[go: up one dir, main page]

JPH0860278A - Corrosion and abrasion resistant material with excellent cavitation erosion resistance - Google Patents

Corrosion and abrasion resistant material with excellent cavitation erosion resistance

Info

Publication number
JPH0860278A
JPH0860278A JP20939294A JP20939294A JPH0860278A JP H0860278 A JPH0860278 A JP H0860278A JP 20939294 A JP20939294 A JP 20939294A JP 20939294 A JP20939294 A JP 20939294A JP H0860278 A JPH0860278 A JP H0860278A
Authority
JP
Japan
Prior art keywords
resistance
wear
corrosion
alloy
cavitation erosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20939294A
Other languages
Japanese (ja)
Inventor
Hideo Oyabu
英雄 大藪
Satoshi Shimada
聡 嶋田
Kenjirou Chikara
健二郎 力
Toshio Matsuo
敏夫 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP20939294A priority Critical patent/JPH0860278A/en
Publication of JPH0860278A publication Critical patent/JPH0860278A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE: To produce a composite material excellent in cavitation resistance as well as corrosion resistance and wear resistance. CONSTITUTION: This composite material is the one in which granular Ni-base alloys are dispersed into the spaces of hard phases essentially consisting of fine carbides and having a componental compsn. contg., in total, by weight, 0.4 to 1% B, 1.5 to 7% C, 3 to 7% Si, 3 to 21% Ti, 8 to 16% Cr, 2 to 5% Fe, 0.3 to 0.7% Sn, 5 to 25% W, O to 3% Cu, and the balance Ni with inevitable impurities. Thus, excellent characteristics can be obtd. in all of corrosion resistance, wear resistance and cavitation resistance, and excellent durability as that of the constituting sliding material of a resin working machine used in a severe environment or the like can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、耐食性、耐摩耗性に
加えて耐キャビテーションエロージョン性に優れた複合
材料に関するものであり、腐食性の強いプラスチックや
ゴム等の可塑物を対象とする樹脂加工機械や食品加工機
械等のダイス材、シリンダ材、スクリュ材等に適してお
り、特に、キャビテーションエロージョンや、塩酸に対
する耐食性を必要とし、さらには耐摩耗性を要求される
コンパウンド用樹脂加工機械や食品加工機械等の耐食耐
摩耗材に好適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite material having excellent corrosion resistance, abrasion resistance, and cavitation erosion resistance, and resin processing for plastics such as highly corrosive plastics and rubbers. Suitable for die materials, cylinder materials, screw materials, etc. of machines and food processing machines, especially for resin processing machines and food products for compounds that require cavitation erosion and corrosion resistance to hydrochloric acid, and further wear resistance. It is suitable for corrosion resistant and abrasion resistant materials such as processing machines.

【0002】[0002]

【従来の技術】樹脂加工、食品加工における造粒機のダ
イス材は、カッター刃との接触による摩耗やキャビテー
ションエロージョンによる損傷を受け易く、また、樹
脂、食品加工機械用のシリンダ材、スクリュ材は、加工
対象物による摩耗を受けたり、金属間の接触摩耗を受け
易い。このためこれら材料は、耐摩耗性に優れた材料で
構成する必要があり、従来は、耐摩耗性に優れた自溶性
耐摩耗Ni基合金やNi基自溶性合金にWC等の硬質粒
子を分散させた複合材料が使用されている。
2. Description of the Related Art Die materials for granulators used in resin processing and food processing are susceptible to wear due to contact with cutter blades and damage due to cavitation erosion, and resin, cylinder materials for food processing machines, and screw materials , Easily subject to wear by the object to be machined or contact wear between metals. Therefore, these materials must be made of materials having excellent wear resistance, and conventionally, hard particles such as WC are dispersed in self-fluxing wear-resistant Ni-based alloys and Ni-based self-fluxing alloys having excellent wear resistance. A composite material is used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、最近の
成形材料の高機能化により、樹脂・食品加工機械が使用
される環境はより過酷になっており、例えば、高温条件
下での成形作業において樹脂・食品から発生する腐食ガ
スにさらされることによって、非常に腐食を受け易くな
る。 したがって、これら機械を構成する材料について
も、従来のように耐摩耗性だけを重視することでは不充
分であり、耐食性についても優れた特性が要求される。
また、水中で使用される樹脂加工用造粒機のダイス材
は、キャビテーションエロージョンによって著しく損傷
を受けるため、これに対する耐性に優れていることも必
要とされる。
However, due to the recent enhancement of the functionality of molding materials, the environment in which resin / food processing machines are used has become more severe. For example, in molding operations under high temperature conditions, resin -It becomes very susceptible to corrosion by being exposed to the corrosive gas generated from food. Therefore, with regard to the materials constituting these machines, it is not sufficient to prioritize only wear resistance as in the conventional case, and excellent characteristics are also required for corrosion resistance.
Further, the die material of the granulator for resin processing used in water is significantly damaged by cavitation erosion, and therefore it is also required to have excellent resistance to this.

【0004】しかし、前記した自溶性耐摩耗Ni基合金
やWC添加複合材料は、耐摩耗性は良好であるが、耐キ
ャビテーションエロージョン性や耐食性は十分でない。
これに対し、耐食性に優れた材料として、Ni−Cr−
Mo合金やステンレス鋼が知られており、実際に上記し
た機械材料に使用された例もある。しかし、これらの材
料は、耐摩耗性が十分ではなく、例えば、部材同士の接
触による凝着やカジリを生じ易いという欠点がある。以
上のように、従来材では、耐摩耗性、耐食性、耐キャビ
テーションエロージョン性の全てにおいて満足する特性
を有するものは見出されていない。現在、これら特性の
全てに優れている材料の開発が進められているが、未だ
実現するには至っていない。この発明は、上記事情を背
景としてなされたものであり、使用条件の厳しい樹脂・
食品加工機械等における高腐食環境下での使用にも耐え
得る、耐キャビテーションエロージョン性に優れた耐食
耐摩耗性材料を提供することを目的とする。
However, although the self-fluxing wear-resistant Ni-based alloy and the WC-added composite material described above have good wear resistance, they do not have sufficient cavitation erosion resistance and corrosion resistance.
On the other hand, as a material excellent in corrosion resistance, Ni-Cr-
Mo alloy and stainless steel are known, and there are examples in which they are actually used for the above-mentioned mechanical materials. However, these materials do not have sufficient wear resistance, and for example, they have a drawback that they tend to cause adhesion and galling due to contact between members. As described above, no conventional material has been found to have satisfactory properties in wear resistance, corrosion resistance, and cavitation erosion resistance. Currently, the development of materials excellent in all of these properties is in progress, but it has not been realized yet. The present invention has been made against the background of the above circumstances.
An object of the present invention is to provide a corrosion-resistant and wear-resistant material having excellent cavitation erosion resistance, which can withstand use in a highly corrosive environment in food processing machines and the like.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
本願発明者らは、WC−TiC複合炭化物を主体とする
硬質相と、Cr炭化物を分散させた硬質の合金に着目し
た。さらに、耐キャビテーションエロージョン性、耐食
性を具備した耐摩耗材料の開発過程において、従来のよ
うにNi基合金マトリックスに球状、編目状等の硬質相
を分散させた材料とは逆に、硬質物より軟質のNi基合
金を硬質相中に分散させた材料が耐キャビテーションエ
ロージョン性、耐食耐摩耗性に優れていることを見出
し、本発明を完成するに至ったものである。
In order to solve the above problems, the present inventors have focused on a hard phase mainly composed of WC-TiC composite carbide and a hard alloy in which Cr carbide is dispersed. Furthermore, in the process of developing a wear-resistant material having cavitation erosion resistance and corrosion resistance, it is softer than a hard material, contrary to the conventional material in which a hard phase such as spherical or knitted is dispersed in a Ni-based alloy matrix. The present inventors have found that the material obtained by dispersing the Ni-based alloy in the hard phase is excellent in cavitation erosion resistance and corrosion resistance, and completed the present invention.

【0006】即ち、本願発明の耐キャビテーションエロ
ージョン性に優れた耐食耐摩耗性材料は、微細炭化物を
主体とする硬質相間に粒状のNi基合金が分散した複合
材料であって、成分組成が、総量で、B:0.4〜1重
量%、C:1.5〜7重量%、Si:3〜7重量%、T
i:3〜21重量%、Cr:8〜16重量%、Fe:2
〜5重量%、Sn:0.3〜0.7重量%、W:5〜2
5重量%、Cu:0〜3重量%を含有し、残部がNiお
よび不可避的不純物からなることを特徴とする。
That is, the corrosion-resistant and wear-resistant material excellent in cavitation erosion resistance of the present invention is a composite material in which granular Ni-based alloy is dispersed in the hard phase mainly composed of fine carbide, and the total composition is the total amount. B: 0.4 to 1% by weight, C: 1.5 to 7% by weight, Si: 3 to 7% by weight, T
i: 3 to 21% by weight, Cr: 8 to 16% by weight, Fe: 2
~ 5 wt%, Sn: 0.3-0.7 wt%, W: 5-2
5% by weight, Cu: 0 to 3% by weight, and the balance is Ni and inevitable impurities.

【0007】上記硬質相は、微細なWC、TiCの混合
組織で、または含有成分と反応した炭化物が主体となっ
ており、炭化物においても、複炭化物が生成される場合
があり、さらにほう化物が含まれる場合もある。この硬
質相では、一部のNi基合金が結合相として存在してい
る。また、残余のNi基合金は、硬質相間に粒状に分散
して島状となったものであり、本発明としては、その形
状、大きさは限定されないが、球状で平均粒径が50〜
200μmであるのが望ましい。また、Ni基合金粒内
には、炭化物、ほう化物が含まれているものであっても
よい。なお、本発明における組成物は粉末として提供
し、これを焼結する粉末冶金法により製造するのが望ま
しい。この方法によれば、硬質物が均一に分散した複合
材料が得られる。更に、熱間等方圧加圧法(HIP法)
を用いることにより、より高強度、高靱性の複合材料が
得られる。
The above-mentioned hard phase is mainly composed of a carbide having a fine mixed structure of WC and TiC or reacting with the contained components. In the carbide as well, a double carbide may be formed, and further, a boride may be formed. May be included. In this hard phase, some Ni-based alloys are present as a binder phase. Further, the remaining Ni-based alloy is dispersed in a granular form between the hard phases to form an island shape, and the shape and size thereof are not limited in the present invention, but are spherical and have an average particle diameter of 50 to 50.
It is preferably 200 μm. Further, the Ni-based alloy particles may contain carbides or borides. The composition of the present invention is preferably provided as a powder and manufactured by a powder metallurgy method of sintering the composition. According to this method, a composite material in which hard materials are uniformly dispersed can be obtained. Furthermore, hot isostatic pressing method (HIP method)
By using, a composite material having higher strength and higher toughness can be obtained.

【0008】上記粉末冶金において、W、TiおよびC
uの全部または一部を、微細なWC、TiC等の炭化
物、単体金属粉末及び合金粉末として提供することがで
きる。硬質相で炭化物を構成するものについては、粒径
10μm以下とするのが望ましく、さらに平均粒径で2
〜4μmに調製するのが一層望ましい。これは、2μm
未満では細かすぎて耐摩耗性が充分発揮されず、一方、
10μmを越えると、均一分散効果が悪くなるためであ
る。そして、より良好な均一分散効果を得るためには、
前述したように平均粒径で4μm以下にするのが望まし
い。また、Cuについては、粒径で150μm以下に調
製するのが望ましい。炭化物を粉末として提供する場合
を一例として示すと、総量に対し、WC:5.3〜2
6.0%、TiC:3.7〜26.3%、所望によりC
u:0.5〜3%の微細粉末を添加する。
In the above powder metallurgy, W, Ti and C
All or a part of u can be provided as fine carbide such as WC and TiC, elemental metal powder and alloy powder. When the hard phase constitutes carbide, it is desirable that the grain size be 10 μm or less, and the average grain size is 2
It is more desirable to adjust the thickness to ˜4 μm. This is 2 μm
If it is less than, it is too fine and wear resistance is not fully exerted, while
This is because if it exceeds 10 μm, the effect of uniform dispersion becomes poor. And in order to obtain a better uniform dispersion effect,
As described above, it is desirable that the average particle size is 4 μm or less. Further, it is desirable that Cu has a particle size of 150 μm or less. The case where the carbide is provided as a powder is shown as an example. WC: 5.3 to 2 relative to the total amount.
6.0%, TiC: 3.7-26.3%, optionally C
u: 0.5 to 3% of fine powder is added.

【0009】これら粉末を用いた場合に、母合金(Ni
基合金)粉末には、発明の範囲内において必要に応じた
組成を有するものが使用される。例えば、総量に対し、
B:0.4〜1%、C:6%以下、Si:3〜7%、C
r:8〜16%、Fe:2〜5%、Sn:0.3〜0.
7%、W:0〜1.2%を含有し、残部が実質的にNi
からなるNi基合金粉末が使用される。この母合金粉末
は、平均粒径で50〜200μmであるのが望ましく、
また焼結性、組織の均一性のためにアトマイズ法で製造
したものが望ましい。この母合金粉末で上記粒径が望ま
しいのは、50μm未満であると、適度な大きさのNi
基合金粒が形成されず、耐キャビテーションエロージョ
ン性が十分に改善されないためであり、また、200μ
mを越えると、その間にある硬質相が大きな間隔をもっ
て散在したのと同様の状態になり、均質な耐摩耗性が得
られなくなるためである。
When these powders are used, the mother alloy (Ni
As the base alloy) powder, one having a composition as required within the scope of the invention is used. For example, for the total amount,
B: 0.4 to 1%, C: 6% or less, Si: 3 to 7%, C
r: 8-16%, Fe: 2-5%, Sn: 0.3-0.
7%, W: 0 to 1.2%, balance Ni
Ni-based alloy powder consisting of is used. The mother alloy powder preferably has an average particle size of 50 to 200 μm,
Further, those manufactured by the atomizing method are desirable for the sake of sinterability and uniformity of structure. In this mother alloy powder, it is desirable that the above-mentioned particle size is less than 50 μm when Ni is of an appropriate size.
This is because the base alloy particles are not formed and the cavitation erosion resistance is not sufficiently improved.
This is because if m is exceeded, the hard phase will be in a state similar to that in which the hard phases are scattered at large intervals, and uniform wear resistance cannot be obtained.

【0010】なお、炭化物粉末、母合金粉末は、ボール
ミルなどによって所定量を混合し、この混合粉を成形し
た後、一般に脱脂後、焼結する。脱脂は、例えば、非酸
化性雰囲気(不活性ガス中や真空中)において、350
〜500℃で2〜4時間加熱して行う。また、焼結を例
えば液相焼結によって行う場合には、1000〜105
0℃で10〜120分間焼結する。焼結は、非酸化性雰
囲気下で行うのが望ましく、不活性ガス中や真空中で行
う。 なお、焼結方法はこれに限定されるものではな
く、普通焼結法の他に熱間等方圧加圧法(HIP法)、
ホットプレス法などの他の焼結法を採用することも可能
である。なお、焼結温度を高くして、例えば1100℃
以上(但し、1200℃以下)で焼結する場合にはWC
は、他の成分と相互に反応してそれぞれ複炭化物及び複
ほう化物を生成する。また、熱力学的に安定なTiCは
反応せずに単体で組織中に分散し、それぞれの特性を示
す。
The carbide powder and the master alloy powder are mixed in a predetermined amount by a ball mill or the like, and the mixed powder is molded, then generally degreased and then sintered. Degreasing is performed, for example, in a non-oxidizing atmosphere (in an inert gas or vacuum) at 350
It heats at -500 degreeC for 2 to 4 hours, and performs it. When the sintering is performed by liquid phase sintering, for example, 1000 to 105
Sinter at 0 ° C for 10-120 minutes. Sintering is preferably performed in a non-oxidizing atmosphere, and is performed in an inert gas or vacuum. The sintering method is not limited to this, and in addition to the normal sintering method, the hot isostatic pressing method (HIP method),
It is also possible to adopt another sintering method such as a hot pressing method. In addition, the sintering temperature is increased to, for example, 1100 ° C.
WC when sintering above (however, 1200 ° C or less)
Reacts with other components to form double carbides and double borides, respectively. In addition, thermodynamically stable TiC does not react and is dispersed alone in the tissue and exhibits respective properties.

【0011】上記の焼結温度が望ましいのは、1000
℃未満では十分な焼結がなされないためであり、また、
1200℃を越えると、適度な大きさのNi合金粒が形
成されないためである。また、焼結時間が10分未満で
あると、十分な焼結がなされず、また、120分を越え
ると、反応が進行し、粒子が大きくなるためである。な
お、本発明の耐食耐摩耗性材料は、耐食性、耐摩耗性、
耐キャビテーションエロージョン性が要求される樹脂加
工機械や食品加工機械等の構成材料として使用するのに
好適であり、例えば、造粒機用ダイスや、樹脂、セラミ
ックス、金属等の押出成形あるいは射出成形等の成形加
工用シリンダとして使用することができる。
The above sintering temperature is preferably 1000
This is because if the temperature is less than ℃, sufficient sintering cannot be achieved.
This is because when the temperature exceeds 1200 ° C., Ni alloy particles of an appropriate size are not formed. Further, if the sintering time is less than 10 minutes, sufficient sintering is not performed, and if it exceeds 120 minutes, the reaction proceeds and the particles become large. Incidentally, the corrosion-resistant wear-resistant material of the present invention, corrosion resistance, wear resistance,
It is suitable for use as a constituent material of resin processing machines and food processing machines that require cavitation erosion resistance. For example, dies for granulators, extrusion molding or injection molding of resins, ceramics, metals, etc. Can be used as a cylinder for molding.

【0012】[0012]

【作用】すなわち本願発明の耐食耐摩耗性材料によれ
ば、組織中には、ほう化物および炭化物が含まれてお
り、各種実験の結果、摺動時にほう化物は潤滑材の役割
を果たし、相手材に対する攻撃性を緩和する。また、ほ
う化物は、適度な耐摩耗性を発揮するとともに、耐食性
を向上させる。複ほう化物にW、Ti等の炭化物を組み
合わせることにより、金属同士の凝着摩耗を軽減し、か
つ高硬度である炭化物のもつ自身の耐摩耗性によりアブ
レシブ摩耗に対しても有効に作用する。したがって、本
願発明により、耐食性、耐摩耗性の両特性が十分に優れ
ている材料が得られる。
In other words, according to the corrosion-resistant and wear-resistant material of the present invention, the structure contains boride and carbide, and as a result of various experiments, boride acts as a lubricant during sliding, Mitigates the aggression against wood. In addition, boride exhibits appropriate wear resistance and improves corrosion resistance. By combining carbides such as W and Ti with the compound boride, adhesion wear between metals is reduced, and due to the wear resistance of the carbide having high hardness, it also effectively acts on abrasive wear. Therefore, according to the present invention, a material having both excellent corrosion resistance and abrasion resistance can be obtained.

【0013】キャビテーションエロージョンによる損傷
の場合、一般的な球状硬質粒子分散型合金は、負圧によ
って発生した気泡が壊れる際に、先に軟質のマトリック
スの損傷が進行すると考えられ、ついには硬質物粒子の
脱落が生じ、その結果材料全体の損傷量が多くなる。し
かし、本発明の耐食耐摩耗性材料は、微細なCr炭化
物、ほう化物等が分散した粒状のNi基合金が島状に分
布しており、この島状ベース合金が微細な硬質炭化物が
分散した硬質相で覆われている構造をもつ。そのため
に、先にNi基合金が損傷しても硬質物の脱落が生じ難
く、優れた耐キャビテーションエロージョン性を示す。
このような材料は強度的に問題があることも考えられる
が、硬質相もNi基合金で結合されているため強度的に
も、従来材と比較して遜色ない。
In the case of damage due to cavitation erosion, it is considered that the general spherical hard particle dispersion type alloy is such that the damage of the soft matrix progresses first when the bubbles generated by the negative pressure are broken, and finally the hard material particles. Is lost, resulting in a large amount of damage to the entire material. However, in the corrosion-resistant and wear-resistant material of the present invention, a granular Ni-based alloy in which fine Cr carbides, borides and the like are dispersed is distributed in an island shape, and this island-shaped base alloy is dispersed in fine hard carbides. It has a structure covered with a hard phase. Therefore, even if the Ni-based alloy is damaged first, it is difficult for the hard material to fall off, and excellent cavitation erosion resistance is exhibited.
It is considered that such a material has a problem in strength, but since the hard phase is also bonded by the Ni-based alloy, it is comparable in strength to the conventional material.

【0014】次いで、本発明の成分の限定理由を述べ
る。Bは、硬質相となる複ほう化物を形成するために、
必要不可欠な元素である。B含有量が0.4%未満にな
ると合金の融点が上がり、耐摩耗性が悪くなり、一方、
1%を越えると硬質相の量が過多となり、靱性、強度の
低下が生じるため、0.4〜1重量%の範囲とする。C
は、W、Tiの炭化物として硬質相を構成するものであ
り、さらにCr等と反応して炭化物を形成し、耐摩耗性
の向上に寄与する。その含有量は、1.5%未満では耐
摩耗性向上が不十分であり、7%を越えると、炭化物が
過度となり、相手材攻撃性が増すとともに機械的特性を
損なうので1.5〜7重量%の範囲とする。Siは、N
i、Bと三元共晶を作り、合金の融点を下げる必須元素
であり、Cr、Mo、W等との化合物を形成することに
より合金の耐摩耗性を高める。また、アトマイズ時にお
ける溶湯の流動性を高め粉末粒径を均一化する効果があ
る。3%未満では上記の効果が少なく、7%を越えると
合金が脆化するので3〜7重量%の範囲とする。
Next, the reasons for limiting the components of the present invention will be described. B is to form a complex boride which becomes a hard phase,
It is an essential element. If the B content is less than 0.4%, the melting point of the alloy increases and wear resistance deteriorates.
If it exceeds 1%, the amount of the hard phase becomes excessive and the toughness and strength are deteriorated, so the content is made 0.4 to 1% by weight. C
, Which constitutes a hard phase as carbides of W and Ti, further reacts with Cr and the like to form carbides, which contributes to improvement of wear resistance. If the content is less than 1.5%, the wear resistance is insufficiently improved, and if it exceeds 7%, carbides become excessive, the attacking property of the mating material is increased, and the mechanical properties are impaired. The range is wt%. Si is N
It is an essential element that forms a ternary eutectic with i and B to lower the melting point of the alloy, and forms a compound with Cr, Mo, W, etc. to enhance the wear resistance of the alloy. It also has the effect of increasing the fluidity of the molten metal during atomization and making the powder particle size uniform. If it is less than 3%, the above effect is small, and if it exceeds 7%, the alloy becomes brittle, so the content is made 3 to 7% by weight.

【0015】Tiは、硬質相を構成するもので3%未満
では耐摩耗性が不十分であり、21%を越えると強度が
劣化するので3〜21重量%の範囲とする。Crは、焼
結時に反応して炭化物を生成したり、ほう化物として硬
質相を構成するだけでなく、結合相にも固溶して、耐食
性、耐摩耗性、耐熱性、耐酸化性を向上させる働きを持
つ。その含有量が8%未満では、耐食性が不十分であ
り、16%を越えると、添加量に見合った耐食性の向上
が認められず、また、靱性も低下するため8〜16重量
%の範囲とする。Feは、低温における強度を向上させ
るために添加する。この作用を得るためには2%以上の
添加が必要であり、一方、添加量が多いと耐食性が低下
するので、2〜5重量%の範囲に限定する。Snは、塩
酸に対する耐食性を増す効果があるが、0.3%未満で
は効果がなく、0.7%を越えると合金が脆化するので
0.3〜0.7重量%の範囲とする。
Ti constitutes a hard phase, and if it is less than 3%, the wear resistance is insufficient, and if it exceeds 21%, the strength deteriorates, so the range is 3 to 21% by weight. Cr not only forms a carbide by reacting during sintering or forms a hard phase as a boride, but also forms a solid solution in the binder phase to improve corrosion resistance, wear resistance, heat resistance, and oxidation resistance. It has a function to make it. If the content is less than 8%, the corrosion resistance is insufficient, and if it exceeds 16%, the improvement in the corrosion resistance commensurate with the addition amount is not recognized, and the toughness also decreases, so the range is 8 to 16% by weight. To do. Fe is added to improve the strength at low temperatures. To obtain this effect, it is necessary to add 2% or more. On the other hand, if the addition amount is large, the corrosion resistance decreases, so the content is limited to the range of 2 to 5% by weight. Sn has the effect of increasing the corrosion resistance to hydrochloric acid, but if it is less than 0.3%, it has no effect, and if it exceeds 0.7%, the alloy becomes brittle, so the range is 0.3 to 0.7% by weight.

【0016】Wは硬質相を構成するもので、他成分との
反応によって複炭化物や複ほう化物を生成する。その含
有量は、5%未満では耐摩耗性の付与が不十分となり、
25%を越えると、材料強度が劣化するために5〜25
重量%の範囲とする。CuはNi合金であるモネル(商
標)合金に代表されるように、Ni基合金の耐食性の向
上に寄与するので、耐食性を重視する場合に添加する。
この効果を充分に得るためには0.5%以上添加するの
が望ましい。ただし、添加量が多くなると合金が軟化し
て耐摩耗性が悪くなるので、含有量は3%以下とする。
なお、耐摩耗性を重視する場合には、無添加とすること
ができる。Niは、耐食性の向上に効果のある元素であ
り、Bとともに硬質のほう化物を形成して耐摩耗性を向
上させる効果があるので、残部をNiとした。なお、残
部のNiには不可避的不純物が存在するが、それらは、
本発明の効果を損なわない範囲内で許容される。
W constitutes a hard phase and reacts with other components to form double carbides and double borides. If the content is less than 5%, the wear resistance is insufficiently imparted,
If it exceeds 25%, the strength of the material deteriorates,
The range is wt%. Cu contributes to the improvement of the corrosion resistance of the Ni-based alloy, as typified by Monel (trademark) alloy, which is a Ni alloy, and is therefore added when importance is attached to the corrosion resistance.
In order to obtain this effect sufficiently, it is desirable to add 0.5% or more. However, if the addition amount is large, the alloy is softened and wear resistance is deteriorated, so the content is made 3% or less.
In addition, when importance is attached to abrasion resistance, no addition can be made. Ni is an element effective in improving the corrosion resistance and has the effect of forming a hard boride together with B to improve the wear resistance. Therefore, the balance is Ni. In addition, although there are unavoidable impurities in the balance Ni, they are
It is allowed within a range that does not impair the effects of the present invention.

【0017】[0017]

【実施例】以下に、この発明の実施例を、比較材(従来
材)と比較しつつ説明する。なお、以下の説明では、成
分量はすべて重量%で示す。まず、表1に示す合金Aを
原料粉末の一部として用意し、表2に示す成分比で、各
粉末を秤量して試験用混合粉末(発明材1〜7)をそれ
ぞれ調製した。なお、発明材における各原料粉末の粒径
は以下に示すとおりである。 (粒径) 合金A :−80+280メッシュ WC :2.77μm(平均粒径) TiC :2.77μm(平均粒径) Cu :−100メッシュ 各混合粉末には、さらにパラフィン等のバインダを所定
量加え、有機溶媒中でボールミルによって、1時間湿式
混合した後、乾燥した。この造粒粉を冷間等方圧加圧法
(CIP法)で成形した。得られた成形体を不活性ガス
雰囲気下において、350〜500℃で2〜4時間加熱
して脱脂を行い、脱脂後の成形体を、真空雰囲気下で焼
結した。具体的には、0.1MPa以下の雰囲気下にお
いて、1000〜1050℃で120分保持して本発明
の焼結体を得た。さらに、この焼結体を切断加工して、
所定形状の試験片(発明材1〜7)を製作した。また、
比較のために従来材からなる試験片(比較材1、2)を
用意した。比較材1は、ステンレス鋼からなり、鋳塊を
試験片とした。比較材2はNi基自溶性合金とWCとの
複合材であり、Ni基自溶性合金中にWCが分散したも
のである。その製造法は、表1に示す合金B(粒径50
〜100μm)とWC(粒径50μm)とを表2に示す
成分比で配合し、溶解法により製造したものである。な
お、発明材1〜7及び比較材1、2の成分の総量を表3
に示す。上記発明材1について、EPMA(電子線マイ
クロアナライザ)によって面分析組織観察を行ったとこ
ろ、図1の写真に示すように、島状ベース合金として、
Ni−Si−Fe−Crの組成物が形成されており、硬
質相としてはTi、W−Cよりなる複炭化物、CrBよ
りなるほう化物が生成されていた。
EXAMPLES Examples of the present invention will be described below in comparison with comparative materials (conventional materials). In addition, in the following description, all component amounts are shown by weight%. First, alloy A shown in Table 1 was prepared as a part of the raw material powder, and the powders were weighed in the component ratios shown in Table 2 to prepare test mixed powders (invention materials 1 to 7). The particle diameters of the respective raw material powders in the invention material are as shown below. (Particle size) Alloy A: -80 + 280 mesh WC: 2.77 μm (average particle size) TiC: 2.77 μm (average particle size) Cu: -100 mesh A predetermined amount of a binder such as paraffin is further added to each mixed powder. After wet mixing for 1 hour in a ball mill in an organic solvent, it was dried. This granulated powder was molded by the cold isostatic pressing method (CIP method). The obtained molded body was degreased by heating at 350 to 500 ° C. for 2 to 4 hours in an inert gas atmosphere, and the molded body after degreasing was sintered in a vacuum atmosphere. Specifically, the sintered body of the present invention was obtained by holding it at 1000 to 1050 ° C. for 120 minutes in an atmosphere of 0.1 MPa or less. Furthermore, by cutting this sintered body,
Test pieces (invention materials 1 to 7) having a predetermined shape were manufactured. Also,
For comparison, test pieces (comparative materials 1 and 2) made of conventional materials were prepared. Comparative material 1 was made of stainless steel, and an ingot was used as a test piece. Comparative material 2 is a composite material of Ni-based self-fluxing alloy and WC, and WC is dispersed in the Ni-based self-fluxing alloy. The manufacturing method is alloy B (particle size 50
.About.100 .mu.m) and WC (particle size 50 .mu.m) at the component ratios shown in Table 2 and produced by a dissolution method. In addition, the total amounts of the components of the invention materials 1 to 7 and the comparative materials 1 and 2 are shown in Table 3.
Shown in The above-mentioned invention material 1 was subjected to surface analysis structure observation by an EPMA (electron beam microanalyzer). As a result, as shown in the photograph of FIG.
A composition of Ni-Si-Fe-Cr was formed, and as the hard phase, a compound carbide of Ti, WC, and a boride of CrB were produced.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】次ぎに、各試験片の特性評価を行うため
に、それぞれの硬さを測定するとともに、腐食試験およ
び摩耗試験を行った。腐食試験は、70℃、塩酸(pH
=4)に48時間浸漬し、腐食減量を測定して耐食性を
評価した。また、摩耗試験は、金属同士の凝着摩耗をシ
ミュレートするため、大越式迅速摩耗試験機を用い、相
手材にSUS440C(HRC56)を使用した。摩耗
試験は、最終荷重62N、摩擦速度4.36m/S、摩
擦距離200m、室温、無潤滑の条件下で行い、摩耗量
を測定して耐摩耗性を評価した。さらに、樹脂中の硬質
添加剤による摩耗をシミュレートするためにアブレシブ
摩耗試験を行った。具体的には、相手材に320番のS
iC研磨紙を用いて荷重20N、速度3.6m/s(6
0往復/分)で試験を行い、摩耗量は400回毎の摩耗
減量の平均値とした。これらの試験結果を表4に示す。
また、材料の耐キャビテーションエロージョン性を定
量的に評価するために対向型磁わい振動試験機を用いて
試験を実施した。測定条件は、振動数20kHz、振幅
60μm、振動子と試験片の間隙0.4mm、試験液は
調整水(純水を塩酸でpH=4に調整)、試験液の流量
0.2リットル/min、試験液の温度21〜30℃、
試験時間24時間である。
Next, in order to evaluate the characteristics of each test piece, its hardness was measured, and a corrosion test and an abrasion test were performed. Corrosion test, 70 ℃, hydrochloric acid (pH
= 4) for 48 hours, and the corrosion weight loss was measured to evaluate the corrosion resistance. Further, in the wear test, in order to simulate the adhesion wear between metals, the Ogoshi type rapid wear tester was used, and SUS440C (HRC56) was used as the mating material. The abrasion test was performed under the conditions of a final load of 62 N, a friction speed of 4.36 m / S, a friction distance of 200 m, room temperature and no lubrication, and the abrasion resistance was measured by measuring the abrasion amount. In addition, an abrasive wear test was conducted to simulate wear due to hard additives in the resin. Specifically, the mating material is the 320th S
Using iC polishing paper, load 20N, speed 3.6m / s (6
The test was conducted at 0 reciprocations / minute), and the amount of wear was the average value of the amount of wear reduction every 400 times. The results of these tests are shown in Table 4.
In addition, in order to quantitatively evaluate the cavitation erosion resistance of the material, a test was conducted using an opposed type magnetic vibration tester. The measurement conditions are a frequency of 20 kHz, an amplitude of 60 μm, a gap between the vibrator and the test piece of 0.4 mm, a test solution of adjusted water (pure water is adjusted to pH = 4 with hydrochloric acid), and a flow rate of the test solution of 0.2 liter / min. , The temperature of the test solution 21 to 30 ° C.,
The test time is 24 hours.

【0022】[0022]

【表4】 [Table 4]

【0023】その結果、比較材1(ステンレス鋼)は耐
食性には優れているものの耐摩耗性に劣っており、例え
ば、樹脂にガラス繊維などを添加した複合材料の成形に
対しては好適な材料ではない。また、比較材2(Ni基
自溶性合金+WC)は、耐摩耗性は十分であるが、耐キ
ャビテーションエロージョン性、耐食性が劣っている。
これに対して、発明材1〜7の試験片はTi、W、Cr
の炭化物によって耐摩耗性が向上しており、例えば樹脂
中の硬質添加剤による摩耗を防止する。また、大越式摩
耗試験では、複ほう化物が潤滑材としての効力を発揮し
ており、自身(固定試験片)および相手材(回転試験
片)のいずれの摩耗量も小さく、構成部材の金属同士の
接触により生じる摩耗において、相手材に対する攻撃性
をやわらげ、かつ金属同士の凝着摩耗をやわらげる。
さらに、腐食試験における腐食量も少なく、例えば、樹
脂中から発生するガスによる高腐食環境下でも、高Cr
のNiマトリックスが高い耐食性を示す。また、耐キャ
ビテーションエロージョン性試験においても良好な結果
が得られた。以上のように、本発明の材料は、比較材と
異なり、耐摩耗性、耐食性および耐キャビテーションエ
ロージョン性のいずれにおいても優れた結果が得られ
た。なお、表中の比較材1において、回転試験片の摩耗
量が負の値を示しているのは、凝着により固定試験片の
材料が回転試験片に付着したためである。
As a result, the comparative material 1 (stainless steel) is excellent in corrosion resistance but inferior in wear resistance. For example, a material suitable for molding a composite material obtained by adding glass fiber to resin. is not. Further, the comparative material 2 (Ni-based self-fluxing alloy + WC) has sufficient wear resistance, but is inferior in cavitation erosion resistance and corrosion resistance.
On the other hand, the test pieces of the invention materials 1 to 7 were Ti, W, and Cr.
The wear resistance is improved by the carbide of the above, and for example, wear due to the hard additive in the resin is prevented. Also, in the Ogoshi-type wear test, the compound boride exhibits its effectiveness as a lubricant, and the amount of wear of both itself (fixed test piece) and mating material (rotating test piece) is small, and the metal components In the wear caused by the contact between the two materials, the aggressiveness to the mating material is softened, and the adhesive wear between the metals is softened.
Furthermore, the amount of corrosion in the corrosion test is small, and for example, even in a highly corrosive environment due to the gas generated from the resin, high Cr
Ni matrix shows high corrosion resistance. Also, good results were obtained in the cavitation erosion resistance test. As described above, the material of the present invention, unlike the comparative material, was excellent in all of the wear resistance, the corrosion resistance and the cavitation erosion resistance. In Comparative Material 1 in the table, the wear amount of the rotary test piece shows a negative value because the material of the fixed test piece adheres to the rotary test piece due to adhesion.

【0024】[0024]

【発明の効果】以上説明したように、本願発明の耐食耐
摩耗性材料によれば、炭化物を主体とする硬質相間に粒
状のNi基合金を分散させたので、高耐食性、耐キャビ
テーションエロージョン性だけでなく、耐凝着、耐アブ
レシブ摩耗の両特性を具備する耐摩耗材料として優れた
特性が得られる効果がある。したがって、過酷な成形条
件下で使用される樹脂加工機械、食品加工機械等のダイ
ス硬化層、シリンダ、スクリュ、摩擦リング、逆防リン
グなどの構成摺動材料として耐久性に優れた複合材料が
得られる効果がある。
As described above, according to the corrosion-resistant and wear-resistant material of the present invention, since the granular Ni-based alloy is dispersed in the hard phase mainly composed of carbide, only high corrosion resistance and cavitation erosion resistance are achieved. In addition, there is an effect that excellent properties can be obtained as a wear resistant material having both properties of anti-adhesion and anti-abrasive wear. Therefore, a composite material with excellent durability can be obtained as a sliding material that is used for resin processing machines, food processing machines, and other die hardening layers used under severe molding conditions, cylinders, screws, friction rings, check rings, etc. It is effective.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、発明材1の焼結体の金属組織写真であ
る。
FIG. 1 is a photograph of a metal structure of a sintered body of Inventive Material 1.

フロントページの続き (72)発明者 松尾 敏夫 広島県広島市安芸区船越南一丁目6番1号 株式会社日本製鋼所内Front page continuation (72) Inventor Toshio Matsuo 1-6-1, Funakoshi Minami, Aki-ku, Hiroshima City, Hiroshima Prefecture Japan Steel Works, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 微細炭化物を主体とする硬質相間に粒状
のNi基合金が分散した複合材料であって、成分組成
が、総量で、B:0.4〜1重量%、C:1.5〜7重
量%、Si:3〜7重量%、Ti:3〜21重量%、C
r:8〜16重量%、Fe:2〜5重量%、Sn:0.
3〜0.7重量%、W:5〜25重量%、Cu:0〜3
重量%を含有し、残部がNiおよび不可避的不純物から
なることを特徴とする耐キャビテーションエロージョン
性に優れた耐食耐摩耗性材料
1. A composite material in which a granular Ni-based alloy is dispersed between hard phases containing fine carbide as a main component, and the total component composition is B: 0.4 to 1% by weight and C: 1.5. ~ 7 wt%, Si: 3-7 wt%, Ti: 3-21 wt%, C
r: 8 to 16% by weight, Fe: 2 to 5% by weight, Sn: 0.
3 to 0.7% by weight, W: 5 to 25% by weight, Cu: 0 to 3
Corrosion and abrasion resistant material having excellent cavitation erosion resistance, characterized in that the content of Ni is unavoidable and the balance is Ni.
JP20939294A 1994-08-11 1994-08-11 Corrosion and abrasion resistant material with excellent cavitation erosion resistance Pending JPH0860278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20939294A JPH0860278A (en) 1994-08-11 1994-08-11 Corrosion and abrasion resistant material with excellent cavitation erosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20939294A JPH0860278A (en) 1994-08-11 1994-08-11 Corrosion and abrasion resistant material with excellent cavitation erosion resistance

Publications (1)

Publication Number Publication Date
JPH0860278A true JPH0860278A (en) 1996-03-05

Family

ID=16572147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20939294A Pending JPH0860278A (en) 1994-08-11 1994-08-11 Corrosion and abrasion resistant material with excellent cavitation erosion resistance

Country Status (1)

Country Link
JP (1) JPH0860278A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7282079B2 (en) 2003-12-25 2007-10-16 Fujimi Incorporated Thermal spray powder
JP2008223907A (en) * 2007-03-13 2008-09-25 National Institute Of Advanced Industrial & Technology Back pressure valve
WO2011030905A1 (en) * 2009-09-14 2011-03-17 公立大学法人大阪府立大学 Ni3(si, ti) intermetallic compound to which ta is added
WO2011030904A1 (en) * 2009-09-14 2011-03-17 公立大学法人大阪府立大学 Ni3(si, ti) intermetallic compound to which w is added, and method for producing same
WO2012102386A1 (en) * 2011-01-27 2012-08-02 公立大学法人大阪府立大学 Heat-resistant bearing formed of ni3(si, ti)-based intermetallic compound alloy added with ta and al, and production method therefor
CN113227328A (en) * 2018-12-20 2021-08-06 埃克森美孚化学专利公司 Erosion resistant alloy for thermal cracking reactor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7282079B2 (en) 2003-12-25 2007-10-16 Fujimi Incorporated Thermal spray powder
JP2008223907A (en) * 2007-03-13 2008-09-25 National Institute Of Advanced Industrial & Technology Back pressure valve
JP5565776B2 (en) * 2009-09-14 2014-08-06 公立大学法人大阪府立大学 Ni3 (Si, Ti) intermetallic compound to which W is added and method for producing the same
WO2011030904A1 (en) * 2009-09-14 2011-03-17 公立大学法人大阪府立大学 Ni3(si, ti) intermetallic compound to which w is added, and method for producing same
WO2011030905A1 (en) * 2009-09-14 2011-03-17 公立大学法人大阪府立大学 Ni3(si, ti) intermetallic compound to which ta is added
JP5565777B2 (en) * 2009-09-14 2014-08-06 公立大学法人大阪府立大学 Ni3 (Si, Ti) intermetallic compound with Ta added
US9371574B2 (en) 2009-09-14 2016-06-21 Osaka Prefecture University Public Corporation Ni3(Si, Ti)-based intermetallic compound to which W is added, and method for producing same
US9447485B2 (en) 2009-09-14 2016-09-20 Osaka Prefecture University Public Corporation Ni3(Si, Ti)-based intermetallic compound to which Ta is added
WO2012102386A1 (en) * 2011-01-27 2012-08-02 公立大学法人大阪府立大学 Heat-resistant bearing formed of ni3(si, ti)-based intermetallic compound alloy added with ta and al, and production method therefor
JP2012153955A (en) * 2011-01-27 2012-08-16 Osaka Prefecture Univ Heat-resistant bearing formed of ni3(si,ti)-based intermetallic compound alloy added with ta and al, and production method therefor
US9273374B2 (en) 2011-01-27 2016-03-01 Osaka Prefecture University Public Corporation Heat-resistant bearing formed of Ta or a1-added Ni3(Si, Ti)-based intermetallic compound alloy and method for producing the same
CN113227328A (en) * 2018-12-20 2021-08-06 埃克森美孚化学专利公司 Erosion resistant alloy for thermal cracking reactor
CN113227328B (en) * 2018-12-20 2025-01-21 埃克森美孚化学专利公司 Corrosion-resistant alloys for thermal cracking reactors

Similar Documents

Publication Publication Date Title
US4029000A (en) Injection pump for injecting molten metal
CN108315733A (en) Powder and preparation method used in a kind of laser melting coating aluminium bronze gradient coating
CN109465461A (en) A kind of tungsten carbide stiff dough anti-friction bearing and preparation method thereof
CN113396233A (en) Hard powder particles with improved compressibility and green strength
CN106834872A (en) A kind of preparation method of tough high-wear resistant Ti N steel bonded carbide high
JPH07290186A (en) Tungsten carbide composite lining material for centrifugal casting and tungsten carbide composite lining layer
JPH0860278A (en) Corrosion and abrasion resistant material with excellent cavitation erosion resistance
JP2003277861A (en) Rotor for rubber kneading machine
JP7580027B2 (en) WC-based cemented carbide and cutting tool using said alloy
JP2837798B2 (en) Cobalt-based alloy with excellent corrosion resistance, wear resistance and high-temperature strength
US20070081916A1 (en) Production of the metallic parts with the alloyed layer containing dispersed compound particles, and the wear-proof parts
JP3487935B2 (en) High corrosion and wear resistant composite material
JP2800076B2 (en) Corrosion and wear resistant cobalt based alloy
JPH0649581A (en) Metal-ceramics composite material excellent in corrosion resistance and wear resistance and method for producing the same
JP2800074B2 (en) Corrosion and wear resistant cobalt based alloy
JP3368178B2 (en) Manufacturing method of composite sintered alloy for non-ferrous metal melt
JPH06145856A (en) Corrosion and wear resistant cobalt-based alloy
JPH05132734A (en) Wear and corrosion resistant composite materials
JPH07268524A (en) High corrosion and abrasion resistance composite material
CN106591674A (en) Preparation method for high-strength high-toughness heat-resistant TiN steel-bonded hard alloy
JPS62273820A (en) Composite cylinder for plastic molding apparatus
CN110331399B (en) Method for inhibiting the decomposition of cBN particles in the preparation of chromium-containing nickel-based alloy-cBN composite coatings by laser cladding
RU2133296C1 (en) Solid alloy (variants) and method of preparing thereof
JP4330157B2 (en) Screw for injection molding machine and its assembly parts
JP2016064417A (en) Lining material and cylinder for molding machine having the same