JPH086206B2 - Molecularly oriented molded product of ultra-high molecular weight ethylene / butene-1 copolymer - Google Patents
Molecularly oriented molded product of ultra-high molecular weight ethylene / butene-1 copolymerInfo
- Publication number
- JPH086206B2 JPH086206B2 JP62108814A JP10881487A JPH086206B2 JP H086206 B2 JPH086206 B2 JP H086206B2 JP 62108814 A JP62108814 A JP 62108814A JP 10881487 A JP10881487 A JP 10881487A JP H086206 B2 JPH086206 B2 JP H086206B2
- Authority
- JP
- Japan
- Prior art keywords
- molecular weight
- butene
- copolymer
- ultra
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Artificial Filaments (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、超高分子量エチレン・ブテン−1共重合体
の分子配向成形体に関するもので、より詳細には新規な
結晶融解特性を有し、耐熱性及び耐クリープ性に優れた
超高分子量エチレン・ブテン−1共重合体の分子配向成
形体、特に繊維に関する。Description: TECHNICAL FIELD The present invention relates to a molecularly oriented molded product of an ultrahigh molecular weight ethylene / butene-1 copolymer, and more particularly, to a novel crystal melting property. , A molecularly oriented molded product of an ultra-high molecular weight ethylene-butene-1 copolymer having excellent heat resistance and creep resistance, particularly a fiber.
(従来の技術) 超高分子量ポリエチレンを繊維、テープ等に成形し、
これを延伸することにより、高弾性率、高引張強度を有
する分子配向成形体とすることは既に公知であり、例え
ば、特開昭56−15408号公報には、超高分子量ポリエチ
レンの希薄溶液を紡糸し、得られるフィラメントを延伸
することが記載されている。また、特開昭59−130313号
公報には、超高分子量ポリエチレンとワックスとを溶融
混練し、この混練物を押出し、冷却固化後延伸すること
が記載され、更に特開昭59−187614号公報には、上記溶
融混練物を押出し、ドラフトをかけた後冷却固化し、次
いで延伸することが記載されている。(Prior art) Molding ultra high molecular weight polyethylene into fiber, tape, etc.,
By stretching this, it is already known to obtain a molecularly oriented molded article having a high elastic modulus and a high tensile strength.For example, JP-A-56-15408 discloses a dilute solution of ultra-high molecular weight polyethylene. Spinning and stretching the resulting filaments is described. Further, JP-A-59-130313 describes that an ultra-high-molecular-weight polyethylene and a wax are melt-kneaded, and this kneaded product is extruded, cooled and solidified, and then stretched. Further, JP-A-59-187614. Describes that the melt-kneaded product is extruded, drafted, cooled and solidified, and then stretched.
(発明が解決しようとする問題点) 超高分子量ポリエチレンを繊維の形態に成形し、これ
を強延伸することにより、延伸倍率の増大に伴って、弾
性率及び引張強度の増大が得られ、この延伸繊維は、高
弾性率、高引張強度という機械的性質、軽量性、耐水
性、耐候性等には優れているが、その耐熱性はポリエチ
レンの融点が一般に120乃至140℃の比較的低い範囲内に
あるという制約を根本的に免れないものであり、更に超
高分子量ポリエチレン繊維を高温で使用する場合には、
強度の保持率が著しく減少し、またクリープが著しく増
大するという欠点がある。(Problems to be Solved by the Invention) By molding ultra-high molecular weight polyethylene into a fiber form and subjecting it to strong stretching, the elastic modulus and tensile strength are increased with an increase in the draw ratio. Stretched fibers are excellent in mechanical properties such as high elastic modulus and high tensile strength, light weight, water resistance, weather resistance, etc., but their heat resistance is such that the melting point of polyethylene is generally in the relatively low range of 120 to 140 ° C. The restriction that it is inside is fundamentally escaped, and when using ultra high molecular weight polyethylene fiber at high temperature,
It has the drawback that the strength retention is significantly reduced and the creep is significantly increased.
従って、本発明の目的は、新規な結晶融解特性を有
し、耐熱性と耐クリープ性とが顕著に改善された超高分
子量ポリエチレン系の分子配向成形体を提供するにあ
る。Therefore, an object of the present invention is to provide an ultra-high molecular weight polyethylene-based molecularly oriented molded product having novel crystal melting properties and having markedly improved heat resistance and creep resistance.
本発明の他の目的は、例えば170℃で5分間の熱処理
のような高温熱履歴を受けた場合にも、著しく高い強度
保持率及び弾性率保持率を示し、且つ高温下でのクリー
プが著しく低いレベルに抑制された超高分子量ポリエチ
レン系の分子配向成形体を提供するにある。Another object of the present invention is to exhibit remarkably high strength retention and elastic modulus retention even when subjected to a high temperature thermal history such as heat treatment at 170 ° C. for 5 minutes, and to show remarkable creep at high temperature. It is an object of the present invention to provide an ultra-high molecular weight polyethylene-based molecularly oriented molded product which is suppressed to a low level.
(問題点を解決するための手段) 本発明者等は、ブテン−1を限定された少量でエチレ
ンと共重合せしめた超高分子量エチレン・ブテン−1共
重合体を、押出成形し、強延伸して分子配向成形体とす
るときには、従来のポリエチレンの延伸成形体には全く
認められない融解温度の向上現象のある新規な分子配向
成形体が得られること、及びこの分子配向成形体は、17
0℃で5分間熱処理した場合にも強度や弾性率が殆んど
低下しないか、或いは逆にこれらの値が向上するという
高温時の機械的特性を有することを見出した。更にこの
分子配向成形体は、超高分子量ポリエチレンの延伸成形
体に特有の高強度及び高弾性率を保有しながら、顕著に
改善された耐クリープ性を有することもわかった。(Means for Solving Problems) The present inventors have extruded an ultra-high molecular weight ethylene-butene-1 copolymer obtained by copolymerizing butene-1 with ethylene in a limited small amount, and subjected to strong stretching. When a molecular orientation molded article is obtained by using the above-mentioned molecular orientation molded article, it is possible to obtain a novel molecular orientation molded article having a phenomenon of improvement in melting temperature which is not observed in conventional polyethylene stretched molded articles.
It has been found that even when heat-treated at 0 ° C. for 5 minutes, the strength and the elastic modulus are hardly reduced, or conversely, these values are improved to have mechanical properties at high temperature. Further, it was also found that this molecularly oriented molded product has a significantly improved creep resistance while retaining the high strength and high elastic modulus peculiar to the stretched molded product of ultra-high molecular weight polyethylene.
即ち、本発明によれば、極限粘度〔η〕が少なくとも
5dl/gでブテン−1の含有量が炭素数1000個あたり平均
0.1乃至15個である超高分子量エチレン・ブテン−1共
重合体の分子配向成形体であって、該成形体は拘束状態
で示差走査熱量計で測定したとき、少なくとも2個の結
晶融解吸熱ピークを有すると共に、二回目昇温時の主融
解吸熱ピークとして求められる超高分子量エチレン・ブ
テン−1共重合体本来の結晶融解温度(Tm)よりも少な
くとも20℃高い温度に少なくとも1個の結晶融解吸熱ピ
ーク(Tp)を有し、且つ全融解熱量当りのこの結晶融解
吸熱ピーク(Tp)に基づく熱量が15%以上であることを
特徴とする分子配向成形体が提供される。That is, according to the present invention, the intrinsic viscosity [η] is at least
Butene-1 content is averaged per 1000 carbon atoms at 5 dl / g
A molecularly oriented molded product of 0.1 to 15 ultra high molecular weight ethylene / butene-1 copolymers, wherein the molded product has at least two crystal melting endothermic peaks when measured by a differential scanning calorimeter in a restrained state. And has at least one crystal melt at a temperature at least 20 ° C higher than the original crystal melting temperature (Tm) of the ultra-high molecular weight ethylene-butene-1 copolymer, which is determined as the main melting endothermic peak at the time of the second heating. Provided is a molecular orientation molded article, which has an endothermic peak (Tp) and has an amount of heat based on the crystal melting endothermic peak (Tp) of 15% or more based on the total amount of heat of fusion.
(作 用) 本発明は、限定された量のブテン−1をエチレンと共
重合させて得られた超高分子量エチレン・ブテン−1共
重合体を押出成形し、強延伸して分子配向成形体とする
と、分子配向成形体を構成する重合体鎖の融点が拘束条
件下において向上するという驚くべき知見に基づくもの
である。(Operation) The present invention is a molecular orientation molded product obtained by extrusion-molding an ultra-high molecular weight ethylene-butene-1 copolymer obtained by copolymerizing a limited amount of butene-1 with ethylene, and strongly stretching it. Then, it is based on the surprising finding that the melting point of the polymer chains constituting the molecularly oriented molded article is improved under the constraint condition.
尚、本明細書において、拘束状態乃至拘束条件とは、
分子配向成形体に積極的な緊張は与えられていないが、
自由変形が防止されるように端部が固定されていること
を意味する。In the present specification, the restraint state or the restraint condition means
No positive tension is applied to the molecularly oriented molded body,
It means that the ends are fixed so that free deformation is prevented.
重合体の融点は、重合体中の結晶の融解に伴なうもの
であり、一般に示差走査熱量計での結晶融解に伴なう吸
熱ピーク温度として測定される。この吸熱ピーク温度
は、重合体の種類が定まれば一定であり、その後処理、
例えば延伸処理や架橋処理等によってそれが変動するこ
とは殆んどなく、変動しても、最も変動する場合として
良く知られている延伸熱処理でも高々15℃程度高温側へ
移動するに留まる。The melting point of a polymer is associated with melting of crystals in the polymer and is generally measured as an endothermic peak temperature associated with melting of crystals in a differential scanning calorimeter. This endothermic peak temperature is constant if the type of polymer is determined, and after that,
For example, it hardly changes due to stretching treatment or cross-linking treatment, and even if it varies, the stretching heat treatment, which is well known as the most varying case, moves to a high temperature side of about 15 ° C. at most.
添付図面第1図は本発明に用いる超高分子量エチレン
・ブテン−1共重合体原料、第2図はこのエチレン−ブ
テン−1共重合体の高延伸フィラメント、第3図は通常
の超高分子量ポリエチレンのホモポリマー原料、及び第
4図はこの超高分子量ポリエチレンの高延伸フィラメン
トの各々についての示差走査熱量計による吸熱曲線であ
り、高延伸フィラメントの吸熱曲線はフィラメントの拘
束条件で測定されたものである。尚、第1図および第3
図の原料粉末の吸熱曲線の測定は重合時の諸履歴を消去
するためにASTM D 3418に記載の方法で測定した。各
重合体の組成及びフィラメントの処理条件については後
述する例を参照されたい。FIG. 1 is a raw material for an ultra-high molecular weight ethylene / butene-1 copolymer used in the present invention, FIG. 2 is a highly drawn filament of the ethylene-butene-1 copolymer, and FIG. The homopolymer raw material of polyethylene, and FIG. 4 are endothermic curves by a differential scanning calorimeter for each of the ultra-high-molecular-weight polyethylene highly drawn filaments, which are measured under the constraint conditions of the filaments. Is. Incidentally, FIG. 1 and FIG.
The endothermic curve of the raw material powder in the figure was measured by the method described in ASTM D 3418 in order to eliminate various histories during polymerization. See the examples described below for the composition of each polymer and the processing conditions of the filament.
これらの結果から、通常の超高分子量ポリエチレンの
延伸フィラメントでは、原料の超高分子量ポリエチレン
から約15℃高い約150℃の温度に結晶融解に伴なう吸熱
ピークを示すのに対して、本発明による超高分子量エチ
レン・ブテン−1共重合体の延伸フィラメントでは、原
料共重合体に比して何れも吸熱ピークが本来の吸熱ピー
クに比してさらに約20℃以上高温側に移行していると共
に、超高分子量ポリエチレンのホモ重合体の延伸フィラ
メントに比して吸熱ピークが多重ピーク化していること
がわかる。From these results, the drawn filament of ordinary ultra-high molecular weight polyethylene shows an endothermic peak associated with crystal melting at a temperature of about 150 ° C., which is about 15 ° C. higher than the starting ultra-high molecular weight polyethylene. In the drawn filament of the ultra-high molecular weight ethylene / butene-1 copolymer according to the above, the endothermic peaks in all of them are shifted to the high temperature side by about 20 ° C or more compared with the original endothermic peaks as compared with the raw material copolymer. At the same time, it can be seen that the endothermic peak has multiple peaks as compared with the drawn filament of the homopolymer of ultra-high molecular weight polyethylene.
第5図は夫々、第2図の試料をセカンド・ラン(第2
図の測定を行った後、2回目の昇温測定)に賦したとき
の吸熱曲線を示す。第5図の結果から、再昇温の場合に
は結晶融解の主ピークは原料の超高分子量エチレン・ブ
テン−1共重合体の融解ピーク温度と殆んど同じ温度に
現われ、しかも第5図の測定時には試料中の分子配向は
殆んど消失していることから、第2図の試料における吸
熱ピークの高温側への移行は成形体中での分子配向と密
接に関連していることを示している。FIG. 5 shows the second run (second
The endothermic curve when it applies to the 2nd temperature rising measurement) after performing the measurement of a figure is shown. From the results of FIG. 5, in the case of reheating, the main peak of crystal melting appears at almost the same temperature as the melting peak temperature of the raw material ultra-high molecular weight ethylene-butene-1 copolymer. Since most of the molecular orientation in the sample disappeared during the measurement of, it was confirmed that the shift of the endothermic peak to the high temperature side in the sample in Fig. 2 is closely related to the molecular orientation in the molded body. Shows.
また、第2図と第4図との対比から、第2図の試料に
おける吸熱ピークの多重ピーク化は、重合体鎖中への少
量のブテン−1の組込みによって生じた分岐鎖の存在と
も密接に関連していることがわかる。Further, from the comparison between FIG. 2 and FIG. 4, the multiple peaking of the endothermic peak in the sample of FIG. 2 is closely related to the presence of the branched chain caused by the incorporation of a small amount of butene-1 in the polymer chain. You can see that it is related to.
本発明の分子配向成形体において、エチレンに少量の
ブテン−1を共重合させたものを用いることにより、重
合体鎖の共単量体成分の導入は結晶性の低下と融点の低
下とをもたらすという一般的事実に徴しても、該分子配
向成形体の融点が超高分子量ポリエチレンの分子配向成
形体の融点と同等もしくはそれ以上になるということ、
及び後述のように耐クリープ性が改良されるという事実
は真に意外のものであることがわかる。In the molecular orientation molded product of the present invention, by using a copolymer of ethylene with a small amount of butene-1, the introduction of the comonomer component of the polymer chain causes a decrease in crystallinity and a decrease in melting point. Considering the general fact that the melting point of the molecular orientation molded body is equal to or higher than the melting point of the molecular orientation molded body of ultra high molecular weight polyethylene,
And the fact that creep resistance is improved, as will be seen below, proves to be truly surprising.
本発明の分子配向成形体において、結晶融解温度の高
温側への移行が大きくなる理由は未だ十分に解明される
に至っていないが、前述した測定結果の解析から次のよ
うに推定される。即ち、超高分子量ポリエチレンの分子
配向成形体では、多数の重合体鎖が結晶部と非晶部とを
交互に通り且つ重合体鎖が延伸方向に配向した構造をと
ると考えられるが、この高分子量ポリエチレンにブテン
−1の少量を共重合により導入したものの分子配向成形
体では、導入されたブテン−1鎖の部分、即ち側鎖が形
成された部分が選択的に非晶部となり、この非晶部を介
して反復エチレン鎖の部分が配向結晶部となると信じら
れる。この際、重合体鎖中に炭素原子1000個当り平均0.
1乃至15個の数で導入された側鎖部分が非晶部に集中す
ることにより反復エチレン鎖の部分の配向結晶化がかえ
って規則性良く大きなサイズ迄進行するか、或いは配向
結晶部両端の非晶部で分子鎖間の絡み合いが増大して重
合体鎖が動きにくくなるため、配向結晶部の融解温度が
上昇するものと思われる。In the molecularly oriented molded product of the present invention, the reason why the shift of the crystal melting temperature to the high temperature side becomes large has not yet been sufficiently clarified, but it is presumed as follows from the analysis of the above measurement results. That is, it is considered that a molecular oriented molded product of ultra-high molecular weight polyethylene has a structure in which a large number of polymer chains alternately pass through crystal parts and amorphous parts and the polymer chains are oriented in the stretching direction. In a molecular oriented molded product obtained by copolymerizing a small amount of butene-1 into polyethylene having a molecular weight, a part of the butene-1 chain introduced, that is, a part where a side chain is formed, selectively becomes an amorphous part, and It is believed that a portion of the repeating ethylene chain becomes an oriented crystal part through the crystal part. At this time, an average of 0 per 1000 carbon atoms in the polymer chain.
The number of side chains introduced in the number of 1 to 15 is concentrated in the non-crystalline portion, whereby the oriented crystallization of the repeating ethylene chain portion progresses to a large size with regularity, or the non-oriented portions of the both ends of the oriented crystalline portion grow. It is considered that the entanglement between the molecular chains in the crystal part increases and the polymer chain becomes difficult to move, so that the melting temperature of the oriented crystal part increases.
本発明における分子配向成形体は、170℃で5分間熱
処理した場合にも、未熱処理のものに比して、強度の低
下が実質上なく、しかも弾性率が未処理のものに比して
むしろ向上するという特徴を有する。更に、この分子配
向成形体は高温での耐クリープ性においても顕著に優れ
ており、後に詳述する方法で求めたクリープ(CR90)
が、通常の超高分子量ポリエチレン配向成形体の1/2以
下、特に1/3以下であり、またクリープ速度ε90-180(s
ec-1)が超高分子量ポリエチレン配向成形体のそれより
も2桁程度のオーダーで小さいという驚くべき特性を有
している。これらの特性の顕著な改良は、前述した配向
結晶部の新規な微細構造に由来するものと思われる。The molecular orientation molded article according to the present invention has substantially no decrease in strength as compared with an untreated article even when heat-treated at 170 ° C. for 5 minutes, and has an elastic modulus rather than that of an untreated article. It has the characteristic of improving. Furthermore, this molecularly oriented molded product is also remarkably excellent in creep resistance at high temperatures, and the creep (CR 90 ) obtained by the method detailed later is determined.
However, it is 1/2 or less, especially 1/3 or less of the ordinary ultra-high molecular weight polyethylene oriented molded article, and the creep rate ε 90-180 (s
It has a surprising property that ec -1 ) is smaller than that of the ultra-high molecular weight polyethylene oriented molded body by about two orders of magnitude. It is considered that the remarkable improvements in these properties are derived from the novel microstructure of the oriented crystal part described above.
本発明の分子配向成形体に用いるエチレン・ブテン−
1共重合体は、ブテン−1を炭素数1000個当り0.1乃至1
5個、特に0.5乃至10個の量で含有することが重要であ
る。即ち、ブテン−1を共単量体とした超高分子量エチ
レン共重合体は、超高分子量ポリエチレンや共単量体と
してプロピレンを含む超高分子量エチレン共重合体に比
して耐クリープ性に優れた分子配向成形体を与える。こ
のブテン−1が上記量で含有されることも極めて重要で
あり、この含有量が上記範囲よりも少ない場合には、分
子配向による結晶融解温度の上昇効果が殆んど認められ
ず、また上記範囲よりも大きいと、エチレン・ブテン−
1共重合体そのものの融点が低下する傾向が大きくなる
と共に、分子配向による結晶融解温度の上昇効果、弾性
率の向上も小さくなる傾向がある。Ethylene butene used for the molecular orientation molded article of the present invention
One copolymer contains butene-1 in an amount of 0.1 to 1 per 1000 carbon atoms.
It is important to contain in an amount of 5, especially 0.5 to 10. That is, the ultrahigh molecular weight ethylene copolymer using butene-1 as a comonomer is superior in creep resistance as compared with the ultrahigh molecular weight ethylene copolymer containing ultrahigh molecular weight polyethylene or propylene as a comonomer. To give a molecularly oriented molded product. It is also very important that the butene-1 is contained in the above amount, and when the content is less than the above range, almost no effect of increasing the crystal melting temperature due to molecular orientation is observed, and If it exceeds the range, ethylene-butene-
The melting point of the 1-copolymer itself tends to decrease, and the effect of increasing the crystal melting temperature by the molecular orientation and the improvement of the elastic modulus tend to decrease.
また、このエチレン・ブテン−1共重合体は、極限粘
度〔η〕が5dl/g以上、特に7乃至30dl/gの範囲にある
ことも分子配向成形体の機械的特性や耐熱性から重要で
ある。即ち、分子端末は繊維強度に寄与しなく、分子端
末の数は分子量(粘度)の逆数であることから、極限粘
度〔η〕の大きいものが高強度を与えることがわかる。It is also important that the ethylene / butene-1 copolymer has an intrinsic viscosity [η] of 5 dl / g or more, particularly 7 to 30 dl / g from the viewpoint of mechanical properties and heat resistance of the molecular orientation molded product. is there. That is, since the molecular terminals do not contribute to the fiber strength and the number of the molecular terminals is the reciprocal of the molecular weight (viscosity), it can be seen that the one having a large intrinsic viscosity [η] gives a high strength.
本発明の分子配向成形体は、二回目昇温時の主融解吸
熱ピークとして求められ超高分子量エチレン・ブテン−
1共重合体本来の結晶融解温度(Tm)よりも少なくとも
20℃高い温度に少なくとも1個の結晶融解吸熱ピーク
(Tp)を有すること、及び全融解熱量当りのこの結晶融
解吸熱ピーク(Tp)に基づく熱量が15%以上、好ましく
は20%、特に30%以上であることが、分子配向成形体の
耐熱性、即ち高温下での強度や弾性率の保持性や高温下
での耐クリープ性の点で重要である。The molecular orientation molded article of the present invention has an ultra-high molecular weight ethylene-butene
1 At least than the crystal melting temperature (Tm) of the original copolymer
Having at least one crystal melting endotherm peak (Tp) at a temperature 20 ° C. higher, and the amount of heat based on this crystal melting endothermic peak (Tp) per total heat of fusion is 15% or more, preferably 20%, particularly 30% The above is important from the viewpoint of heat resistance of the molecularly oriented molded article, that is, retention of strength and elastic modulus at high temperature and creep resistance at high temperature.
即ち、Tmよりも20℃以上高い温度領域に結晶融解吸熱
ピーク(Tp)を有しない分子配向成形体や、この温度領
域に結晶融解吸熱ピークを有していてもそれに基づく吸
熱量が全融解熱量の15%を下廻る分子配向成形体では、
170℃で5分間熱処理したときの強度保持率や弾性率保
持率が実質上低下する傾向があり、また加熱時における
クリープやクリープ速度も大きくなる傾向がある。That is, a molecularly oriented molded product that does not have a crystal melting endothermic peak (Tp) in a temperature region higher than Tm by 20 ° C. or even if it has a crystal melting endothermic peak in this temperature region, the endothermic amount based on it is the total melting heat amount. In the case of molecularly oriented molded products with less than 15% of
When heat-treated at 170 ° C. for 5 minutes, the strength retention rate and elastic modulus retention rate tend to decrease substantially, and creep and creep rate during heating tend to increase.
(好適実施態様の説明) 本発明を、その理解が容易なように、原料、製造方法
及び目的物の順に以下に説明する。(Description of preferred embodiments) The present invention will be described below in the order of the raw material, the production method, and the target product for easy understanding.
原 料 本発明に用いる超高分子量エチレン・ブテン−1共重
合体は、エチレンとコモノマーとしてのブテン−1と
を、チーグラー系触媒の存在下に、例えば有機溶媒中で
スラリー重合させることにより製造される。Raw material The ultra high molecular weight ethylene / butene-1 copolymer used in the present invention is produced by slurry-polymerizing ethylene and butene-1 as a comonomer in the presence of a Ziegler catalyst, for example, in an organic solvent. It
この場合、用いるブテン−1コモノマーの量は、炭素
数1000個当り前述した範囲の重合体鎖中のブテン−1含
有量を与えるものでなければならない。また、用いる超
高分子量エチレン・ブテン−1共重合体は、前述した極
限粘度〔η〕に対応する分子量を有するべきである。In this case, the amount of butene-1 comonomer used should be such that it gives a butene-1 content in the polymer chain in the range mentioned above per 1000 carbons. Further, the ultrahigh molecular weight ethylene / butene-1 copolymer used should have a molecular weight corresponding to the above-mentioned intrinsic viscosity [η].
ブテン−1含有量が1000炭素原子当り0.2個以下の場
合には、耐クリープ性改良に有効な構造を作ることがで
きないし、又、逆にブテン−1含有量が1000炭素原子当
り15個以上の場合には結晶化度が著しく低下し、高弾性
率を得ることができない。本発明における超高分子量エ
チレン・ブテン−1共重合体のブテン−1成分の定量は
赤外分光光度計(日本分光工業製)によって行なった。
つまりエチレン鎖の中に取り込まれたブテン−1の分岐
末端のメチル基の変角振動に基づく1378cm-1の吸光度を
測定し、これからあらかじめ13C核磁気共鳴装置にて、
モデル化合物を用いて作成した検量線にて、容易に1000
炭素原子当りのメチル分岐数に換算することにより測定
した値である。If the butene-1 content is less than 0.2 per 1000 carbon atoms, a structure effective for improving creep resistance cannot be formed, and conversely, the butene-1 content is 15 or more per 1000 carbon atoms. In this case, the crystallinity is remarkably lowered, and a high elastic modulus cannot be obtained. The quantification of the butene-1 component of the ultrahigh molecular weight ethylene / butene-1 copolymer in the present invention was carried out by an infrared spectrophotometer (manufactured by JASCO Corporation).
In other words, the absorbance at 1378 cm -1 based on the bending vibration of the methyl group at the branched end of butene-1 incorporated into the ethylene chain was measured, and from this, in advance with a 13 C nuclear magnetic resonance apparatus,
Easily 1000 with a calibration curve created using model compounds
It is a value measured by converting it into the number of methyl branches per carbon atom.
製造方法 本発明では、上記超高分子量エチレン・ブテン−1共
重合体の溶融成形を可能にするために、上記成分と共に
稀釈剤を配合する。このような稀釈剤としては、超高分
子量エチレン共重合体に対する溶剤や、超高分子量エチ
レン共重合体に対して相溶性を有する各種ワックス状物
が使用される。Manufacturing Method In the present invention, a diluent is blended with the above components in order to enable melt molding of the ultrahigh molecular weight ethylene / butene-1 copolymer. As such a diluting agent, a solvent for the ultra high molecular weight ethylene copolymer or various waxes having compatibility with the ultra high molecular weight ethylene copolymer are used.
溶剤は、好ましくは前記共重合体の融点以上、更に好
ましくは融点+20℃以上の沸点を有する溶剤である。The solvent is preferably a solvent having a boiling point not lower than the melting point of the copolymer, more preferably not lower than the melting point + 20 ° C.
かかる溶剤としては、具体的には、n−ノナン、n−
デカン、n−ウンデカン、n−ドデカン、n−テトラデ
カン、n−オクタデカンあるいは流動パラフィン、灯油
等の脂肪族炭化水素系溶媒、キシレン、ナフタリン、テ
トラリン、ブチルベンゼン、p−シメン、シクロヘキシ
ルベンゼン、ジエチルベンゼン、ベンチルベンゼン、ド
デシルベンゼン、ビシクロヘキシル、デカリン、メチル
ナフタリン、エチルナフタリン等の芳香族炭化水素系溶
媒あるいはその水素化誘導体、1,1,2,2−テトラクロロ
エタン、ペンタクロロエタン、ヘキサクロロエタン、1,
2,3−トリクロロプロパン、ジクロロベンゼン、1,2,4−
トリクロロベンゼン、ブロモベンゼン等のハロゲン化炭
化水素溶媒、パラフィン系プロセスオイル、ナフテン系
プロセスオイル、芳香族系プロセスオイル等の鉱油が挙
げられる。Specific examples of such a solvent include n-nonane and n-nonane.
Aliphatic hydrocarbon solvents such as decane, n-undecane, n-dodecane, n-tetradecane, n-octadecane or liquid paraffin, kerosene, xylene, naphthalene, tetralin, butylbenzene, p-cymene, cyclohexylbenzene, diethylbenzene, bench Aromatic hydrocarbon solvents such as rubenzene, dodecylbenzene, bicyclohexyl, decalin, methylnaphthalene, ethylnaphthalene or hydrogenated derivatives thereof, 1,1,2,2-tetrachloroethane, pentachloroethane, hexachloroethane, 1,
2,3-trichloropropane, dichlorobenzene, 1,2,4-
Examples thereof include halogenated hydrocarbon solvents such as trichlorobenzene and bromobenzene, paraffin-based process oils, naphthene-based process oils, and aromatic-based process oils.
ワックス類としては、脂肪族炭化水素化合物或いはそ
の誘導体が使用される。As the wax, an aliphatic hydrocarbon compound or its derivative is used.
脂肪族炭化水素化合物としては、飽和脂肪族炭化水素
化合物を主体とするので、通常分子量が2000以下、好ま
しくは1000以下、更に好ましくは800以下のパラフィン
系ワックスと呼ばれるものである。これら脂肪族炭化水
素化合物としては、具体的にはドコサン、トリコサン、
テトラコサン、トリアコンタン等の炭素数22以上のn−
アルカンあるいはこれらを主成分とした低級n−アルカ
ンとの混合物、石油から分離精製された所謂パラフィン
ワックス、エチレンあるいはエチレンと他のα−オレフ
ィンとを共重合して得られる低分子量重合体である中・
低圧ポリエチレンワックス、高圧法ポリエチレンワック
ス、エチレン共重合ワックスあるいは中・低圧法ポリエ
チレン、高圧法ポリエチレン等のポリエチレンを熱減成
等により分子量を低下させたワックス及びそれらのワッ
クスの酸化物あるいはマレイン酸変性等の酸化ワック
ス、マレイン酸変性ワックス等が挙げられる。Since the aliphatic hydrocarbon compound is mainly a saturated aliphatic hydrocarbon compound, it is usually called a paraffin wax having a molecular weight of 2000 or less, preferably 1000 or less, more preferably 800 or less. Specific examples of these aliphatic hydrocarbon compounds include docosane, tricosane,
N- with 22 or more carbon atoms such as tetracosane and triacontane
Alkanes or mixtures with lower n-alkanes containing them as a main component, so-called paraffin wax separated and purified from petroleum, and low molecular weight polymers obtained by copolymerizing ethylene or ethylene with other α-olefins.・
Low-pressure polyethylene wax, high-pressure polyethylene wax, ethylene copolymer wax or wax such as medium / low-pressure polyethylene, high-pressure polyethylene whose molecular weight has been reduced by thermal degradation, and oxides or maleic acid modification of these waxes Oxidized waxes, maleic acid-modified waxes and the like.
脂肪族炭化水素化合物誘導体としては、例えば脂肪族
炭化水素基(アルキル基、アルケニル基)の末端もしく
は内部に1個又はそれ以上、好ましくは1ないし2個、
特に好ましくは1個のカルホキシル基、水酸基、カルバ
モイル基、エステル基、メルトカプト基、カルボニル基
等の官能基を有する化合物である炭素数8以上、好まし
くは炭素数12〜50又は分子量130〜2000、好ましくは200
〜800の脂肪酸、脂肪族アルコール、脂肪酸アミド、脂
肪酸エステル、脂肪族メルカプタン、脂肪族アルデヒ
ド、脂肪族ケトン等を挙げることができる。As the aliphatic hydrocarbon compound derivative, for example, one or more, preferably one or two, at the terminal or inside of the aliphatic hydrocarbon group (alkyl group, alkenyl group),
Particularly preferred is a compound having a functional group such as one carboxyl group, a hydroxyl group, a carbamoyl group, an ester group, a meltcapto group, a carbonyl group, and the like, preferably 8 or more carbon atoms, preferably 12 to 50 carbon atoms or 130 to 2000 molecular weight, preferably Is 200
To 800 fatty acids, aliphatic alcohols, fatty acid amides, fatty acid esters, aliphatic mercaptans, aliphatic aldehydes, aliphatic ketones and the like.
具体的には、脂肪酸としてカプリン酸、ラウリン酸、
ミリスチン酸、パルミチン酸、ステアリン酸、オレイン
酸、脂肪族アルコールとしてラウリンアルコール、ミリ
スチルアルコール、セチルアルコール、ステアリルアル
コール、脂肪酸アミドとしてカプリンアミド、ラウリン
アミド、パルミチンアミド、ステアリルアミド、脂肪酸
エステルとしてステアリル酢酸エステル等を例示するこ
とができる。Specifically, as a fatty acid, capric acid, lauric acid,
Myristic acid, palmitic acid, stearic acid, oleic acid, lauric alcohol as a fatty alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol, capric amide as a fatty acid amide, laurinamide, palmitinamide, stearyl amide, stearyl acetic acid ester as a fatty acid ester, etc. Can be illustrated.
超高分子量エチレン共重合体と稀釈剤との比率は、こ
れらの種類によっても相違するが、一般的に言って3:97
乃至80:20、特に15:85乃至60:40の重量比で用いるのが
よい。稀釈剤の量が上記範囲よりも低い場合には、溶融
粘度が高くなり過ぎ、溶融混練や溶融成形が困難となる
と共に、成形物の肌荒れが著しく、延伸切れ等を生じ易
い。一方、稀釈剤の量が上記範囲よりも多いと、やはり
溶融混練が困難となり、また成形品の延伸性が劣るよう
になる。The ratio of ultra high molecular weight ethylene copolymer to diluent also varies depending on these types, but generally it is 3:97.
It is advisable to use it in a weight ratio of from 80 to 20:20, in particular from 15:85 to 60:40. When the amount of the diluent is lower than the above range, the melt viscosity becomes too high, which makes melt-kneading and melt-molding difficult, and the surface roughness of the molded product is remarkable, and stretch breakage easily occurs. On the other hand, when the amount of the diluent is more than the above range, the melt-kneading becomes difficult and the stretchability of the molded product becomes poor.
溶融混練は一般に150乃至300℃、特に170乃至270℃の
温度で行なうのが望ましく、上記範囲よりも低い温度で
は、溶融粘度が高すぎて、溶融成形が困難となり、また
上記範囲よりも高い場合には、熱減成により超高分子量
エチレン共重合体の分子量が低下して高弾性率及び高強
度の成形体を得ることが困難となる。尚、配合はヘンシ
ェルミキサー、V型ブレンダー等による乾式ブレンドで
行ってもよいし、或いは単軸或いは多軸押出機を用いる
溶融混合で行ってもよい。Melt kneading is generally carried out at a temperature of 150 to 300 ° C., particularly 170 to 270 ° C., and if the temperature is lower than the above range, the melt viscosity is too high, which makes melt molding difficult, and is higher than the above range. In particular, due to thermal degradation, the molecular weight of the ultra high molecular weight ethylene copolymer is lowered, and it becomes difficult to obtain a molded product having a high elastic modulus and a high strength. The compounding may be performed by dry blending using a Henschel mixer, a V-type blender, or the like, or may be performed by melt mixing using a single-screw or multi-screw extruder.
溶融成形は、一般に溶融押出成形により行われる。例
えば、紡糸口金を通して溶融押出することにより、延伸
用フィラメントが得られ、またフラットダイ或いはリン
グダイを通して押出すことにより、延伸用フィルム或い
はシート或いはテープが得られ、更にサーキュラーダイ
を通して押出すことにより、延伸ブロー成形用パイプ
(パリソン)が得られる。本発明は特に、延伸フィラメ
ントの製造に有用であり、この場合、紡糸口金より押出
された溶融物にドラフト、即ち溶融状態での引き伸しを
加えることもできる。溶融樹脂のダイ・オリフィス内で
の押出速度V0と冷却固化した未延伸物の巻き取り速度V
との比をドラフト比として次式で定義することができ
る。Melt molding is generally performed by melt extrusion molding. For example, by melt-extruding through a spinneret, a filament for stretching is obtained, and by extruding through a flat die or a ring die, a stretching film or sheet or tape is obtained, and further by extruding through a circular die, A stretch blow molding pipe (parison) is obtained. The invention is particularly useful for producing drawn filaments, in which case the melt extruded from the spinneret can be drafted, i.e., stretched in the molten state. Extrusion speed V 0 of the molten resin in the die orifice and winding speed V of the unstretched material solidified by cooling
Can be defined by the following equation as a draft ratio.
ドラフト比=V/V0 ……(2) かかるドラフト比は混合物の温度及び超高分子量エチ
レン共重合体の分子量等によるが通常は3以上、好まし
くは6以上とすることができる。Draft ratio = V / V 0 (2) The draft ratio depends on the temperature of the mixture, the molecular weight of the ultra high molecular weight ethylene copolymer, and the like, but is usually 3 or more, preferably 6 or more.
勿論、溶融成形は押出成形のみに限定されず、各種延
伸成形容器等の製造の場合には、射出成形で延伸ブロー
成形用のプリフォームを製造することも可能である。成
形物の冷却固化は風冷、水冷等の強制冷却手段で行うこ
とができる。Of course, melt molding is not limited to extrusion molding, and in the case of manufacturing various stretch-molded containers and the like, it is also possible to manufacture a preform for stretch blow molding by injection molding. Cooling and solidification of the molded product can be performed by forced cooling means such as air cooling or water cooling.
かくして得られる超高分子量エチレン共重合体の未延
伸成形体を延伸処理する。延伸処理の程度は、勿論、成
形体の超高分子量エチレン共重合体に少なくとも一軸方
向の分子配向が有効に付与されるようなものである。The unstretched molded product of the ultrahigh molecular weight ethylene copolymer thus obtained is stretched. The degree of the stretching treatment is, of course, such that molecular orientation in at least uniaxial direction is effectively imparted to the ultrahigh molecular weight ethylene copolymer of the molded product.
超高分子量エチレン共重合体の成形体の延伸は、一般
に40乃至160℃、特に80乃至145℃の温度で行うのが望ま
しい。未延伸成形体を上記温度に加熱保持するための熱
媒体としては、空気、水蒸気、液体媒体の何れをも用い
ることができる。しかしながら、熱媒体として前述した
稀釈剤を溶出除去することができる溶媒でしかもその沸
点が成形体組成物の融点よりも高いもの、具体的にはデ
カリン、デカン、灯油等を使用して、延伸操作を行なう
と、前述した稀釈剤の除去が可能となると共に、延伸時
の延伸むらの解消並びに高延伸倍率の達成が可能となる
ので好ましい。The stretching of the ultra-high molecular weight ethylene copolymer molded body is preferably carried out at a temperature of generally 40 to 160 ° C, particularly 80 to 145 ° C. As a heat medium for heating and holding the unstretched molded body at the above-mentioned temperature, any of air, steam, and a liquid medium can be used. However, a solvent capable of eluting and removing the above-mentioned diluent as a heat medium and having a boiling point higher than the melting point of the molded body composition, specifically decalin, decane, kerosene, etc. By performing the above, it is possible to remove the above-mentioned diluent, and it is possible to eliminate unevenness in stretching during stretching and achieve a high stretching ratio, which is preferable.
勿論、超高分子量エチレン共重合体から過剰の稀釈剤
を除去する手段は、前記方法に限らず、未延伸物をヘキ
サン、ヘプタン、熱エタノール、クロロホルム、ベンゼ
ン等の溶剤で処理後延伸する方法、延伸物をヘキサン、
ヘプタン、熱エタノール、クロロホルム、ベンゼン等の
溶剤で処理する方法によっても、成形物中の過剰の稀釈
剤の除去を有効に行ない、高弾性率、高強度の延伸物を
得ることができる。Of course, means for removing the excess diluent from the ultra high molecular weight ethylene copolymer is not limited to the above method, hexane, heptane, hot ethanol, chloroform, a method of stretching after treating with a solvent such as benzene, Hexane,
The method of treating with a solvent such as heptane, hot ethanol, chloroform, benzene, etc. can also effectively remove the excess diluent in the molded product and obtain a stretched product with high elastic modulus and high strength.
延伸操作は、一段或いは二段以上の多段で行うことが
できる。延伸倍率は、所望とする分子配向及びこれに伴
なう融解温度向上の効果にも依存するが、一般に5乃至
80倍、特に10乃至50倍の延伸倍率となるように延伸操作
を行えば満足すべき結果が得られる。The stretching operation can be performed in one stage or in multiple stages of two or more stages. The stretching ratio generally depends on the desired molecular orientation and the effect of improving the melting temperature accompanied therewith, but generally 5 to
Satisfactory results can be obtained by carrying out the stretching operation so that the stretching ratio is 80 times, particularly 10 to 50 times.
一般には、二段以上の多段延伸が有利であり、一段目
では80乃至120℃の比較的低い温度で押出成形体中の稀
釈剤を抽出しながら延伸操作を行い、二段目以降では、
120乃至160℃の温度でしかも一段目延伸温度よりも高い
温度で成形体の延伸操作を続行するのがよい。In general, multi-stage drawing of two or more steps is advantageous, and the drawing operation is performed while extracting the diluent in the extrusion-molded product at a relatively low temperature of 80 to 120 ° C in the first step, and in the second and subsequent steps,
It is preferable to continue the stretching operation of the molded body at a temperature of 120 to 160 ° C. and a temperature higher than the first stage stretching temperature.
フィラメント、テープ或いは一軸延伸等の一軸延伸操
作の場合には、周速の異なるローラ間で引張延伸を行え
ばよく、また二軸延伸フィルムの場合には、周速の異な
るローラ間で縦方向に引張延伸を行なうと共に、テンタ
ー等により横方向にも引張延伸を行う。また、インフレ
ーション法による二軸延伸も可能である。更に、容器等
の立体成形物の場合には、軸方向への引張り延伸と周方
向への膨脹延伸との組合せにより二軸延伸成形体を得る
ことができる。In the case of uniaxial stretching operation such as filament, tape or uniaxial stretching, tensile stretching may be performed between rollers having different peripheral speeds, and in the case of biaxially stretched film, longitudinal stretching may be performed between rollers having different peripheral speeds. Along with performing the tensile stretching, the tensile stretching is also performed in the transverse direction using a tenter or the like. Biaxial stretching by the inflation method is also possible. Furthermore, in the case of a three-dimensional molded product such as a container, a biaxially stretched molded product can be obtained by a combination of tensile stretching in the axial direction and expansion stretching in the circumferential direction.
かくして得られる分子配向成形体は、所望により拘束
条件下に熱処理することができる。この熱処理は、一般
に140乃至180℃、特に150乃至175℃の温度で、1乃至20
分間、特に3乃至10分間行うことができる。熱処理によ
り、配向結晶部の結晶化が一層進行し、結晶融解温度の
高温側移行、強度及び弾性率の向上及び高温での耐クリ
ープ性の向上がもたらされる。The molecular orientation molded body thus obtained can be heat-treated under restrained conditions, if desired. This heat treatment is generally carried out at a temperature of 140 to 180 ° C, especially 150 to 175 ° C, for 1 to 20 ° C.
It can be carried out for minutes, in particular for 3 to 10 minutes. The heat treatment further promotes the crystallization of the oriented crystal part, which leads to the shift of the crystal melting temperature to the high temperature side, the improvement of the strength and the elastic modulus, and the improvement of the creep resistance at high temperature.
分子配向成形体 既に述べた通り、本発明による超高分子量エチレン・
ブテン−1共重合体の分子配向成形体は、該共重合体本
来の結晶融解温度(Tm)よりも少なくとも20℃高い温度
に少なくとも1個の結晶融解ピーク(Tp)を有し、しか
も全融解熱量当りのこの結晶融解ピーク(Tp)に基づく
融解熱量が15%以上、好ましくは20%以上、特に30%以
上であるという特徴を有する。Molecularly oriented molded product As described above, the ultra high molecular weight ethylene according to the present invention
The butene-1 copolymer molecular orientation molded product has at least one crystal melting peak (Tp) at a temperature at least 20 ° C. higher than the original crystal melting temperature (Tm) of the copolymer, and has a total melting temperature. The heat of fusion based on this crystal melting peak (Tp) per heat is 15% or more, preferably 20% or more, and particularly 30% or more.
超高分子量エチレン共重合体本来の結晶融解温度(T
m)は、この成形体を一度完全に融解した後冷却して、
成形体における分子配向を緩和させた後、再度昇温させ
る方法、所謂示差走査型熱量計におけるセカンド・ラン
で求めることができる。Original crystalline melting temperature of ultra high molecular weight ethylene copolymer (T
m) is, once this molded body is completely melted and then cooled,
It can be determined by a method of relaxing the molecular orientation in the molded body and then raising the temperature again, that is, a second run in a so-called differential scanning calorimeter.
更に説明すると、本発明の分子配向成形体では、前述
した共重合体本来の結晶融解温度域には結晶融解ピーク
は全く存在しないか、存在するとしても極くわずかにテ
ーリングとして存在するにすぎない。結晶融解ピーク
(Tp)は一般に、温度範囲Tm+20℃〜Tm+50℃の領域に
表われるのが普通であり、このピーク(Tp)は上記温度
範囲内に複数個のピークとして表われることが多い。To explain further, in the molecular orientation molded product of the present invention, the crystal melting peak does not exist at all in the crystal melting temperature range of the above-mentioned copolymer, or if it exists, it exists only as a very small tailing. . The crystal melting peak (Tp) generally appears in the temperature range Tm + 20 ° C. to Tm + 50 ° C., and this peak (Tp) often appears as a plurality of peaks within the above temperature range.
これらの高温度領域の結晶融解ピーク(Tp)は、超高
分子量エチレン・ブテン−1共重合体の成形体の耐熱性
を顕著に向上させ、、かつ高温の熱履歴後での強度保持
率や弾性率保持率に寄与するものであると思われる。These crystal melting peaks (Tp) in the high temperature region remarkably improve the heat resistance of the ultra-high molecular weight ethylene / butene-1 copolymer molded article, and also improve the strength retention rate after high temperature heat history and It seems to contribute to the elastic modulus retention rate.
本発明における融点及び結晶融解熱量は以下の方法に
より測定した。The melting point and the heat of crystal fusion in the present invention were measured by the following methods.
融点は示差走査熱量計で以下の様に行なった。示差走
査熱量計はDSC II型(パーキンエルマー社製)を用い
た。試料は約3mgを4mm×4mm、厚さ0.2mmのアルミ板に巻
きつけることにより配向方向に拘束した。次いでアルミ
板に巻きつけた試料をアルミパンの中に封入し、測定用
試料とした。又、リファレンスホルダーに入れる通常空
のアルミパンには試料に用いたと同じアルミ板を封入し
熱バランスを取った。まづ試料を30℃で約1分間保持
し、その後10℃/minの昇温速度で250℃まで昇温し、第
1回目昇温時の融点測定を完了した。引き続き250℃の
状態で10分間保持し、次いで20℃/minの降温速度で降温
し、さらに30℃で10分間試料を保持した。次いで二回目
の昇温を10℃/minの昇温速度で250℃まで昇温し、この
際2回目昇温時(セカンドラン)の融点測定を完了し
た。このとき融解ピークの最大値をもって融点とした。
ショルダーとして現われる場合はショルダーのすぐ低温
側の変曲点とすぐ高温側の変曲点で接線を引き交点を融
点とした。The melting point was measured by a differential scanning calorimeter as follows. As the differential scanning calorimeter, DSC II type (manufactured by Perkin Elmer) was used. The sample was constrained in the orientation direction by winding about 3 mg around an aluminum plate having a thickness of 4 mm × 4 mm and a thickness of 0.2 mm. Then, the sample wound around the aluminum plate was enclosed in an aluminum pan to obtain a measurement sample. The same aluminum plate used for the sample was sealed in a normally empty aluminum pan to be placed in the reference holder, and the heat balance was maintained. First, the sample was kept at 30 ° C. for about 1 minute, and then heated up to 250 ° C. at a rate of 10 ° C./min to complete the first melting point measurement at the time of temperature rise. Subsequently, the sample was held at 250 ° C. for 10 minutes, then cooled at a cooling rate of 20 ° C./min, and further held at 30 ° C. for 10 minutes. Next, the second heating was carried out at a heating rate of 10 ° C./min to 250 ° C., and the melting point measurement at the second heating (second run) was completed. At this time, the maximum value of the melting peak was taken as the melting point.
When it appears as a shoulder, a tangent line was drawn between the inflection point on the low temperature side and the inflection point on the high temperature side of the shoulder, and the intersection was taken as the melting point.
また吸熱曲線の60℃と240℃との点を結び該直線(ベ
ースライン)と二回目昇温時の主融解ピークとして求め
られる超高分子量エチレン共重合体本来の結晶融解温度
(Tm)より20℃高い点に垂線を引き、これらによって囲
まれた低温側の部分を超高分子量エチレン共重合体本来
の結晶融解(Tm)に基づくものとし、又高温側の部分を
本発明成形体の機能を発現する結晶融解(Tp)に基づく
ものとし、それぞれの結晶融解熱量は、これらの面積よ
り算出した。Also, from the melting point (Tm) of the original crystal melting point (Tm) of the ultra-high molecular weight ethylene copolymer, which is obtained by connecting the points of 60 ° C and 240 ° C of the endothermic curve to the straight line (baseline) and the main melting peak at the second heating A vertical line is drawn at a point higher by ℃, the low temperature side surrounded by these is based on the original crystal melting (Tm) of the ultra high molecular weight ethylene copolymer, and the high temperature side is the function of the molded product of the present invention. It was based on the crystal melting (Tp) that developed, and the heat of fusion of each crystal was calculated from these areas.
成形体における分子配向の程度は、X線回折法、複屈
折法、螢光偏光法等で知ることができる。本発明の超高
分子量エチレン共重合体の延伸フィラメントの場合、例
えば呉祐吉、久保輝一郎:工業化学雑誌第39巻、992頁
(1939)に詳しく述べられている半価巾による配向度、
即ち式 式中、H゜は赤道線上最強のパラトロープ面のデバイ環
に沿っての強度分布曲線の半価幅(゜)である。The degree of molecular orientation in the molded article can be determined by an X-ray diffraction method, a birefringence method, a fluorescence polarization method, or the like. In the case of the drawn filament of the ultrahigh molecular weight ethylene copolymer of the present invention, for example, Yukichi Kure, Teruichiro Kubo: Industrial Chemistry Journal Vol. 39, 992 (1939), the degree of orientation according to the half width,
That is, the formula In the formula, H ゜ is the half width (゜) of the intensity distribution curve along the Debye ring of the strongest paratropic plane on the equator.
で定義される配向度(F)が0.90以上、特に0.95以上と
なるように分子配向されていることが、機械的性質の点
で望ましい。It is desirable in terms of mechanical properties that the molecular orientation is such that the degree of orientation (F) defined by is 0.90 or more, particularly 0.95 or more.
本発明の超高分子量エチレン・ブテン−1共重合体の
延伸フィラメントは、170℃で5分間の熱履歴を与えた
後での強度保持率が95%以上、特に98%以上で、弾性率
保持率が95%以上、特に98%以上と、従来のポリエチレ
ンの延伸フィラメントには全く認められない優れた耐熱
性を有している。The drawn filament of the ultrahigh molecular weight ethylene / butene-1 copolymer of the present invention has a strength retention of 95% or more, particularly 98% or more, after being subjected to a heat history of 5 minutes at 170 ° C. The ratio is 95% or more, particularly 98% or more, and it has excellent heat resistance that is not found in conventional polyethylene stretched filaments.
また、この延伸フィラメントは高温下での耐クリープ
特性に際立って優れており、荷重を30%破断荷重とし、
雰囲気温度を70℃とし、90秒後の延び(%)として求め
たクリープが7%以下、特に5%以下であり、更に90秒
から180秒後のクリープ速度(ε,sec-1)が1×10-4sec
-1以下、特に5×10-4sec-1以下である。In addition, this drawn filament is outstandingly excellent in creep resistance at high temperatures, and the load is 30% breaking load,
Creep calculated as extension (%) after 90 seconds is 7% or less, especially 5% or less when the ambient temperature is 70 ° C, and the creep speed (ε, sec -1 ) after 90 seconds to 180 seconds is 1 × 10 -4 sec
-1 or less, especially 5 × 10 -4 sec -1 or less.
更に、本発明に超高分子量エチレン・ブテン−1共重
合体の分子配向成形体は機械的特性にも優れており、例
えば延伸フィラメントの形状で20GPa以上、特に30GPa以
上の弾性率と、1.2GPa以上、特に1.5GPa以上の引張強度
とを有している。Furthermore, the molecularly oriented molded product of the ultrahigh molecular weight ethylene / butene-1 copolymer according to the present invention is also excellent in mechanical properties, for example, in the form of a stretched filament, an elastic modulus of 20 GPa or more, particularly 30 GPa or more, and 1.2 GPa. Above, in particular, has a tensile strength of 1.5 GPa or more.
本発明によるエチレン−ブテン−1共重合体繊維は、
破断荷重よりも若干小さい荷重を室温で印加したとき、
破断する迄の時間が著しく長いという特徴を有する。即
ち、これらの繊維は、室温で750乃至1500MPaの荷重
(F)を印加したときの破壊時間(T1hour)が であるという特許を有する。超高分子量のホモポリエチ
レン繊維やエチレン−プロピレン共重合体繊維では、こ
の破壊時間(T)が上記のものに比してかなり短い。The ethylene-butene-1 copolymer fiber according to the present invention is
When a load that is slightly smaller than the breaking load is applied at room temperature,
It has the characteristic that the time to break is extremely long. That is, these fibers have a breaking time (T 1 hour) when a load (F) of 750 to 1500 MPa is applied at room temperature. Owns a patent. The breaking time (T) of ultra-high molecular weight homopolyethylene fibers and ethylene-propylene copolymer fibers is considerably shorter than that of the above.
<クリープ破壊時間の測定> クリープ破壊時間は以下の様にして求めた。試料長約
150cmの試料中央から等間隔で100cmの標線間距離を設
け、標線を入れる。雰囲気温度23℃、相対湿度55%の条
件で試料に所望の荷重を印加する。印加直後から破断ま
での経過時間を測定し、クリープ破壊時間とする。標線
間外で破断したものは除き、6測定で最低破壊時間の1
測定を除き、5測定の平均クリープ破壊時間を測定値と
する。<Measurement of Creep Rupture Time> The creep rupture time was determined as follows. Sample length approx.
Make a 100cm distance between the marked lines from the center of the 150cm sample, and put the marked lines. A desired load is applied to the sample under the conditions of an ambient temperature of 23 ° C and a relative humidity of 55%. The creep rupture time is measured by measuring the elapsed time from immediately after the application to the rupture. The minimum breaking time is 1 in 6 measurements, excluding those that break outside the marked line.
Except the measurement, the average creep rupture time of 5 measurements is used as the measured value.
(発明の効果) 本発明の超高分子量エチレン・ブテン−1共重合体の
分子配向成形体は、耐熱性、耐クリープ性、機械的性質
の組合せに優れている。かくして、この特性を利用し
て、本発明の分子配向成形体は、高強度マルチフィラメ
ント、ひも、ロープ、織布、不織布等の産業用紡織材料
の他に、梱包用テープ等の包装材料として有用である。
また、フィラメントの形態の成形体を、エポキシ樹脂、
不飽和ポリエステル等の各種樹脂や合成ゴム等に対する
補強繊維として使用すると、従来の超高分子量ポリエチ
レン延伸フィラメントに比して、耐熱性や耐クリープ性
の点で著しい改善がなされていることが明白であろう。
又、このフィラメントは高強度でしかも密度が小さいこ
とから従来のガラス繊維、炭素繊維、ボロン繊維、芳香
族ポリアミド繊維、芳香族ポリイミド繊維等を用いた成
形物に比べ、特に軽量化を計れるので有効である。ガラ
ス繊維等を用いた複合材料と同様に、UD(Unit Directi
onal)積層板、SMC(Sheet Molding Compound)、BMC
(Bulk Molding Compound)等の成形加工を行うことが
でき、自動車部品、ボートやヨットの構造体、電子回路
用基板等の軽量、高強度分野での各種複合材料用途が期
待される。(Effects of the Invention) The molecularly oriented molded product of the ultrahigh molecular weight ethylene / butene-1 copolymer of the present invention is excellent in the combination of heat resistance, creep resistance and mechanical properties. Thus, by utilizing this characteristic, the molecularly oriented molded article of the present invention is useful as a packaging material such as a packaging tape, in addition to industrial textile materials such as high-strength multifilaments, strings, ropes, woven fabrics and nonwoven fabrics. Is.
In addition, a molded product in the form of a filament is made of epoxy resin,
When it is used as a reinforcing fiber for various resins such as unsaturated polyester and synthetic rubber, it is clear that the heat resistance and creep resistance are significantly improved as compared with the conventional ultra high molecular weight polyethylene drawn filament. Ah
In addition, since this filament has high strength and low density, it is particularly effective because it can be made lighter than conventional molded articles using glass fiber, carbon fiber, boron fiber, aromatic polyamide fiber, aromatic polyimide fiber, etc. Is. Similar to composite materials using glass fiber, etc., UD (Unit Directi
onal) laminated board, SMC (Sheet Molding Compound), BMC
(Bulk Molding Compound) can be molded, and it is expected to be used for various composite materials in the fields of light weight and high strength such as automobile parts, boat and yacht structures, and electronic circuit boards.
実施例 1 <超高分子量エチレン・ブテン−1共重合体の重合> チーグラ系触媒を用い、n−デカン1を重合溶媒と
して超高分子量エチレン・ブテン−1共重合体のスラリ
ー重合を行った。エチレンとブテン−1との組成がモル
比で97.2:2.86の比率の混合モノマーガスを圧力が5Kg/c
m2の一定圧力を保つ様に反応器に連続供給し、重合は反
応温度70℃で2時間で終了した。得られた超高分子量エ
チレン・ブテン−1共重合体粉末の収量は145gで極限粘
度(デカリン:135℃)は7.25dl/g、赤外分光光度計によ
るブテン−1含量は1000炭素原子あたり4.7個であっ
た。Example 1 <Polymerization of Ultra High Molecular Weight Ethylene / Butene-1 Copolymer> A slurry polymerization of an ultra high molecular weight ethylene / butene-1 copolymer was carried out using a Ziegler type catalyst and n-decane 1 as a polymerization solvent. The composition of ethylene and butene-1 has a molar ratio of 97.2: 2.86 mixed monomer gas at a pressure of 5 Kg / c.
The reactor was continuously fed so that a constant pressure of m 2 was maintained, and the polymerization was completed at a reaction temperature of 70 ° C. for 2 hours. The yield of the ultra-high molecular weight ethylene-butene-1 copolymer powder obtained was 145 g, the intrinsic viscosity (decalin: 135 ° C.) was 7.25 dl / g, and the butene-1 content by an infrared spectrophotometer was 4.7 per 1000 carbon atoms. It was an individual.
<超高分子量エチレン・ブテン−1共重合体延伸配向物
の調製> 上述の重合により得られた超高分子量エチレン・ブテ
ン−1共重合体粉末20重量部とパラフィンワックス(融
点=69℃,分子量=490)80重量部との混合物を次の条
件で溶融紡糸した。<Preparation of Ultra-High Molecular Weight Ethylene / Butene-1 Copolymer Stretched Alignment> 20 parts by weight of ultra-high molecular weight ethylene / butene-1 copolymer powder obtained by the above polymerization and paraffin wax (melting point = 69 ° C., molecular weight = 490) 80 parts by weight of the mixture was melt-spun under the following conditions.
該混合物100重量部にプロセス安定剤として3,5−ジ−
tert−ブチル−4−ハイドロキシトルエンを0.1重量部
配向した。次いで該混合物をスクリュー式押出機(スク
リュー径:25mm、L/D=25、サーモプラスチックス社製)
を用いて、設定温度190℃で溶融混練を行った。引き続
き、該混合溶融物を押出機に付属するオリフィス径2mm
の紡糸ダイより溶融紡糸した。押出溶融物は180cmのエ
アーギャップで36倍のドラフト比で引き取られ、空気中
にて冷却、固化し、未延伸繊維を得た。さらに該未延伸
繊維を次の条件で延伸した。3,5-di- as a process stabilizer was added to 100 parts by weight of the mixture.
0.1 parts by weight of tert-butyl-4-hydroxytoluene was oriented. Then, the mixture was screw-type extruder (screw diameter: 25 mm, L / D = 25, manufactured by Thermoplastics Co., Ltd.)
Was melt-kneaded at a set temperature of 190 ° C. Then, the orifice diameter 2 mm attached to the extruder
Melt spinning was carried out from the spinning die. The extruded melt was taken at a draft ratio of 36 times with an air gap of 180 cm, cooled in air and solidified to obtain an unstretched fiber. Further, the unstretched fiber was stretched under the following conditions.
三台のゴデットロールを用いて二段延伸を行った。こ
のとき第一延伸槽の熱媒はn−デカンであり、温度は11
0℃、第2延伸槽の熱媒はトリエチレングリコールであ
り、温度は145℃であった。槽の有効長はそれぞれ50cm
であった。延伸に際しては第1ゴデットロールの回転速
度を0.5m/minとして第3ゴデットロールの回転速度を変
更することにより、所望の延伸比の配向繊維を得た。第
2ゴデットロールの回転速度は安定延伸可能な範囲で適
宜選択した。初期に混合された、パラフィンワックスは
ほぼ全量が延伸時n−デカン中に抽出された。このあと
配向繊維は水洗し、減圧下室温にて一昼夜乾燥し、諸物
性の測定に供した。なお延伸比は、第1ゴデットロール
と第3ゴデットロールの回転速度比から計算で求めた。Two-stage stretching was performed using three godet rolls. At this time, the heat medium in the first drawing tank was n-decane, and the temperature was 11
The heating medium in the second stretching tank was 0 ° C., triethylene glycol was used, and the temperature was 145 ° C. The effective length of each tank is 50 cm
Met. At the time of drawing, the rotational speed of the first godet roll was set to 0.5 m / min and the rotational speed of the third godet roll was changed to obtain an oriented fiber having a desired draw ratio. The rotation speed of the second godet roll was appropriately selected within a range in which stable stretching was possible. Almost all the paraffin wax mixed in the initial stage was extracted into n-decane during stretching. Thereafter, the oriented fibers were washed with water, dried at room temperature under reduced pressure for a day and night, and subjected to measurement of various physical properties. The stretching ratio was calculated from the rotation speed ratio of the first godet roll and the third godet roll.
<引張特性の測定> 弾性率および引張強度は島津製作所製DCS−50M型引張
試験機を用い、室温(23℃)にて測定した。<Measurement of Tensile Properties> Modulus of elasticity and tensile strength were measured at room temperature (23 ° C) using a Shimadzu DCS-50M type tensile tester.
このときクランプ間の試料長は100mmで引張速度は100
mm/min(100%/分歪速度)であった。弾性率は初期弾
性率で接線の傾きを用いて計算した。計算に必要な繊維
断面積は密度を0.960g/ccとして重量から計算で求め
た。At this time, the sample length between the clamps is 100 mm and the pulling speed is 100
It was mm / min (100% / min strain rate). The elastic modulus was calculated using the initial elastic modulus and the slope of the tangent line. The fiber cross-sectional area required for the calculation was calculated from the weight with a density of 0.960 g / cc.
<熱履歴後の引張弾性率、強度保持率> 熱履歴試験はギャーオーブン(パーフェクトオーブ
ン:田葉井製作所製)内に放置することによって行っ
た。<Tensile Elastic Modulus and Strength Retention after Heat History> The heat history test was performed by leaving the device in a gear oven (Perfect Oven: manufactured by Tabai Seisakusho).
試料は約3mの長さでステンレス枠の両端に複数個の滑
車を装置したものに折り返しかけて試料両端を固定し
た。この際試料両端は試料がたるまない程度に固定し、
積極的に試料に張力はかけなかった。熱履歴後の引張特
性は前述の引張特性の測定の記載に基づいて測定した。The sample had a length of about 3 m, and was folded back on a stainless steel frame having a plurality of pulleys at both ends to fix both ends of the sample. At this time, fix both ends of the sample so that the sample does not sag.
The sample was not actively tensioned. The tensile properties after thermal history were measured based on the description of the measurement of tensile properties described above.
<耐クリープ性の測定> クリープ特性の測定は熱応力歪測定装置TMA/SS10(セ
イコー電子工業社製)を用いて、試料長1cm、雰囲気温
度70℃、荷重は室温での破断荷重の30%に相当する重量
の促進条件下で行った。クリープ量を定量的に評価する
ため以下の二つの値を求めた。つまり荷重後、90秒後の
スリープ伸び%をCR90、そして90秒後から180秒後の間
の平均クリープ速度(sec-1)εである。<Measurement of creep resistance> Using a thermal stress strain measurement device TMA / SS10 (manufactured by Seiko Denshi Kogyo Co., Ltd.), the creep characteristics were measured using a sample length of 1 cm, an ambient temperature of 70 ° C, and a load of 30% of the breaking load at room temperature. Was performed under accelerated conditions of a weight corresponding to The following two values were obtained to quantitatively evaluate the amount of creep. That is, the sleep elongation% after 90 seconds after loading is CR 90 , and the average creep rate (sec −1 ) ε from 90 seconds to 180 seconds.
表1に得られた延伸配向繊維の引張特性を示す。 Table 1 shows the tensile properties of the obtained oriented fiber.
試料1の示差走査熱量計による第1回目昇温時の吸熱
特性曲線を第2図に、又、第2回目昇温時(セカンドラ
ン)の吸熱特性曲線を第5図に示す。超高分子量エチレ
ン・ブテン−1共重合体延伸配向繊維(試料−1)の本
来の結晶融解ピークは126.9℃、全結晶融解ピーク面積
に対するTpの割り合いは33.7%であった。また耐クリー
プ性はCR90=3.2%,ε=3.03×10-5であった。尚、第
9図に試料1のクリープ特性を示す。さらに170℃、5
分間の熱履歴後の弾性率保持率は101.2%、強度保持率
は102.7%であり、熱履歴により性能の低下は示さなか
った。 FIG. 2 shows the endothermic characteristic curve of Sample 1 measured by the differential scanning calorimeter during the first temperature increase, and FIG. 5 shows the endothermic characteristic curve during the second temperature increase (second run). The original crystal melting peak of the ultra-high molecular weight ethylene / butene-1 copolymer stretched and oriented fiber (Sample-1) was 126.9 ° C, and the ratio of Tp to the total crystal melting peak area was 33.7%. The creep resistance was CR 90 = 3.2% and ε = 3.03 × 10 -5 . The creep characteristics of Sample 1 are shown in FIG. 170 ° C, 5
The elastic modulus retention rate after 10 minutes heat history was 101.2%, the strength retention rate was 102.7%, and there was no decrease in performance due to heat history.
実施例 2 <超高分子量エチレン・ブテン−1共重合体の重合> チーグラー系触媒を用い、n−デカン1を重合溶媒
として超高分子量エチレン・ブテン−1共重合体のスラ
リー重合を行った。エチレンとブテン−1との組成がモ
ル比で98.7:1.3の比率の混合モノマーガスを圧力が5Kg/
cm2の一定圧力を保つ様に反応器に連続供給した。重合
は反応温度70℃で2時間で終了した。得られた超高分子
量エチレン・ブテン−1共重合体粉末の収量は179gで、
その極限粘度〔η〕(デカリン、135℃)は9.4dl/g、赤
外分光光度計によるブテン−1含量は1000炭素原子あた
り1.5個であった。Example 2 <Polymerization of Ultra High Molecular Weight Ethylene / Butene-1 Copolymer> Using an Ziegler catalyst, n-decane 1 was used as a polymerization solvent to carry out slurry polymerization of the ultra high molecular weight ethylene / butene-1 copolymer. A mixed monomer gas having a molar ratio of ethylene and butene-1 of 98.7: 1.3 was used at a pressure of 5 Kg /
The reactor was continuously fed so as to maintain a constant pressure of cm 2 . The polymerization was completed in 2 hours at a reaction temperature of 70 ° C. The yield of the obtained ultra high molecular weight ethylene / butene-1 copolymer powder was 179 g,
Its intrinsic viscosity [η] (decalin, 135 ° C) was 9.4 dl / g, and the butene-1 content by an infrared spectrophotometer was 1.5 per 1000 carbon atoms.
<超高分子量エチレン・ブテン−1共重合体延伸配向物
の調製および物性> 上述の重合で得られた超高分子量エチレン・ブテン−
1共重合体粉末を用い、実施例1と同様な方法にて超高
分子量エチレン・ブテン−1共重合体延伸配向繊維を調
製した。得られた延伸配向繊維の引張特性を表2に示
す。<Preparation and Properties of Ultra-High Molecular Weight Ethylene / Butene-1 Copolymer Stretched Alignment> Ultra-high molecular weight ethylene / butene-obtained by the above polymerization
Ultra-high molecular weight ethylene / butene-1 copolymer stretch-oriented fibers were prepared in the same manner as in Example 1 using 1 copolymer powder. Table 2 shows the tensile properties of the obtained oriented fiber.
超高分子量エチレン・ブテン−1共重合体延伸配向繊
維試料2の示差走査熱量計による第1回目昇温時の吸熱
特性曲線を第6図に、また、第2回目昇温時(セカンド
ラン)の吸熱特性曲線を第7図に示す。超高分子量エチ
レン・ブテン−1共重合体延伸配向繊維(試料2)の本
来の結晶融解ピークは129.8℃、全結晶融解ピーク面積
に対するTpの割り合いは38.9%であった。 FIG. 6 shows the endothermic characteristic curve of the ultra-high molecular weight ethylene / butene-1 copolymer stretch-oriented fiber sample 2 at the first temperature increase by the differential scanning calorimeter, and at the second temperature increase (second run). The endothermic characteristic curve of is shown in FIG. The original crystal melting peak of the ultra-high molecular weight ethylene / butene-1 copolymer stretched and oriented fiber (Sample 2) was 129.8 ° C., and the ratio of Tp to the total crystal melting peak area was 38.9%.
また耐クリープ性はCR90=1.29%、ε=1.21×10-5で
あった。尚、試料−2のクリープ特性を第9図に示す。
さらに170℃、5分間の熱履歴後の弾性率保持率は100.3
%、強度保持率は103.0%であり熱履歴により性能の低
下は示さなかった。The creep resistance was CR 90 = 1.29% and ε = 1.21 × 10 -5 . The creep characteristics of Sample-2 are shown in FIG.
Furthermore, the elastic modulus retention rate after thermal history at 170 ° C for 5 minutes is 100.3.
%, The strength retention was 103.0%, and there was no deterioration in performance due to thermal history.
試料−2の印加荷重とクリープ破壊時間との関係を表
3に示した。Table 3 shows the relationship between the applied load and the creep rupture time of Sample-2.
室温で印加荷重と破壊時間との関係を第13図に示し
た。 Figure 13 shows the relationship between applied load and fracture time at room temperature.
比較例 1 超高分子量ポリエチレン(ホモポリマー)粉末(極限
粘度〔η〕=7.42dl/g、デカリン,135℃):20重量部と
パラフィンワックス(融点=69℃、分子量=490):80重
量部の混合物を実施例1の方法で溶融紡糸、延伸し、配
向延伸繊維を得た。表4に得られた延伸配向繊維の引張
特性を示す。Comparative Example 1 Ultrahigh molecular weight polyethylene (homopolymer) powder (intrinsic viscosity [η] = 7.42 dl / g, decalin, 135 ° C.): 20 parts by weight and paraffin wax (melting point = 69 ° C., molecular weight = 490): 80 parts by weight The mixture was melt-spun and stretched by the method of Example 1 to obtain oriented stretched fibers. Table 4 shows the tensile properties of the obtained stretched and oriented fibers.
超高分子量ポリエチレン延伸配向繊維(試料3)の示
差走査熱量計による第1回目昇温時の吸熱特性曲線を第
4図に示し、また第2回目の昇温(セカンドラン)時の
吸熱特性曲線を第8図に示す。超高分子量ポリエチレン
試料3本来の結晶融解ピークは135.1℃、全結晶融解ピ
ーク面積に対するTpの割り合いは8.8%であった。また
同様に全結晶融解ピーク面積に対する高温側ピークTp1
の割り合いは1.0%であった。耐クリープ性はCR90=12.
0%、ε=1.07×10-3sec-1であった。試料3のクリープ
特性を第9図に試料1、試料2と合せて示す。さらに17
0℃、5分間の熱履歴後の弾性率保持率は80.4%、強度
保持率は79.2%であり、弾性率、強度は熱履歴により低
下した。 Figure 4 shows the endothermic characteristic curve of the ultra-high molecular weight stretched polyethylene oriented fiber (Sample 3) at the first temperature increase by the differential scanning calorimeter, and at the second temperature increase (second run). Is shown in FIG. The original crystal melting peak of the ultrahigh molecular weight polyethylene sample 3 was 135.1 ° C, and the ratio of Tp to the total crystal melting peak area was 8.8%. Similarly, the peak Tp 1 on the high temperature side with respect to the total crystal melting peak area
Was 1.0%. Creep resistance is CR 90 = 12.
0% and ε = 1.07 × 10 −3 sec −1 . The creep characteristics of Sample 3 are shown in FIG. 9 together with Sample 1 and Sample 2. 17 more
The elastic modulus retention rate after heat history at 0 ° C. for 5 minutes was 80.4%, and the strength retention rate was 79.2%, and the elastic modulus and strength decreased due to the thermal history.
比較例2 超高分子量ポリエチレン(ホモポリマー)粉末(極限
粘度〔η〕=10.2dl/g、デカリン、135℃):20重量部と
パラフィンワックス(融点=69℃、分子量=490):80重
量部の混合物を実施例1記載の方法で溶融紡糸し、延伸
し、延伸・配合繊維を得た。表5に得られた延伸配向繊
維の引張特性を示す。Comparative Example 2 Ultrahigh molecular weight polyethylene (homopolymer) powder (intrinsic viscosity [η] = 10.2 dl / g, decalin, 135 ° C.): 20 parts by weight and paraffin wax (melting point = 69 ° C., molecular weight = 490): 80 parts by weight The mixture was melt-spun by the method described in Example 1 and stretched to obtain a stretched / blended fiber. Table 5 shows the tensile properties of the obtained stretched and oriented fibers.
超高分子量ポリエチレン延伸配向繊維試料−4の示差
走査熱量計による第1回目昇温時の吸熱特性曲線を第11
図に示し、また第2回目昇温(セカンドラン)時の吸熱
特性曲線を第12図に示す。超高分子量ポリエチレン繊維
試料−4本来の結晶融解ピークは135.5℃、全結晶融解
ピーク面積に対するTPおよびTP1の割合はそれぞれ13.8
%および1.1%であった。試料−4の耐クリープ性はCR
90=8.2%、ε=4.17×10-4sec-1であった。試料−4の
クリープ特性を第12図に示す。さらに170℃、5分間の
熱履歴後の弾性率保持率は86.1%、強度保持率は93.1%
であり、特に弾性率が著しく低下した。 The endothermic characteristic curve of the ultrahigh molecular weight polyethylene stretch-oriented fiber sample-4 at the first temperature rising was measured by the differential scanning calorimeter.
Shown in the figure, and FIG. 12 shows the endothermic characteristic curve during the second temperature rise (second run). Ultra high molecular weight polyethylene fiber sample-4 The original crystal melting peak was 135.5 ° C, and the ratios of T P and T P1 to the total crystal melting peak area were 13.8 each.
% And 1.1%. Creep resistance of sample-4 is CR
90 = 8.2% and ε = 4.17 × 10 −4 sec −1 . Figure 12 shows the creep characteristics of Sample-4. Furthermore, the elastic modulus retention rate after heat history at 170 ° C for 5 minutes is 86.1%, and the strength retention rate is 93.1%.
In particular, the elastic modulus was remarkably reduced.
試料−4の印加荷重とクリープ破壊時間との関係を表
6に示した。Table 6 shows the relationship between the applied load and the creep rupture time of Sample-4.
室温で印加荷重と破壊時間との関係を試料−2と合せ
て第13図に示した。 The relationship between the applied load and the breaking time at room temperature is shown in Fig. 13 together with that of Sample-2.
第1図は実施例1で用いた超高分子量エチレン・ブテン
−1共重合体粉末の示差走査熱量計による吸熱特性曲
線、 第2図は実施例1で得られた超高分子量エチレン・ブテ
ン−1共重合体延伸配向繊維の拘束状態での示差走査熱
量計による吸熱特性曲線、 第3図は比較例1で用いた超高分子量ポリエチレン粉末
の示差走査熱量計による吸熱特性曲線、 第4図は比較例1で得られた超高分子量ポリエチレン延
伸配向繊維の拘束状態での示差走査熱量計による吸熱特
性曲線、 第5図は第2図の試料を2回目の昇温測定(セカンドラ
ン)に付したときの吸熱特性曲線、 第6図は実施例2で得られた超高分子量エチレン・ブテ
ン−1共重合体延伸配向繊維の拘束状態での示差走査熱
量計による吸熱特性曲線、 第7図は第6図の試料を2回目の昇温測定に付したとき
の吸熱特性曲線、 第8図は第4図の試料を2回目の昇温測定に付したとき
の吸熱特性曲線、及び 第9図は、実施例1、実施例2及び比較例1で得られた
各重合体の延伸配向繊維のクリープ特性曲線を示す。 第10図は比較例2で得られた超高分子量ポリエチレン延
伸配向繊維の拘束状態での示差走査熱量計による吸熱特
性曲線、 第11図は第10図の試料を2回目の昇温測定に付したとき
の吸熱特性曲線、 第12図は比較例2で得られた延伸配向繊維のクリープ特
性曲線を示す。 第13図は、試料−2、試料−4の各繊維について、室温
での印加荷重と破壊時間との関係を示す線図である。FIG. 1 is an endothermic characteristic curve of the ultrahigh molecular weight ethylene / butene-1 copolymer powder used in Example 1 obtained by a differential scanning calorimeter, and FIG. 2 is the ultrahigh molecular weight ethylene / butene-1 obtained in Example 1. 1 Endothermic characteristic curve by differential scanning calorimeter in the constrained state of stretched oriented fiber of copolymer, FIG. 3 is an endothermic characteristic curve by differential scanning calorimeter of ultra high molecular weight polyethylene powder used in Comparative Example 1, and FIG. 4 is Endothermic characteristic curve of the drawn ultra high molecular weight polyethylene oriented fiber obtained in Comparative Example 1 by a differential scanning calorimeter in a restrained state. Fig. 5 shows the sample of Fig. 2 subjected to the second temperature rise measurement (second run). 6 is an endothermic characteristic curve of the ultra-high molecular weight ethylene / butene-1 copolymer stretched oriented fiber obtained in Example 2 in a restrained state by a differential scanning calorimeter, and FIG. The sample of Fig. 6 was measured for the second temperature rise. 8 is an endothermic characteristic curve when the sample of FIG. 4 is subjected to a second temperature rise measurement, and FIG. 9 is an example 1, an example 2 and a comparative example. The creep characteristic curve of the stretch-oriented fiber of each polymer obtained in 1 is shown. FIG. 10 shows an endothermic characteristic curve of the drawn ultra-high molecular weight polyethylene oriented fiber obtained in Comparative Example 2 in a restrained state by a differential scanning calorimeter, and FIG. 11 shows the sample of FIG. FIG. 12 shows the endothermic characteristic curve of the drawn oriented fiber obtained in Comparative Example 2. FIG. 13 is a diagram showing the relationship between the applied load at room temperature and the breaking time for each of the fibers of Sample-2 and Sample-4.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08F 210/16 MJM ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display area C08F 210/16 MJM
Claims (2)
ン−1の含有量が炭素数1000個あたり平均0.1〜15個で
ある超高分子量エチレン・ブテン−1共重合体の分子配
向成形体であって、 該成形体は拘束状態で示差走査熱量計で測定したとき、
少なくとも2個の結晶融解吸熱ピークを有すると共に、
二回目昇温時の主融解吸熱ピークとして求められる超高
分子量エチレン・ブテン−1共重合体本来の結晶融解温
度(Tm)よりも少なくとも20℃高い温度に少なくとも1
個の結晶融解吸熱ピーク(Tp)を有し、且つ全融解熱量
当りのこの結晶融解吸熱ピーク(Tp)に基づく熱量が15
%以上であることを特徴とする分子配向成形体。1. A molecular orientation molding of an ultrahigh molecular weight ethylene-butene-1 copolymer having an intrinsic viscosity [η] of at least 5 dl / g and an average content of butene-1 of 0.1 to 15 per 1000 carbon atoms. A body, the molded body being constrained, when measured by a differential scanning calorimeter,
Having at least two crystalline melting endotherms,
Ultrahigh molecular weight ethylene-butene-1 copolymer, which is determined as the main melting endothermic peak during the second heating, has a temperature of at least 20 ° C higher than the original crystal melting temperature (Tm) of the ultrahigh molecular weight ethylene-butene-1 copolymer.
It has one crystal melting endothermic peak (Tp), and the calorific value based on this crystal melting endothermic peak (Tp) per total heat of fusion is 15
% Or more, a molecular orientation molded article.
均0.5乃至10個である特許請求の範囲第1項記載の分子
配向成形体。2. A molecular orientation molded article according to claim 1, wherein the content of butene-1 is 0.5 to 10 on average per 1000 carbon atoms.
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62108814A JPH086206B2 (en) | 1987-05-06 | 1987-05-06 | Molecularly oriented molded product of ultra-high molecular weight ethylene / butene-1 copolymer |
DE3850905T DE3850905T2 (en) | 1987-05-06 | 1988-04-08 | Molecularly oriented molded structure made of ultra-high molecular weight ethylene-alpha-olefin copolymer. |
EP88303170A EP0290141B1 (en) | 1987-05-06 | 1988-04-08 | Molecularly oriented molded body of ultra-high-molecular-weight ethylene/alpha-olefin copolymer |
AT88303170T ATE109522T1 (en) | 1987-05-06 | 1988-04-08 | MOLECULARLY ORIENTED MOLDED FORM OF ULTRA HIGH MOLECULAR WEIGHT ETHYLENE ALPHA OLEFIN COPOLYMER. |
NZ224210A NZ224210A (en) | 1987-05-06 | 1988-04-11 | Ultra-high-molecular-weight ethylene/alpha-olefin copolymers in molecularly oriented moulded bodies and filaments |
AU14722/88A AU618257B2 (en) | 1987-05-06 | 1988-04-18 | Molecularly oriented molded body of ultra-high-molecular-weight ethylene/alpha-olefin copolymer |
KR1019880004459A KR930007820B1 (en) | 1987-05-06 | 1988-04-20 | Molecular Alignment Molding Form of Ultra High Molecular Weight Ethylene-α-olefin Copolymer |
CN88102519A CN1031076C (en) | 1987-05-06 | 1988-04-22 | Molecular Oriented Molded Products of Ultra-High Molecular Weight Ethylene·α-Olefin Copolymer |
CA000565732A CA1303290C (en) | 1987-05-06 | 1988-05-03 | MOLECULARLY ORIENTED MOLDED BODY OF ULTRA-HIGH- MOLECULAR-WEIGHT ETHYLENE/.alpha.-OLEFIN COPOLYMER |
US07/504,105 US5115067A (en) | 1987-05-06 | 1990-04-04 | Molecularly oriented molded body of ultra-high-molecular weight ethylene/α-olefin copolymer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62108814A JPH086206B2 (en) | 1987-05-06 | 1987-05-06 | Molecularly oriented molded product of ultra-high molecular weight ethylene / butene-1 copolymer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63275709A JPS63275709A (en) | 1988-11-14 |
JPH086206B2 true JPH086206B2 (en) | 1996-01-24 |
Family
ID=14494177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62108814A Expired - Lifetime JPH086206B2 (en) | 1987-05-06 | 1987-05-06 | Molecularly oriented molded product of ultra-high molecular weight ethylene / butene-1 copolymer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH086206B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5072040B2 (en) * | 2006-06-27 | 2012-11-14 | 旭化成ケミカルズ株式会社 | Ultra high molecular weight polyolefin stretch-molded sheet having excellent transparency and mechanical properties and method for producing the same |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL8104728A (en) * | 1981-10-17 | 1983-05-16 | Stamicarbon | METHOD FOR MANUFACTURING POLYETHENE FILAMENTS WITH GREAT TENSILE STRENGTH |
JPS61187856U (en) * | 1985-05-16 | 1986-11-22 | ||
JPH033530Y2 (en) * | 1985-05-16 | 1991-01-30 | ||
JPH0341732Y2 (en) * | 1985-05-17 | 1991-09-02 | ||
JPS6241341A (en) * | 1985-08-08 | 1987-02-23 | 東洋紡績株式会社 | High speed stretching of gel fiber |
NL8602745A (en) * | 1986-10-31 | 1988-05-16 | Dyneema Vof | Low creep, high tensile and modulus polyethylene filaments, etc. - made using branched polyethylene with 2-20 alkyl (pref. methyl or ethyl) side chains per 1000 C atoms. |
-
1987
- 1987-05-06 JP JP62108814A patent/JPH086206B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63275709A (en) | 1988-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0229477B1 (en) | Molecularly oriented, silane-crosslinked ultra-high-molecular-weight polyethylene molded article and process for preparation thereof | |
US4968765A (en) | Molecularly oriented molded body of ultra-high-molecular-weight ethylene/polyene copolymer | |
JPH01148807A (en) | Polyolefin fiber having improved initial elongation and production thereof | |
US5115067A (en) | Molecularly oriented molded body of ultra-high-molecular weight ethylene/α-olefin copolymer | |
KR950013728B1 (en) | Molecularly oriented, silane-cross linked ultra-high-molecular-weight polyethylene molded articla and process for preparation thereof | |
JPH086205B2 (en) | Molecularly oriented molded product of ultra-high molecular weight ethylene / propylene copolymer | |
JPH089802B2 (en) | Molecularly oriented molded product of ultra high molecular weight ethylene-α-olefin copolymer | |
JPH086206B2 (en) | Molecularly oriented molded product of ultra-high molecular weight ethylene / butene-1 copolymer | |
JPH089803B2 (en) | Molecularly oriented molded product of ultra high molecular weight ethylene-α-olefin copolymer | |
JP2601868B2 (en) | Fishing line | |
JP3082955B2 (en) | Flying object resistant material | |
JP2992323B2 (en) | High molecular weight polyethylene molecular orientation molding | |
JP2557460B2 (en) | Yacht rope | |
JPH0465512A (en) | Molecular oriented formed polyethylene having excellent creep resistance | |
JPH05140816A (en) | Method for producing high molecular weight polyolefin stretched product | |
JPH0662784B2 (en) | Molecular orientation and silane cross-linked polyethylene molding and method for producing the same | |
JP2557461B2 (en) | Mooring rope | |
JPH01260077A (en) | Rope for mountain-climbing | |
JP2548292B2 (en) | Fishing nets and ropes for towing fishing nets | |
JPH0823084B2 (en) | Ultra high molecular weight ethylene / α-olefin copolymer stretched molded product with high breaking energy | |
JPH0782606A (en) | Polyethylene fiber molding composition | |
JPH01260078A (en) | Tent fixing rope | |
JPH01291487A (en) | circuit board | |
JPH0253840A (en) | low dielectric composition | |
JPH0252507A (en) | parabolic antenna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080124 Year of fee payment: 12 |