[go: up one dir, main page]

JPH0866619A - Treatment of gas containing low concentration nitrogen oxide - Google Patents

Treatment of gas containing low concentration nitrogen oxide

Info

Publication number
JPH0866619A
JPH0866619A JP6203154A JP20315494A JPH0866619A JP H0866619 A JPH0866619 A JP H0866619A JP 6203154 A JP6203154 A JP 6203154A JP 20315494 A JP20315494 A JP 20315494A JP H0866619 A JPH0866619 A JP H0866619A
Authority
JP
Japan
Prior art keywords
gas
denitration
regeneration
nox
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6203154A
Other languages
Japanese (ja)
Inventor
Toshikuni Sera
俊邦 世良
Shigeru Nojima
野島  繁
Naoyuki Uejima
直幸 上島
Yasuyoshi Mihashi
庸良 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6203154A priority Critical patent/JPH0866619A/en
Publication of JPH0866619A publication Critical patent/JPH0866619A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE: To efficiently remove NOx of low concentration without secondary pollution by keeping the concentration of desorbed NOx in a regenerating gas circulating route low, making a part of the circulating gas branch off to denitrify it at that time, and freely selecting the temperature. CONSTITUTION: After gas contg. dilute NOx 1 gets rid of dust, it is introduced into adsorption towers 6a, 6b to adsorb and remove NOx. Next, the absorption tower 6b which has finished adsorption enters a desorption process, and a denitrifying reactor 14 is heated, and a gas circulating route is formed of a denitrifying gas blower 11, a denitrifying gas heater 12 and a denitrifying reactor 14. A regenerating gas circulating route is separately formed of the adsorption tower 6b, a desorbed gas circulating blower 8 and a desorbed gas heater 9. Since when the adsorption tower 6b is regulated to the suitable temperature for desorption, the concentration of the desorbed NOx is increased, the gas contg. NOx of high concentration in the desorption tower heating and circulating route is introduced to the denitrified gas circulating route, and a reducing agent is fed to reduce and decompose the gas by the denitrifying reactor 14. When the concentration of NOx in the regenerating gas circulating route is lowered to a prescribed value, the adsorption tower 6b is cooled by a cooler 10 preparing for switching to adsorption.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は低濃度窒素酸化物(以
下、NOxと略記)含有気体からNOxを効率よく除去
する方法に関し、特に地下トンネル、山岳トンネル、シ
ェルター付道路等の各種トンネルにおける換気ガスや屋
内自動車駐車場の排気ガスに含有される低濃度のNOx
を効率よく除去する低濃度窒素酸化物の処理方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for efficiently removing NOx from a gas containing low-concentration nitrogen oxides (hereinafter abbreviated as NOx), and in particular, ventilation in various tunnels such as underground tunnels, mountain tunnels and roads with shelters. Low concentrations of NOx contained in gas and exhaust gas from indoor car parking lots
The present invention relates to a method for treating low-concentration nitrogen oxides that efficiently removes nitrogen.

【0002】[0002]

【従来の技術】近時、大都市を中心とした交通網の発達
や物流の増大に伴ない、地下トンネル道、シェルター付
道路等の各種トンネル道や屋内自動車駐車場がとみに増
加し、また長大な山岳道路の建設が著るしい。このよう
な、自動車トンネル等の換気設備は主として通行者の健
康保護や明視距離の改善を目的として設けられている。
現在一般的にとられている換気方式は新鮮な外気をトン
ネル内に送気し、汚染空気をトンネル外に換気する方式
が用いられている。しかしながら、これらの換気ガス中
には5ppm程度のNOxが含有されており、そのまゝ
周囲に放出するのでは周辺の大気環境が問題とされる。
このため、これらの自動車トンネル等の換気ガスに含有
される低濃度の窒素酸化物を除去する方法が種々提案さ
れている。
2. Description of the Related Art Recently, various tunnel roads such as underground tunnel roads, roads with shelters, etc. and indoor car parking lots have rapidly increased along with the development of transportation networks and the increase of physical distribution mainly in large cities. The construction of a mountain road is remarkable. Such ventilation equipment for automobile tunnels is provided mainly for the purpose of protecting the health of pedestrians and improving the visual distance.
The ventilation system generally used at present is to supply fresh outside air into the tunnel and to ventilate contaminated air outside the tunnel. However, these ventilation gases contain about 5 ppm of NOx, and if they are released to the surroundings, the surrounding atmospheric environment becomes a problem.
For this reason, various methods have been proposed for removing low-concentration nitrogen oxides contained in ventilation gases for these automobile tunnels and the like.

【0003】これら、自動車トンネル排気のように数p
pm程度のNOxを処理する技術としては、吸着剤を使
用した吸着除去法があり、本出願人等は先に実願平1−
016886号(実開平2−108719号公報)を提
案し、汚染空気中のNOxを予めNO2 に酸化したるの
ち吸着剤(例えば活性炭系のもの)に吸着除去し、該吸
着剤に高温空気を循環することにより脱着される高濃度
NOxを分取して、還元剤を添加し、さらに脱硝触媒反
応器を通して窒素ガスまで分解して系外に排気する装置
を開示している。
[0003] These are a few p like exhaust from a car tunnel.
As a technique for treating NOx of about pm, there is an adsorption removal method using an adsorbent.
No. 016886 (Japanese Utility Model Laid-Open No. 2-108719), NOx in polluted air is previously oxidized to NO 2 and then adsorbed and removed by an adsorbent (for example, activated carbon type), and high temperature air is adsorbed on the adsorbent. An apparatus is disclosed in which high-concentration NOx that is desorbed by being circulated is fractionated, a reducing agent is added, and nitrogen gas is decomposed through a denitration catalyst reactor and exhausted to the outside of the system.

【0004】一方、特願平4−110761(特開平0
5−277339号公報)には、脱着工程中の吸着器、
加熱器及び脱硝反応器、脱硝反応後の冷却器を含む循環
系路を形成し、該吸着器の脱着ガスを脱硝に適する所定
温度に加熱し、これに還元剤を添加しつつ脱着ガス中の
NOxを還元し、次いで脱硝反応器出側における加熱ガ
スは冷却器によって、NOxの脱着適正温度に調節さ
れ、脱着器に還流することを特徴とする方法が提案され
ている。
On the other hand, Japanese Patent Application No. 4-110761 (Japanese Unexamined Patent Publication No.
5-277339), an adsorber during the desorption process,
A circulation system path including a heater, a denitration reactor, and a cooler after the denitration reaction is formed, and the desorbed gas of the adsorber is heated to a predetermined temperature suitable for denitration, and a reducing agent is added to the desorbed gas in the desorbed gas. A method has been proposed in which NOx is reduced, and then the heating gas on the outlet side of the denitration reactor is adjusted to an appropriate temperature for desorption of NOx by a cooler and then refluxed to the desorber.

【0005】[0005]

【発明が解決しようとする課題】前記実開平2−108
719号公報に示される装置を実施するにあたっては、
脱着工程にある吸着剤に高温空気を循環することによ
り、循環ガス中のNOx濃度は脱着NOxの蓄積によっ
て次第に高められ、ある濃度に達すると循環ガスの一部
を分岐して脱硝反応器に導入してNOxを還元分解して
無害化し系外へ排出することになる。そのため、この分
岐ガスに匹敵する空気が系内に吸引されるので上記循環
系路内のNOx濃度は次第に低下し、所定値まで低下し
たとき上記脱硝反応器への分岐ガスの導入を停止し還元
を終了するものである。このように脱着ガス中のNOx
濃度は脱着時間の経過に応じて低下するので、この濃度
変化に合わせて還元剤の注入を高精度に制御しなければ
ならず、往々にして失敗し還元剤やNOxを系外へ漏出
することになるなど欠点があった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In implementing the device shown in Japanese Patent No. 719,
By circulating hot air through the adsorbent in the desorption process, the NOx concentration in the circulating gas is gradually increased by the accumulation of desorbed NOx, and when it reaches a certain concentration, a part of the circulating gas is branched and introduced into the denitration reactor. As a result, NOx is reduced and decomposed to be harmless and discharged to the outside of the system. Therefore, air comparable to this branched gas is sucked into the system, so that the NOx concentration in the circulation system passage gradually decreases, and when the NOx concentration falls to a predetermined value, the introduction of the branched gas into the denitration reactor is stopped and reduced. Is to end. In this way NOx in desorption gas
Since the concentration decreases as the desorption time elapses, it is necessary to control the injection of the reducing agent with high accuracy according to this change in concentration, and it often fails to leak the reducing agent and NOx out of the system. There was a defect such as.

【0006】また、特開平5−277339号公報に示
される方法においては、脱着工程中にある吸着剤に高温
空気を循環するのは前記実開平2−108719号公報
に示されている点と同じであるが、この循環系路内に脱
硝反応器を設置して、還元剤を添加しつゝNOxを還元
分解し、上記循環系路内のNOx濃度が所定濃度に低下
したときに脱硝を終了するものであるから、未反応のN
Oxや還元剤がそのまゝ系外に排出されることはない。
しかしながら、上記高温循環空気の全量を脱硝しなけれ
ばならないので前記実開平2−108719号公報にお
いて示されているように循環空気の一部を脱硝する場合
に比較して、脱硝反応器が大きくなる欠点がある。ま
た、再生に用いる高温空気は高すぎるとエネルギの経済
性面で不利になるとともに装置材料の耐熱性向上や保温
強化が必要となりコストアップにつながるので、できる
だけ低温であることが望ましい。しかしながら、脱硝に
必要な温度は250〜300℃程度が適しており、この
方法においてはたとえば脱着が150℃程度で行われる
場合では、循環ガス温度を脱硝反応器入口では脱硝温度
まで加熱し、脱硝後の脱着中の吸収剤入口にては脱着温
度まで冷却する必要があり、加熱と冷却のためのエネル
ギロスや装置コストの上昇など経済性上の問題があっ
た。
In the method disclosed in Japanese Unexamined Patent Publication No. 5-277339, the high temperature air is circulated through the adsorbent during the desorption process, which is the same as that disclosed in Japanese Utility Model Laid-Open No. 2-108719. However, a denitration reactor is installed in this circulation system, and a reducing agent is added to reduce and decompose NOx, and when the NOx concentration in the circulation system decreases to a predetermined concentration, denitration is terminated. Unreacted N
Ox and the reducing agent are never discharged out of the system.
However, since it is necessary to denitrate the whole amount of the high temperature circulating air, the denitration reactor becomes large as compared with the case where a portion of the circulating air is denitrated as shown in Japanese Utility Model Laid-Open No. 2-108719. There are drawbacks. Further, if the high temperature air used for regeneration is too high, it is disadvantageous in terms of energy economy and it is necessary to improve the heat resistance of the device material and strengthen the heat retention, which leads to cost increase. However, the temperature required for denitration is preferably about 250 to 300 ° C. In this method, for example, when desorption is performed at about 150 ° C., the circulating gas temperature is heated to the denitration temperature at the denitration reactor inlet to remove the denitration. It is necessary to cool down to the desorption temperature at the adsorbent inlet during the subsequent desorption, and there was an economical problem such as energy loss for heating and cooling and an increase in equipment cost.

【0007】本発明は上記技術水準に鑑み、上述した従
来技術におけるような不具合がない低濃度NOx含有ガ
スの脱硝方法を提供しようとするものである。
In view of the above-mentioned state of the art, the present invention aims to provide a denitration method for a low-concentration NOx-containing gas that does not have the problems of the above-mentioned prior art.

【0008】[0008]

【課題を解決するための手段】本発明は低濃度窒素酸化
物含有ガスを吸着塔で乾式処理して主として窒素酸化物
を吸着除去し、該吸着塔を高温空気で脱着処理して再生
させる方法において、再生中の吸着塔からの脱着ガスを
脱着ガス循環ブロワ、脱着ガス加熱器を介して再び再生
中の吸着塔に循環させる脱着ガスよりなる再生ガス循環
系路を形成させるとともに、該再生ガス循環系路から一
部の脱着ガスよりなる再生ガスを吸引分岐する脱硝ガス
ブロワ、該再生ガスを脱硝反応に適した温度に昇温する
脱硝ガス加熱器、昇温した該再生ガスに還元剤を注入す
る還元剤供給管及び脱硝反応器、該脱硝反応器からの処
理ガスを前記再生ガス循環系路に合流させる脱硝ガス循
環系路を形成させ、再生中の吸着塔の温度上昇に伴い再
生ガス循環系路内の脱着ガスの窒素酸化物の濃度が上昇
し始めると、予め脱硝反応の温度に適した温度に昇温し
た前記脱硝ガス循環系路に前記脱硝ガスブロワにより所
定量の前記再生ガス循環系路中の再生循環ガスを導入
し、前記還元剤供給管より還元剤を注入後に脱硝反応器
に通して窒素酸化物を還元分解し、その脱硝処理ガスを
再び前記再生ガス循環系路に合流させて窒素酸化物濃度
を低下させた該合流ガスを再生中の吸着塔に循環供給す
ることにより該吸着塔の再生を進行させ、該再生ガス循
環系路内の窒素酸化物濃度が所定値まで低下したとき脱
硝反応器の稼動を中止し、再生後の吸着塔の温度を常温
まで冷却して吸着塔の再生を終了することを特徴とする
低濃度窒素酸化物含有ガスの処理方法である。
The present invention is a method of dry-treating a gas containing low-concentration nitrogen oxides in an adsorption tower to mainly adsorb and remove nitrogen oxides, and desorbing the adsorption tower with high temperature air to regenerate it. In, a desorption gas circulating blower for desorbing gas from the adsorption tower being regenerated, a regeneration gas circulation system passage consisting of desorption gas to be circulated to the adsorption tower being regenerated again via a desorption gas heater is formed, and the regeneration gas is A denitration gas blower that sucks and branches a regeneration gas consisting of a part of desorption gas from a circulation system, a denitration gas heater that raises the temperature of the regeneration gas to a temperature suitable for the denitration reaction, and a reducing agent is injected into the heated regeneration gas. A reducing agent supply pipe, a denitration reactor, and a denitration gas circulation system that joins the processing gas from the denitration reactor to the regeneration gas circulation system, and the regeneration gas circulation is performed as the temperature of the adsorption tower increases during regeneration. Inside the road When the concentration of nitrogen oxides in the desorption gas begins to rise, regeneration of a predetermined amount of the regenerated gas circulation system by the denitration gas blower into the denitration gas circulation system that has been heated to a temperature suitable for the temperature of the denitration reaction in advance. After introducing the circulating gas and injecting the reducing agent through the reducing agent supply pipe, the nitrogen oxide is reduced and decomposed by passing through the denitration reactor, and the denitration processing gas is merged with the regenerated gas circulation system passage again to produce the nitrogen oxide. When the concentration of the combined gas is recirculated and supplied to the adsorbing tower during regeneration, regeneration of the adsorbing tower proceeds, and when the concentration of nitrogen oxides in the regenerated gas circulation system is reduced to a predetermined value, the denitration reaction The method for treating a low-concentration nitrogen oxide-containing gas is characterized in that the operation of the vessel is stopped, the temperature of the adsorption tower after regeneration is cooled to room temperature, and the regeneration of the adsorption tower is terminated.

【0009】[0009]

【作用】本発明においては、再生中の吸着塔に吸着され
ているNOxを脱着させるに当って、再生中の吸着塔の
脱着ガスは脱着ガス循環ブロワ、脱着ガス加熱器を含む
再生ガス循環系路内で脱着所定温度に加熱しつつ再度、
再生中の吸着塔に循環するのであるが、該再生ガス循環
系路中の循環ガスの一部を分岐して、脱硝所定温度に加
温し、還元剤を添加して脱硝反応器でNOxを還元分解
した清浄ガスを再度再生ガス循環系路中の循環ガスに合
流させることによって再生を進行させる。上述の再生操
作において、脱硝反応器に導入するガスに含有されるN
Oxの脱硝反応は非常に速く行われるものであり、脱硝
適正温度の選定と還元剤の適正供給によって脱硝反応器
に供給されるNOxはほとんど分解除去される。
In the present invention, when desorbing NOx adsorbed in the adsorbing tower during regeneration, the desorbed gas in the adsorbing tower during regeneration is a regenerated gas circulation system including a desorbed gas circulation blower and a desorbed gas heater. While heating to a predetermined temperature for desorption in the road,
It is circulated to the adsorption tower during regeneration, but a part of the circulating gas in the regeneration gas circulation system is branched and heated to a predetermined temperature for denitration, and a reducing agent is added to remove NOx in the denitration reactor. Regeneration is promoted by joining the reductively decomposed clean gas again with the circulation gas in the regeneration gas circulation path. In the regeneration operation described above, N contained in the gas introduced into the denitration reactor
The denitration reaction of Ox is performed very quickly, and NOx supplied to the denitration reactor is almost decomposed and removed by selecting an appropriate denitration temperature and appropriately supplying a reducing agent.

【0010】一方、吸着塔からのNOx脱着速度は比較
的遅く数十分をかけて徐々に行われる。従って、脱硝反
応器に導入するのは再生ガス循環系路中の循環ガスの一
部分であるが、該循環系路内のNOx濃度はかなり低く
抑えられ、NOx脱着は速やかに進行する。このため、
吸着NOxの脱着は低く抑えても脱着は充分に行われ
る。
On the other hand, the NOx desorption rate from the adsorption tower is relatively slow and is gradually carried out over several tens of minutes. Therefore, what is introduced into the denitration reactor is a part of the circulating gas in the regeneration gas circulation system, but the NOx concentration in the circulation system is suppressed to a considerably low level, and NOx desorption proceeds rapidly. For this reason,
Even if the desorption of the adsorbed NOx is kept low, the desorption is sufficiently performed.

【0011】次に、添加する還元剤量に過不足が生じて
も、脱硝装置出口ガスは再生ガス循環系路中に戻るの
で、該再生ガス循環系路を循環させている内にNOx及
び還元剤の濃度は徐々に低下され、未反応のNOxや還
元剤がそのまゝ系外に排出されることはない。特に還元
剤添加量をやゝ不足とすれば、循環ガス中に還元剤が流
入することはない。
Next, even if the amount of reducing agent to be added becomes excessive or insufficient, the denitration apparatus outlet gas returns to the regeneration gas circulation system passage, so that NOx and reduction occur while circulating through the regeneration gas circulation passage. The concentration of the agent is gradually decreased, and unreacted NOx and reducing agent are not discharged outside the system. In particular, if the amount of reducing agent added is insufficient, the reducing agent will not flow into the circulating gas.

【0012】また、再生中の吸着塔より脱着されるNO
xが少なくなって脱着が終了すれば、上記再生ガス循環
系路内のNOx濃度が急速に減少するので、この時点を
もって脱硝装置における脱硝反応の終了とし、さらに脱
着を終了した吸着塔を吸着操作に適した温度まで冷却さ
せて、再生を完了する。これによって次回の吸着操作に
そなえることができる。
Further, NO desorbed from the adsorption tower during regeneration.
When x is reduced and desorption is completed, the NOx concentration in the regeneration gas circulation system path is rapidly decreased. Therefore, at this point, the denitration reaction in the denitration device is terminated, and the adsorption column after desorption is adsorbed. Cool to a suitable temperature and complete regeneration. This makes it possible to prepare for the next suction operation.

【0013】NOx吸着剤としては空気中のNOxを効
率的に除去できるものが好ましく、活性炭や本出願人等
が提案した銅イオン交換ゼオライト(特願平1−325
834号)などがあげられる。またNO2 を主体とする
場合は活性アルミナや活性シリカなどがあげられる。ま
た、上記再生ガス循環系路の加熱に当っては、系内ガス
の膨張のため大気との均一を計る必要があり、このため
の逃しガスは吸着工程入口や別途の吸着剤を通して放出
することが望ましい。
As the NOx adsorbent, one capable of efficiently removing NOx in the air is preferable, and activated carbon or a copper ion-exchanged zeolite proposed by the applicant of the present invention (Japanese Patent Application No. 1-325).
834) and the like. When NO 2 is mainly used, activated alumina, activated silica and the like can be used. In addition, when heating the regeneration gas circulation system path, it is necessary to measure the homogeneity with the atmosphere due to the expansion of the gas in the system, and the escape gas for this must be released through the adsorption process inlet or a separate adsorbent. Is desirable.

【0014】[0014]

【実施例】本発明の一態様を図1によって説明する。希
薄NOx含有ガス1を吸引ファン2により除塵機3に導
き、処理ガス中の媒塵を除去した後、除塵ガス4は自動
開閉弁V1 あるいはV5 を介して、吸着剤を充填してい
るNOx吸着塔6aあるいは6bのいずれかに導入す
る。ここでNOが吸着除去され、自動開閉弁V3 あるい
はV7 を介して清浄ガス5あるいは7となって大気に放
出される。NOx浄化を連続して進めるにはNOx吸着
塔を2塔以上設置して、1つの吸着塔において出口NO
x濃度が所定値に達する前に他の吸着塔への切換えを行
う。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIG. After introducing the lean NOx-containing gas 1 to the dust remover 3 by the suction fan 2 to remove the medium dust in the processing gas, the dust removing gas 4 is filled with the adsorbent through the automatic opening / closing valve V 1 or V 5 . It is introduced into either the NOx adsorption tower 6a or 6b. Here, NO is adsorbed and removed, and becomes the clean gas 5 or 7 through the automatic opening / closing valve V 3 or V 7 and is released to the atmosphere. In order to continuously purify NOx, two or more NOx adsorption towers should be installed, and one NOx adsorption tower should have no outlet NOx.
The adsorption tower is switched to another adsorption tower before the x concentration reaches a predetermined value.

【0015】次に吸着工程を終了した吸着塔(以下で
は、これを6bとする)では次のような脱着工程を行
う。まず、NOx吸着塔6bを加熱する少し前に脱硝反
応器14を加熱する。このために、脱硝ガスブロワ11
→脱硝ガス加熱器12→脱硝反応器14を連結する脱硝
ガス循環系路を形成する。これによって脱硝反応器14
は200℃以上の反応に適した温度まで加熱される。こ
のときの系内の加熱による昇圧は大気均圧管15によっ
て解消する。
Next, the following desorption process is carried out in the adsorption tower (hereinafter referred to as 6b) which has completed the adsorption process. First, just before the NOx adsorption tower 6b is heated, the denitration reactor 14 is heated. For this purpose, the denitration gas blower 11
→ Denitration gas heater 12 → Denitration gas circulation system connecting the denitration reactor 14 is formed. As a result, the denitration reactor 14
Is heated to a temperature above 200 ° C. suitable for the reaction. The pressure increase due to the heating of the system at this time is eliminated by the atmospheric pressure equalizing pipe 15.

【0016】次に、自動開閉弁V6 ,V8 ,V11,V12
を開放して、NOx吸着塔6bのNOx脱着中は自動開
閉弁V6 →NOx吸着塔6b→自動開閉弁V8 →脱着ガ
ス循環ブロワ8→動開閉弁V11→脱着ガス加熱器9→動
開閉弁V12をつらねた脱着塔の再生ガス循環系路を形成
し、NOx脱着塔6bは100〜200℃程度の脱着適
正温度に加熱調節される。NOx脱着塔6bの温度上昇
に伴ない脱着NOx濃度が上昇し始めると、ひきつづき
運転中の上記脱硝ガス循環系路へ脱着塔加熱循環系路中
の高濃度NOx含有ガスを脱硝ブロワ11に導き、還元
剤供給管13からアンモニア等の還元剤を供給し、脱着
ガス中の高濃度NOxを脱硝反応器14にて還元分解す
る。NOx吸着塔6bのNOx脱着が終了に近づき上記
再生ガス循環系路内のNOx濃度が所定値まで低下する
と、還元剤供給管13よりの還元剤供給を停止するとと
もに脱硝ガス加熱器12、脱着ガス加熱器9を停止し、
自動開閉弁V11,V12を閉にし、自動開閉弁V9 ,V10
を開き、冷却器10を稼動してNOx吸着塔6bを常温
近くまで冷却して次回のNOx吸着工程切替にそなえ
る。なお、上記再生ガス循環系路の加熱時における昇圧
については該系路大気均圧管15を通して防止される。
この管路より排出されるガスはNOx吸着塔6a入口へ
導入し、該排出ガスに含有される少量のNOx及び未反
応還元剤を吸着除去する。
Next, the automatic on-off valves V 6 , V 8 , V 11 , V 12
Is opened and the NOx adsorption tower 6b is being desorbed by NOx while the automatic opening / closing valve V 6 → NOx adsorption tower 6b → automatic opening / closing valve V 8 → desorption gas circulation blower 8 → moving opening / closing valve V 11 → desorption gas heater 9 → moving A regeneration gas circulation system passage of the desorption tower having the opening / closing valve V 12 is formed, and the NOx desorption tower 6b is heated and adjusted to an appropriate desorption temperature of about 100 to 200 ° C. When the desorbed NOx concentration starts to increase with the rise in temperature of the NOx desorption tower 6b, the high-concentration NOx-containing gas in the desorption tower heating circulation path is continuously guided to the denitration blower 11 to the denitration gas circulation path during operation. A reducing agent such as ammonia is supplied from the reducing agent supply pipe 13, and high-concentration NOx in the desorption gas is reduced and decomposed in the denitration reactor 14. When the NOx desorption of the NOx adsorption tower 6b approaches the end, and the NOx concentration in the regeneration gas circulation system path decreases to a predetermined value, the reducing agent supply from the reducing agent supply pipe 13 is stopped and the denitration gas heater 12 and the desorption gas are removed. Turn off the heater 9,
The automatic opening / closing valves V 11 and V 12 are closed, and the automatic opening / closing valves V 9 and V 10 are closed.
And the cooler 10 is operated to cool the NOx adsorption tower 6b to near room temperature to prepare for the next NOx adsorption step switching. The pressure increase during heating of the regeneration gas circulation system passage is prevented through the atmosphere equalizing pipe 15 of the passage.
The gas discharged from this pipe is introduced into the inlet of the NOx adsorption tower 6a to adsorb and remove a small amount of NOx and unreacted reducing agent contained in the exhaust gas.

【0017】〔実験例1〕図1に示すNOx除去装置を
用いてNOx除去性能を調べた。NOx吸着剤として粒
状活性炭(クラレケミカル社製:3GS)を1kg充填
した。NOx吸着塔を用い、吸着条件としてNOを10
ppm添加した空気(温度:30℃、湿度:2.6Vo
l%)200リットル/minを被処理ガスとして、ガ
ス空塔線速度:10cm/secで10時間吸着を行っ
た。吸着開始当初のNOx吸着塔出口でのNOx濃度は
1.4ppm、10時間経過後に3.8ppm程度であ
った。
[Experimental Example 1] The NOx removal performance was examined using the NOx removal device shown in FIG. 1 kg of granular activated carbon (3GS manufactured by Kuraray Chemical Co., Ltd.) was filled as an NOx adsorbent. NOx adsorption tower is used, and NO is 10 as adsorption condition.
Air added with ppm (temperature: 30 ° C., humidity: 2.6 Vo
Adsorption was carried out for 10 hours at a gas superficial linear velocity of 10 cm / sec using a gas to be treated of 1%) 200 liter / min. The NOx concentration at the outlet of the NOx adsorption tower at the beginning of the adsorption was 1.4 ppm, and was about 3.8 ppm after 10 hours.

【0018】吸着終了後、図1に示す脱硝ガス循環系路
(脱硝ガスブロワ11→脱硝ガス加熱器12→脱硝反応
器14)において、脱硝反応器14(ハニカム状TiO
2 担体V2 5 担持触媒を0.1リットル充填)を25
0℃に保持させながら、再生ガス循環系路(自動開閉弁
6 →NOx吸着塔6b→自動開閉弁V8 →脱着ガス循
環ブロワ8→自動開閉弁V11→脱着ガス加熱器9→自動
開閉弁V12)の加熱を開始し、NOx吸着部が100℃
を越えて吸着NOx濃度が急上昇するところで、還元剤
供給管13からアンモニアガスを供給し脱硝反応器14
で脱硝を開始した。次いでNOx吸着塔6bのNOx吸
着部の温度が180℃程度になるまで加熱してNOx吸
着と脱硝を継続し、上記再生ガス循環系路内のNOx濃
度が10ppm以下になったところで再生を終了した。
ここで、ガス流量は脱硝ガス循環系路で5リットル/m
in、再生ガス循環系路で40リットル/minで行
い、脱硝時のアンモニア供給量は脱硝反応器14入口の
NOx量に対して約95%(モル比)として供給した。
この間、脱硝ガス循環系路の大気均圧管15からの放出
ガスは吸着工程にあるNOx吸着塔6a入口に供給し
た。該NOx吸着塔6a出口のアンモニアを測定したが
検出されなかった。
After completion of the adsorption, in the denitration gas circulation system passage (denitration gas blower 11 → denitration gas heater 12 → denitration reactor 14) shown in FIG. 1, the denitration reactor 14 (honeycomb-like TiO 2).
2 carriers V 2 O 5 supported catalyst 0.1 liter) 25
While maintaining at 0 ° C, the regeneration gas circulation system (automatic open / close valve V 6 → NOx adsorption tower 6b → automatic open / close valve V 8 → desorption gas circulation blower 8 → automatic open / close valve V 11 → desorption gas heater 9 → automatic opening / closing The valve V 12 ) is started to be heated, and the NOx adsorption part is at 100 ° C.
When the concentration of adsorbed NOx suddenly rises over the range, ammonia gas is supplied from the reducing agent supply pipe 13 to remove the denitration reactor 14
Then, denitration was started. Next, the NOx adsorption section of the NOx adsorption tower 6b is heated to a temperature of about 180 ° C. to continue NOx adsorption and denitration, and the regeneration is terminated when the NOx concentration in the regeneration gas circulation system passage becomes 10 ppm or less. .
Here, the gas flow rate is 5 liters / m in the denitration gas circulation path.
In, the flow rate was 40 liters / min in the regeneration gas circulation system, and the ammonia supply amount during denitration was about 95% (molar ratio) with respect to the NOx amount at the inlet of the denitration reactor 14.
During this period, the gas released from the atmospheric pressure equalizing pipe 15 in the denitration gas circulation system was supplied to the inlet of the NOx adsorption tower 6a in the adsorption process. Ammonia at the outlet of the NOx adsorption tower 6a was measured but was not detected.

【0019】[0019]

【発明の効果】本発明は低濃度のNOxを除去する方法
であり、再生ガス循環系路内の脱着NOx濃度を極力低
く維持できるため、NOxの脱着はより低温で効率よく
行うことができ、その際に再生ガス循環系路の循環ガス
全体を脱硝するのではなく、該循環ガスの一部を分岐し
て脱硝するので脱着適正温度と脱硝適正温度をそれぞれ
別途に自由に選定することができ、性能およびエネルギ
的に効率的に再生工程を行うことが可能である。また、
再生に使用するアンモニア等還元剤を系外へ放出するこ
となく、2次公害の問題のない実用上有効な方法であ
る。
INDUSTRIAL APPLICABILITY The present invention is a method for removing low-concentration NOx, and since the desorbed NOx concentration in the regeneration gas circulation system can be kept as low as possible, NOx can be desorbed efficiently at a lower temperature. At this time, instead of denitrifying the entire circulating gas in the regenerated gas circulation system, a part of the circulating gas is branched and denitrated, so that the optimum desorption temperature and the optimum denitration temperature can be freely selected separately. It is possible to perform the regeneration process efficiently in terms of performance and energy. Also,
This is a practically effective method that does not release a reducing agent such as ammonia used for regeneration to the outside of the system and has no problem of secondary pollution.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の説明図。FIG. 1 is an explanatory diagram of an embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三橋 庸良 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yora Mitsuhashi 2-1-1 Niihama, Arai-cho, Takasago-shi, Hyogo Mitsubishi Heavy Industries Ltd. Takasago Plant

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 低濃度窒素酸化物含有ガスを吸着塔で乾
式処理して主として窒素酸化物を吸着除去し、該吸着塔
を高温空気で脱着処理して再生させる方法において、再
生中の吸着塔からの脱着ガスを脱着ガス循環ブロワ、脱
着ガス加熱器を介して再び再生中の吸着塔に循環させる
脱着ガスよりなる再生ガス循環系路を形成させるととも
に、該再生ガス循環系路から一部の脱着ガスよりなる再
生ガスを吸引分岐する脱硝ガスブロワ、該再生ガスを脱
硝反応に適した温度に昇温する脱硝ガス加熱器、昇温し
た該再生ガスに還元剤を注入する還元剤供給管及び脱硝
反応器、該脱硝反応器からの処理ガスを前記再生ガス循
環系路に合流させる脱硝ガス循環系路を形成させ、再生
中の吸着塔の温度上昇に伴い再生ガス循環系路内の脱着
ガスの窒素酸化物の濃度が上昇し始めると、予め脱硝反
応の温度に適した温度に昇温した前記脱硝ガス循環系路
に前記脱硝ガスブロワにより所定量の前記再生ガス循環
系路中の再生循環ガスを導入し、前記還元剤供給管より
還元剤を注入後に脱硝反応器に通して窒素酸化物を還元
分解し、その脱硝処理ガスを再び前記再生ガス循環系路
に合流させて窒素酸化物濃度を低下させた該合流ガスを
再生中の吸着塔に循環供給することにより該吸着塔の再
生を進行させ、該再生ガス循環系路内の窒素酸化物濃度
が所定値まで低下したとき脱硝反応器の稼動を中止し、
再生後の吸着塔の温度を常温まで冷却して吸着塔の再生
を終了することを特徴とする低濃度窒素酸化物含有ガス
の処理方法。
1. A method of dry-treating a gas containing low-concentration nitrogen oxides in an adsorption tower to adsorb and remove mainly nitrogen oxides, and desorbing the adsorption tower with high-temperature air to regenerate the adsorbing tower during regeneration. The desorption gas from the desorption gas circulation blower, a regeneration gas circulation system passage consisting of the desorption gas to be circulated again through the desorption gas heater to the adsorption tower during regeneration, and a part of the regeneration gas circulation system passage. A denitration gas blower that sucks and branches the regenerated gas consisting of a desorption gas, a denitration gas heater that raises the temperature of the regeneration gas to a temperature suitable for the denitration reaction, a reducing agent supply pipe that injects a reducing agent into the heated regeneration gas, and denitration A denitration gas circulation system passage is formed to join the processing gas from the reactor and the denitration reactor to the regeneration gas circulation system passage, and the desorption gas in the regeneration gas circulation system passage is formed as the temperature of the adsorption tower during regeneration increases. Of nitrogen oxides When the concentration starts to increase, a predetermined amount of regenerated circulation gas in the regenerated gas circulation system is introduced by the denitration gas blower into the denitration gas circulation system that has been heated to a temperature suitable for the temperature of the denitration reaction in advance, and After injecting a reducing agent from a reducing agent supply pipe, the nitrogen oxide is reduced and decomposed by passing through a denitration reactor, and the denitration treatment gas is re-merged into the regeneration gas circulation system passage to reduce the nitrogen oxide concentration. By promoting the regeneration of the adsorption tower by circulating and supplying gas to the adsorption tower during regeneration, when the concentration of nitrogen oxides in the regeneration gas circulation system is reduced to a predetermined value, the operation of the denitration reactor is stopped,
A method for treating a gas containing low-concentration nitrogen oxides, which comprises terminating the regeneration of the adsorption tower by cooling the temperature of the adsorption tower after the regeneration to room temperature.
JP6203154A 1994-08-29 1994-08-29 Treatment of gas containing low concentration nitrogen oxide Withdrawn JPH0866619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6203154A JPH0866619A (en) 1994-08-29 1994-08-29 Treatment of gas containing low concentration nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6203154A JPH0866619A (en) 1994-08-29 1994-08-29 Treatment of gas containing low concentration nitrogen oxide

Publications (1)

Publication Number Publication Date
JPH0866619A true JPH0866619A (en) 1996-03-12

Family

ID=16469330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6203154A Withdrawn JPH0866619A (en) 1994-08-29 1994-08-29 Treatment of gas containing low concentration nitrogen oxide

Country Status (1)

Country Link
JP (1) JPH0866619A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108273356A (en) * 2018-03-05 2018-07-13 江苏汇金环保科技有限公司 A kind of high-temp waste gas activated carbon adsorption nitrogen stripping condensate recovery system
CN117771873A (en) * 2023-11-15 2024-03-29 上海开鸿环保科技有限公司 Method for recycling fluorobenzene synthesis tail gas pollution components based on activated carbon assisted denitration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108273356A (en) * 2018-03-05 2018-07-13 江苏汇金环保科技有限公司 A kind of high-temp waste gas activated carbon adsorption nitrogen stripping condensate recovery system
CN117771873A (en) * 2023-11-15 2024-03-29 上海开鸿环保科技有限公司 Method for recycling fluorobenzene synthesis tail gas pollution components based on activated carbon assisted denitration

Similar Documents

Publication Publication Date Title
KR0137606B1 (en) Nox absorption and removal apparatus
US5158582A (en) Method of removing NOx by adsorption, NOx adsorbent and apparatus for purifying NOx-containing gas
JPS5843224A (en) Dry type flue gas desulfurization and denitration method
JPH05192535A (en) Method and apparatus for purifying exhaust gas
JPH0616814B2 (en) Ventilation gas purification method in road tunnel
JPH0866619A (en) Treatment of gas containing low concentration nitrogen oxide
EP0590744B1 (en) Method for recovering ammonia adsorbent
JP3014725B2 (en) Exhaust gas purification method and apparatus
GB2238489A (en) Adsorption method and apparatus
US5897687A (en) Ammonia adsorption apparatus
JP3249181B2 (en) Regeneration method of nitrogen oxide adsorbent
JPH0616813B2 (en) Ventilation gas purification method in road tunnel
JP2007000733A (en) Gas processing method and processing apparatus
JP3321422B2 (en) Method and apparatus for removing trace amounts of carbon monoxide
JPH08257351A (en) Low-concentration NOx-containing gas treatment system and method thereof
JPH04281819A (en) Method for removing nitrogen oxide
JPH05146633A (en) Purification of dilute nitrogen oxide-containing air
JPH05253445A (en) Method for adsorption removing low concentration nitrogen oxide
JP3083915B2 (en) Removal method of low concentration nitrogen oxides
JPH08252428A (en) Removal of nitrogen dioxide
JPH0679137A (en) Method for treating air containing small amount of nitrogen oxide
JPH119957A (en) How to remove nitrogen oxides from the atmosphere
JPH08299758A (en) Method for removing nitrogen oxide and device therefor
JPH04176320A (en) Exhaust gas purification method and device
JPH0679134A (en) Treatment of air containing small amount of nitrogen oxide

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011106