82: 18 using a cobalt target instead of the nickel target of Example 1.
(Atomic ratio) A rotating electrode was manufactured, and the change with time of the current obtained by the rotating electrode was measured under the same conditions as in Example 1 using the rotating electrode. The result is shown in FIG. The current obtained from Fig. 2 is almost unaffected by the passage of operating time.
It can be seen that it is constant at 2.0 mA.
【0019】[0019]
【実施例6】白金:コバルトの原子比が57:43となるよ
うにしたこと以外は実施例5と同様にして回転電極を製
造した。この回転電極を使用し実施例5と同一条件で電
流の経時変化を測定した。その結果を図2に示す。図2
から得られる電流は運転時間の経過によって殆ど影響を
受けず約1.9 mAで一定していることが分かる。Example 6 A rotating electrode was manufactured in the same manner as in Example 5 except that the atomic ratio of platinum: cobalt was set to 57:43. Using this rotating electrode, the change in current with time was measured under the same conditions as in Example 5. The result is shown in FIG. Figure 2
It can be seen that the current obtained from 1 is almost unaffected by the passage of operating time and is constant at about 1.9 mA.
【0020】[0020]
【実施例7】実施例1のニッケルターゲットの代わりに
マンガンターゲットを使用して白金:マンガン=80:20
(原子比)の回転電極を製造し、該回転電極を使用して
実施例1と同一条件で該回転電極で得られる電流の経時
変化を測定した。その結果を図3に示す。図3から得ら
れる電流は運転時間の経過によって殆ど影響を受けず約
1.8 mAで一定していることが分かる。Example 7 Platinum: manganese = 80: 20 using a manganese target instead of the nickel target of Example 1.
(Atomic ratio) A rotating electrode was manufactured, and the change with time of the current obtained by the rotating electrode was measured under the same conditions as in Example 1 using the rotating electrode. The result is shown in FIG. The current obtained from Fig. 3 is almost unaffected by the passage of operating time.
It can be seen that it is constant at 1.8 mA.
【0021】[0021]
【実施例8】白金:マンガンの原子比が48:52となるよ
うにしたこと以外は実施例7と同様にして回転電極を製
造した。この回転電極を使用し実施例7と同一条件で電
流の経時変化を測定した。その結果を図3に示す。図3
から得られる電流は運転時間の経過によって殆ど影響を
受けず約1.8 mAで一定していることが分かる。Example 8 A rotary electrode was manufactured in the same manner as in Example 7 except that the atomic ratio of platinum: manganese was set to 48:52. Using this rotating electrode, the change in current with time was measured under the same conditions as in Example 7. The result is shown in FIG. FIG.
It can be seen that the current obtained from the above is almost unaffected by the passage of operating time and is constant at about 1.8 mA.
【0022】[0022]
【実施例9】実施例1のニッケルターゲットの代わりに
金ターゲットを使用して白金:金=81:19(原子比)の
回転電極を製造し、該回転電極を使用して実施例1と同
一条件で該回転電極で得られる電流の経時変化を測定し
た。その結果を図4に示す。図4から得られる電流は3.
2 mAと大きく、運転時間の経過によって約2.0 mAで
安定していることが分かる。[Example 9] A rotating electrode of platinum: gold = 81: 19 (atomic ratio) was manufactured by using a gold target instead of the nickel target of Example 1, and the same as in Example 1 by using the rotating electrode. The change with time of the electric current obtained by the rotating electrode was measured under the conditions. The result is shown in FIG. The current obtained from Figure 4 is 3.
It is as large as 2 mA, and it can be seen that it is stable at about 2.0 mA as time passes.
【0023】[0023]
【実施例10】白金:金の原子比が57:43となるようにし
たこと以外は実施例9と同様にして回転電極を製造し
た。この回転電極を使用し、実施例9と同一条件で電流
の経時変化を測定した。その結果を図4に示す。図4か
ら得られる電流は2.5 mAと大きく、運転時間の経過に
よって1.8 mAで安定していることが分かる。Example 10 A rotating electrode was produced in the same manner as in Example 9 except that the platinum: gold atomic ratio was set to 57:43. Using this rotating electrode, the change in current with time was measured under the same conditions as in Example 9. The result is shown in FIG. It can be seen from Fig. 4 that the current obtained is as large as 2.5 mA and is stable at 1.8 mA with the lapse of operating time.
【0024】[0024]
【比較例2】実施例1のニッケルターゲットの代わりに
スズターゲットを使用して白金:スズ=49:51(原子
比)の回転電極を製造し、該回転電極を使用して実施例
1と同一条件で該回転電極で得られる電流の経時変化を
測定した。その結果を図5に示す。図5から得られる電
流は運転時間の経過によって若干影響を受けるが2.4 〜
2.0 mAの間で安定していた。又同様にして白金:スズ
=78:22(原子比)の回転電極を製造し、得られる電流
の経時変化を測定した。その結果を図5に示す。図5か
ら得られる電流は運転時間の経過によって若干影響を受
けるが2.0 〜1.6 mAの間で安定していた。[Comparative Example 2] A tin target was used instead of the nickel target of Example 1 to manufacture a rotary electrode of platinum: tin = 49: 51 (atomic ratio), and the same as in Example 1 using the rotary electrode. The change with time of the electric current obtained by the rotating electrode was measured under the conditions. The result is shown in FIG. The current obtained from Fig. 5 is slightly affected by the elapsed operating time, but is 2.4-
It was stable at between 2.0 mA. Similarly, a rotating electrode of platinum: tin = 78: 22 (atomic ratio) was manufactured, and the change with time of the obtained current was measured. The result is shown in FIG. The current obtained from Fig. 5 was slightly affected by the elapsed operating time, but was stable between 2.0 and 1.6 mA.
【0025】[0025]
【比較例3】実施例1のニッケルターゲットの代わりに
モリブデンターゲットを使用して白金:モリブデン=6
7:33(原子比)の回転電極を製造し、該回転電極を使
用して実施例1と同一条件で該回転電極で得られる電流
の経時変化を測定した。その結果を図6に示す。図6か
ら得られる電流は運転時間の経過によって若干影響を受
けるが1.8 mAで一定していることが分かる。又同様に
して白金:モリブデン=45:55(原子比)の回転電極を
製造し、得られる電流の経時変化を測定した。その結果
を図6に示す。図6から得られる電流は前記比較例の場
合より小さいが運転時間の経過によって若干影響を受け
るが1.4 mAで一定していることが分かる。Comparative Example 3 Platinum: molybdenum = 6 using a molybdenum target instead of the nickel target of Example 1.
A rotating electrode with a ratio of 7:33 (atomic ratio) was manufactured, and the change with time of the current obtained by the rotating electrode was measured under the same conditions as in Example 1 using the rotating electrode. The result is shown in FIG. It can be seen from Fig. 6 that the current obtained is constant at 1.8 mA, although it is slightly affected by the elapsed operating time. Similarly, a rotating electrode of platinum: molybdenum = 45: 55 (atomic ratio) was manufactured, and the change with time of the obtained current was measured. The result is shown in FIG. It can be seen from FIG. 6 that the current obtained is smaller than that of the comparative example but is constant at 1.4 mA although it is slightly affected by the elapsed operating time.
【0026】[0026]
【比較例4】実施例1のニッケルターゲットの代わりに
ゲルマニウムターゲットを使用して白金:ゲルマニウム
=40:60(原子比)の回転電極を製造し、該回転電極を
使用して実施例1と同一条件で該回転電極で得られる電
流の経時変化を測定した。その結果を図7に示す。図7
から得られる電流は運転時間の経過によって若干影響を
受けるが2.4 〜1.5 mAの間で安定していた。Comparative Example 4 A rotating electrode of platinum: germanium = 40: 60 (atomic ratio) was manufactured by using a germanium target instead of the nickel target of Example 1, and using the rotating electrode, the same as Example 1. The change with time of the electric current obtained by the rotating electrode was measured under the conditions. FIG. 7 shows the result. Figure 7
Although the current obtained from the above was slightly affected by the elapsed operating time, it was stable between 2.4 and 1.5 mA.
【0027】白金:ゲルマニウムの原子比が70:30とな
るようにしたこと以外は前記比較例と同様にして回転電
極を製造した。この回転電極を使用して実施例1と同一
条件で電流の経時変化を測定した。その結果を図7に示
す。図7から得られる電流は前記比較例の場合より小さ
く、初期値の1.6 mAから0.5 mAに減少し、その値で
安定したことが分かる。本比較例と各実施例を比較する
と、本実施例の合金触媒によるとスズ−貴金属合金触媒
又はモリブデン−ゲルマニウム−貴金属合金触媒と同等
か若干小さい電流を得られることが分かる。A rotating electrode was manufactured in the same manner as in the above Comparative Example except that the atomic ratio of platinum: germanium was 70:30. Using this rotating electrode, the change in current with time was measured under the same conditions as in Example 1. FIG. 7 shows the result. It can be seen from FIG. 7 that the current obtained was smaller than in the case of the comparative example, decreased from the initial value of 1.6 mA to 0.5 mA, and stabilized at that value. Comparing this example with each example, it can be seen that the alloy catalyst of this example can obtain a current equal to or slightly smaller than that of the tin-noble metal alloy catalyst or the molybdenum-germanium-noble metal alloy catalyst.
【0028】[0028]
【発明の効果】本発明は、1〜70原子%のニッケル、コ
バルト,マンガン及び金の少なくとも1種と、白金、パ
ラジウム及びルテニウムの少なくとも1種の金属との合
金を含んで成る高分子固体電解質型燃料電池用アノード
電極触媒である(請求項1)。INDUSTRIAL APPLICABILITY The present invention provides a polymer solid electrolyte comprising an alloy of 1 to 70 atomic% of at least one of nickel, cobalt, manganese and gold and at least one metal of platinum, palladium and ruthenium. An anode electrode catalyst for a fuel cell (Claim 1).
【0029】ニッケル、コバルト、マンガン及び金の少
なくとも1種と貴金属との合金である本発明のアノード
電極触媒は、従来の白金単味の燃料電池用触媒と比較し
て一酸化炭素被毒量が大きく減少し、スズ−貴金属合金
触媒やゲルマニウム−モリブデン−貴金属合金触媒と同
等又は僅かに小さい電流を取り出すことができ、かつ長
期間に渡って比較的高活性で運転を継続することが可能
になる。更に燃料電池に供給される燃料中の一酸化炭素
含有量が比較的大きくても活性への影響が殆どないた
め、供給される燃料の精製が不要となり、精製に要する
手間とコストを削減することができる。使用する貴金属
は白金が望ましく(請求項2)、具体的にはニッケル−
白金(請求項3)、コバルト−白金(請求項4),マン
ガン−白金(請求項5)及び金−白金(請求項6)の合
金触媒を使用できる。The anode electrocatalyst of the present invention, which is an alloy of at least one of nickel, cobalt, manganese, and gold and a noble metal, has a carbon monoxide poisoning amount as compared with a conventional platinum-only fuel cell catalyst. It is significantly reduced, and it is possible to take out a current equal to or slightly smaller than that of the tin-noble metal alloy catalyst or the germanium-molybdenum-noble metal alloy catalyst, and it is possible to continue the operation at a relatively high activity for a long period of time. . Further, even if the content of carbon monoxide in the fuel supplied to the fuel cell is relatively large, there is almost no effect on the activity, so refining of the supplied fuel is unnecessary, and the labor and cost required for refining can be reduced. You can The noble metal used is preferably platinum (claim 2), specifically nickel-
Alloy catalysts of platinum (claim 3), cobalt-platinum (claim 4), manganese-platinum (claim 5) and gold-platinum (claim 6) can be used.
【図1】実施例1及び2におけるニッケル−白金合金触
媒及び比較例1の白金単味触媒で得られる電流の経時変
化を示すグラフ。FIG. 1 is a graph showing changes with time of electric currents obtained with the nickel-platinum alloy catalysts of Examples 1 and 2 and the platinum plain catalyst of Comparative Example 1.
【図2】実施例5及び6におけるコバルト−白金合金触
媒及び白金単味触媒で得られる電流の経時変化を示すグ
ラフ。FIG. 2 is a graph showing changes with time of the electric currents obtained with the cobalt-platinum alloy catalyst and the platinum plain catalyst in Examples 5 and 6.
【図3】実施例7及び8におけるマンガン−白金合金触
媒及び白金単味触媒で得られる電流の経時変化を示すグ
ラフ。FIG. 3 is a graph showing changes with time of electric currents obtained with the manganese-platinum alloy catalyst and the platinum plain catalyst in Examples 7 and 8.
【図4】実施例9及び10における金−白金合金触媒及び
白金単味触媒で得られる電流の経時変化を示すグラフ。FIG. 4 is a graph showing changes with time of the electric currents obtained with the gold-platinum alloy catalyst and the platinum plain catalyst in Examples 9 and 10.
【図5】比較例2における白金−スズ合金触媒及び白金
単味触媒で得られる電流の経時変化を示すグラフ。FIG. 5 is a graph showing changes with time of the electric currents obtained with the platinum-tin alloy catalyst and the platinum plain catalyst in Comparative Example 2.
【図6】比較例3における白金−モリブデン合金触媒及
び白金単味触媒で得られる電流の経時変化を示すグラ
フ。FIG. 6 is a graph showing changes with time of the electric currents obtained with the platinum-molybdenum alloy catalyst and the platinum plain catalyst in Comparative Example 3.
【図7】比較例4における白金−ゲルマニウム合金触媒
及び白金単味触媒で得られる電流の経時変化を示すグラ
フ。FIG. 7 is a graph showing changes with time of currents obtained with a platinum-germanium alloy catalyst and a platinum plain catalyst in Comparative Example 4.
───────────────────────────────────────────────────── フロントページの続き (71)出願人 391016716 ストンハルト・アソシエーツ・インコーポ レーテッド STONEHART ASSOCIATE S INCORPORATED アメリカ合衆国 06443 コネチカット州、 マジソン、コテッジ・ロード17、ピー・オ ー・ボックス1220 (72)発明者 渡辺 政廣 山梨県甲府市和田町2412番地の8 ─────────────────────────────────────────────────── ─── Continuation of the front page (71) Applicant 391016716 STONHART Associates Incorporated STONEHART ASSOCIATES INCORPORATED United States 06443 Connecticut, Madison, Cottage Road 17, P-O Box 1220 (72) Inventor Masanori Watanabe 8 at 2412 Wada-cho, Kofu-shi, Japan
Claims (6)
ンガン及び金の少なくとも1種と、白金、パラジウム及
びルテニウムの少なくとも1種の金属との合金を含んで
成る高分子固体電解質型燃料電池用アノード電極触媒。1. A polymer electrolyte fuel cell comprising an alloy of 1 to 70 atomic% of at least one kind of nickel, cobalt, manganese and gold and at least one kind of metal of platinum, palladium and ruthenium. Anode electrocatalyst.
ンガン及び金の少なくとも1種と、白金との合金を含ん
で成る高分子固体電解質型燃料電池用アノード電極触
媒。2. An anode electrode catalyst for a polymer electrolyte fuel cell, comprising an alloy of platinum and 1 to 70 atomic% of at least one of nickel, cobalt, manganese and gold.
の合金を含んで成る高分子固体電解質型燃料電池用アノ
ード電極触媒。3. An anode electrode catalyst for a polymer electrolyte fuel cell, comprising an alloy of 1 to 70 atomic% of nickel and the balance of platinum.
の合金を含んで成る高分子固体電解質型燃料電池用アノ
ード電極触媒。4. An anode electrode catalyst for a polymer electrolyte fuel cell, which comprises an alloy of 1 to 70 atomic% of cobalt and the balance of platinum.
の合金を含んで成る高分子固体電解質型燃料電池用アノ
ード電極触媒。5. An anode electrode catalyst for a polymer electrolyte fuel cell, which comprises an alloy of 1 to 70 atomic% of manganese and the balance of platinum.
を含んで成る高分子固体電解質型燃料電池用アノード電
極触媒。6. An anode electrode catalyst for a polymer electrolyte fuel cell, which comprises an alloy of 1 to 70 atomic% of gold and the balance platinum.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6225840A JPH0866632A (en) | 1994-08-27 | 1994-08-27 | Anode electrode catalyst for high-molecular solid electrolytic type fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6225840A JPH0866632A (en) | 1994-08-27 | 1994-08-27 | Anode electrode catalyst for high-molecular solid electrolytic type fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0866632A true JPH0866632A (en) | 1996-03-12 |
Family
ID=16835654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6225840A Pending JPH0866632A (en) | 1994-08-27 | 1994-08-27 | Anode electrode catalyst for high-molecular solid electrolytic type fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0866632A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002082566A3 (en) * | 2001-04-05 | 2002-12-27 | Univ Denmark Tech Dtu | Anode catalyst materials for use in fuel cells |
WO2003073541A1 (en) * | 2002-02-27 | 2003-09-04 | Symyx Technologies, Inc. | Fuel cell electrocatalyst of pt-mn-co |
WO2005034266A2 (en) * | 2003-09-03 | 2005-04-14 | Symyx Technologies, Inc. | Platinum-nickel-iron fuel cell catalyst |
JP2005135752A (en) * | 2003-10-30 | 2005-05-26 | Japan Science & Technology Agency | Oxygen reduction reaction catalyst for fuel cell |
JP2006260909A (en) * | 2005-03-16 | 2006-09-28 | Nissan Motor Co Ltd | Membrane electrode assembly and polymer electrolyte fuel cell using the same |
US7201993B2 (en) | 2000-08-04 | 2007-04-10 | Matsushita Electric Industrial Co., Ltd. | Polymer electrolyte fuel cell |
WO2007043441A1 (en) * | 2005-10-07 | 2007-04-19 | Asahi Kasei Kabushiki Kaisha | Alloy catalyst for fuel cell cathode |
JP2007109599A (en) * | 2005-10-17 | 2007-04-26 | Asahi Glass Co Ltd | Film electrode assembly for solid polymer fuel cell |
KR100766978B1 (en) * | 2006-05-10 | 2007-10-12 | 삼성에스디아이 주식회사 | Anode catalyst for fuel cell, fuel cell membrane-electrode assembly comprising the same, and fuel cell system comprising the same |
WO2007119640A1 (en) * | 2006-03-31 | 2007-10-25 | Toyota Jidosha Kabushiki Kaisha | Electrode catalyst for fuel cell and method for producing the same |
JP2008041291A (en) * | 2006-08-02 | 2008-02-21 | Hitachi Maxell Ltd | Fuel electrode catalyst, membrane electrode assembly, and fuel cell |
WO2009051110A1 (en) * | 2007-10-15 | 2009-04-23 | Cataler Corporation | Fuel cell and loaded catalyst used therein |
US7635533B2 (en) | 2002-02-27 | 2009-12-22 | Symyx Solutions, Inc. | Fuel cell electrocatalyst of Pt-Mn-Co |
US8021798B2 (en) | 2002-03-06 | 2011-09-20 | Freeslate, Inc. | Fuel cell electrocatalyst of Pt-Zn-Ni/Fe |
JP5078618B2 (en) * | 2005-10-07 | 2012-11-21 | 旭化成株式会社 | Alloy catalyst for fuel cell cathode |
DE102017128058A1 (en) * | 2017-11-28 | 2019-05-29 | RUHR-UNIVERSITäT BOCHUM | Electrochemical electrode with multinary metal alloy as reduction catalyst |
-
1994
- 1994-08-27 JP JP6225840A patent/JPH0866632A/en active Pending
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7201993B2 (en) | 2000-08-04 | 2007-04-10 | Matsushita Electric Industrial Co., Ltd. | Polymer electrolyte fuel cell |
US7455703B2 (en) | 2000-08-04 | 2008-11-25 | Panasonic Corporation | Method for manufacturing polymer electrolyte fuel cell |
WO2002082566A3 (en) * | 2001-04-05 | 2002-12-27 | Univ Denmark Tech Dtu | Anode catalyst materials for use in fuel cells |
WO2003073541A1 (en) * | 2002-02-27 | 2003-09-04 | Symyx Technologies, Inc. | Fuel cell electrocatalyst of pt-mn-co |
WO2003073542A3 (en) * | 2002-02-27 | 2004-03-04 | Symyx Technologies Inc | Full cell electrocatalyst of pt-ni-mn/fe |
US7635533B2 (en) | 2002-02-27 | 2009-12-22 | Symyx Solutions, Inc. | Fuel cell electrocatalyst of Pt-Mn-Co |
US8021798B2 (en) | 2002-03-06 | 2011-09-20 | Freeslate, Inc. | Fuel cell electrocatalyst of Pt-Zn-Ni/Fe |
WO2005034266A2 (en) * | 2003-09-03 | 2005-04-14 | Symyx Technologies, Inc. | Platinum-nickel-iron fuel cell catalyst |
WO2005034266A3 (en) * | 2003-09-03 | 2006-08-03 | Symyx Technologies Inc | Platinum-nickel-iron fuel cell catalyst |
JP2005135752A (en) * | 2003-10-30 | 2005-05-26 | Japan Science & Technology Agency | Oxygen reduction reaction catalyst for fuel cell |
JP2006260909A (en) * | 2005-03-16 | 2006-09-28 | Nissan Motor Co Ltd | Membrane electrode assembly and polymer electrolyte fuel cell using the same |
JP5078618B2 (en) * | 2005-10-07 | 2012-11-21 | 旭化成株式会社 | Alloy catalyst for fuel cell cathode |
WO2007043441A1 (en) * | 2005-10-07 | 2007-04-19 | Asahi Kasei Kabushiki Kaisha | Alloy catalyst for fuel cell cathode |
JP2007109599A (en) * | 2005-10-17 | 2007-04-26 | Asahi Glass Co Ltd | Film electrode assembly for solid polymer fuel cell |
WO2007119640A1 (en) * | 2006-03-31 | 2007-10-25 | Toyota Jidosha Kabushiki Kaisha | Electrode catalyst for fuel cell and method for producing the same |
KR100766978B1 (en) * | 2006-05-10 | 2007-10-12 | 삼성에스디아이 주식회사 | Anode catalyst for fuel cell, fuel cell membrane-electrode assembly comprising the same, and fuel cell system comprising the same |
JP2008041291A (en) * | 2006-08-02 | 2008-02-21 | Hitachi Maxell Ltd | Fuel electrode catalyst, membrane electrode assembly, and fuel cell |
JP2009099319A (en) * | 2007-10-15 | 2009-05-07 | Cataler Corp | Fuel cell and supported catalyst used therefor |
WO2009051110A1 (en) * | 2007-10-15 | 2009-04-23 | Cataler Corporation | Fuel cell and loaded catalyst used therein |
DE102017128058A1 (en) * | 2017-11-28 | 2019-05-29 | RUHR-UNIVERSITäT BOCHUM | Electrochemical electrode with multinary metal alloy as reduction catalyst |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6670301B2 (en) | Carbon monoxide tolerant electrocatalyst with low platinum loading and a process for its preparation | |
US5922487A (en) | Anode electrocatalyst for fuel cell and process of preparing same | |
JP5270098B2 (en) | Improved electrode | |
JP4541458B2 (en) | Solid polymer fuel cell | |
US4316944A (en) | Noble metal-chromium alloy catalysts and electrochemical cell | |
US5183713A (en) | Carbon monoxide tolerant platinum-tantalum alloyed catalyst | |
US7455927B2 (en) | Intermetallic compounds for use as catalysts and catalytic systems | |
JPH0866632A (en) | Anode electrode catalyst for high-molecular solid electrolytic type fuel cell | |
US6183894B1 (en) | Electrocatalyst for alcohol oxidation in fuel cells | |
JPH0636366B2 (en) | Three-component metal alloy catalyst for fuel cells | |
US20020015878A1 (en) | Electrodes for fuel cell and processes for producing the same | |
CA2666634A1 (en) | Catalyst support for fuel cell | |
US6663998B2 (en) | Anode catalyst materials for use in fuel cells | |
JPH07246336A (en) | Anode electrode catalyst for fuel cell and production thereof | |
WO1999066576A1 (en) | Catalyst for polymer solid electrolyte type fuel-cell and method for producing catalyst for polymer solid electrolyte type fuel-cell | |
JP3389393B2 (en) | Anode catalyst for polymer electrolyte fuel cell and method for producing the same | |
JP2000003712A (en) | Catalyst for high molecular solid electrolyte fuel cell | |
JP2003502827A (en) | Gas diffusion substrates and electrodes | |
WO2005081340A1 (en) | Supported catalyst for fuel cell, method for producing same and fuel cell | |
McKeown et al. | Pt-Au film catalyst for formic acid oxidation | |
EP1930103B1 (en) | Noble metal microparticle and method for production thereof | |
JP4679815B2 (en) | Direct fuel cell | |
JPH07299359A (en) | Anode electrode catalyst for fuel cell | |
JPH11111305A (en) | Fuel cell | |
JP2001015121A (en) | Catalyst for polymer solid electrolyte type fuel cell and solid electrolyte type fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040428 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20041007 |