JPH0859953A - Polypropylene resin composition for automobile interior materials - Google Patents
Polypropylene resin composition for automobile interior materialsInfo
- Publication number
- JPH0859953A JPH0859953A JP3737495A JP3737495A JPH0859953A JP H0859953 A JPH0859953 A JP H0859953A JP 3737495 A JP3737495 A JP 3737495A JP 3737495 A JP3737495 A JP 3737495A JP H0859953 A JPH0859953 A JP H0859953A
- Authority
- JP
- Japan
- Prior art keywords
- ethylene
- resin composition
- weight
- propylene
- polypropylene resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
(57)【要約】
【目的】 剛性と低温脆化温度のバランスに優れ、且つ
流動性にも優れた自動車内装材用ポリプロピレン樹脂組
成物を提供すること。
【構成】 エチレン−プロピレン共重合部の極限粘度
([η])の平均が7〜12g/dlであるエチレン−
プロピレンブロック共重合体(A)95〜85重量%、
及び平均粒径が1〜4μmである無機充填剤(B)5〜
15重量%からなるポリプロピレン樹脂組成物であっ
て、該樹脂組成物のメルトインデックス(MI)が15
〜40g/10minであり、曲げ弾性率(FM)が2
300〜3000MPaであり、低温脆化温度(LB)
が30℃未満であり、且つFMとLBとの関係が不等
式:
FM>8.4×LB+2300
を満足する、自動車内装材用ポリプロピレン樹脂組成
物。(57) [Abstract] [Purpose] To provide a polypropylene resin composition for automobile interior materials, which has excellent balance between rigidity and low temperature embrittlement temperature and also has excellent fluidity. [Structure] Ethylene having an average intrinsic viscosity ([η]) of the ethylene-propylene copolymer part of 7 to 12 g / dl
Propylene block copolymer (A) 95 to 85% by weight,
And an inorganic filler (B) having an average particle size of 1 to 4 μm 5
A polypropylene resin composition comprising 15% by weight and having a melt index (MI) of 15
~ 40g / 10min, flexural modulus (FM) is 2
300 to 3000 MPa, low temperature embrittlement temperature (LB)
Is less than 30 ° C., and the relation between FM and LB satisfies the inequality: FM> 8.4 × LB + 2300. A polypropylene resin composition for automobile interior materials.
Description
【0001】[0001]
【産業上の利用分野】本発明は剛性と低温脆化温度のバ
ランスに優れ、且つ流動性に優れた自動車内装材用ポリ
プロピレン樹脂組成物に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polypropylene resin composition for automobile interior materials, which has excellent balance between rigidity and low temperature embrittlement temperature and is excellent in fluidity.
【0002】[0002]
【従来の技術】近年、自動車の燃費軽減の為に自動車に
使用される部品を軽量化することが求められている。自
動車を軽量化することにより、廃気ガスの量を軽減して
大気中に放出される炭酸ガスの量を減すことが可能とな
り、結果として地球環境の保全に繋がる。自動車等の部
品を軽量化する方法としては、材料の比重を低下させる
方法や、衝撃強さをあまり低下させない範囲で剛性を高
め、製品を薄肉化する方法等が考えられるが、薄肉化す
る方法の方が成形材料費の軽減化ができ、射出成形の場
合には薄肉化により冷却効率が高まり、生産性も向上す
るので最も望ましい。しかし、射出成形方法に於いて
は、樹脂の流動性と成形機の性能により薄肉化には限界
がある。例えば、流動性が悪い材料では金型内の狭い隙
間に樹脂を流し込む時に大きな圧力を必要とし、射出
圧、型締め圧が優れた成形機を用いないと型開き等の問
題が生じることがある。しかし、型締め圧が高い成形機
は大型になり、高価であり、設置面積も広く取る必要が
あるので経済的でない。2. Description of the Related Art In recent years, it has been required to reduce the weight of parts used in automobiles in order to reduce the fuel consumption of automobiles. By reducing the weight of automobiles, it is possible to reduce the amount of exhaust gas and the amount of carbon dioxide gas released into the atmosphere, resulting in conservation of the global environment. As a method of reducing the weight of parts such as automobiles, a method of reducing the specific gravity of the material, a method of increasing the rigidity to the extent that the impact strength is not significantly decreased, and reducing the product thickness, etc. are conceivable. The method is most desirable because it can reduce the cost of the molding material, and in the case of injection molding, the thinning reduces the cooling efficiency and improves the productivity. However, in the injection molding method, there is a limit to the thinning due to the fluidity of the resin and the performance of the molding machine. For example, a material with poor fluidity requires a large pressure when pouring resin into a narrow gap in a mold, and problems such as mold opening may occur unless a molding machine with excellent injection pressure and mold clamping pressure is used. . However, a molding machine with a high mold clamping pressure becomes large, expensive, and requires a large installation area, which is not economical.
【0003】他方、樹脂の流動性に関しては、通常の射
出成形材料はメルトインデックスが2〜15g/10m
inの範囲のものが一般的であり、薄肉化する場合はポ
リプロピレン樹脂組成物のメルトインデックスを15g
/10min以上とする必要がある。樹脂の流動性を高
める方法として、通常は樹脂の分子量を低くする方法が
取られるが、樹脂の分子量を低下させると衝撃強さ、引
張破断伸び、低温脆化温度等の機械物性の機能低下が生
じ易い。この様な衝撃強さの低下を防ぐ為には、従来は
ポリプロピレンとしてエチレン−プロピレンブロック共
重合体を用い、更に、ホモ部の分子量を低くして流動性
を高め、衝撃強さを高める為に共重合部の分子量を高め
ることにより対処していた。しかし、ホモ部の分子量が
余り低くなると急激に衝撃強さ、特に常温アイゾット衝
撃強さが低下する。その為、特開平5−98126号公
報、特開平5−98127号公報等に開示されているよ
うに、自動車のバンパー等の外装材には多量のゴム成分
を含有した衝撃強さに優れた材料が用いられてきた。ま
た、特開平3−197549号公報には、結晶性エチレ
ン−プロピレンブロック共重合体と主鎖が飽和の熱可塑
性エラストマー(例えばエチレン−プロピレン共重合体
ゴム等)、さらに無機充填剤(例えばタルク等)を主成
分とする塗装性の改良されたポリプロピレン系樹脂組成
物が開示されている。また、特開平5−98122号公
報にはメルトインデックスが30〜120g/10mi
nのエチレン−プロピレンブロック共重合体、エチレン
とプロピレン又はブテン−1との二元共重合体エラスト
マー及びこれらとシクロペンタジエン又はエチリデンノ
ルボルネンとの三元共重合体より選ばれた共重合体エラ
ストマー、そして無機フィラーを含むポリプロピレン樹
脂組成物が開示されている。その様なバンパー材は、多
量のゴムによりアイゾット衝撃強さばかりでなく低温脆
化温度も十分に改善されている。On the other hand, regarding the fluidity of the resin, the usual injection molding material has a melt index of 2 to 15 g / 10 m.
It is generally in the range of in, and when thinning, the polypropylene resin composition has a melt index of 15 g.
/ 10 min or more is required. As a method of increasing the fluidity of the resin, a method of lowering the molecular weight of the resin is usually taken, but when the molecular weight of the resin is reduced, impact strength, tensile elongation at break, deterioration of mechanical properties such as low temperature embrittlement temperature may occur. It is easy to occur. In order to prevent such a decrease in impact strength, conventionally, an ethylene-propylene block copolymer was used as polypropylene, and further, in order to increase the impact strength by lowering the molecular weight of the homo portion to improve the fluidity. This has been dealt with by increasing the molecular weight of the copolymerization part. However, if the molecular weight of the homo-part becomes too low, the impact strength, especially the room temperature Izod impact strength, will drop sharply. Therefore, as disclosed in JP-A-5-98126, JP-A-5-98127, and the like, a material excellent in impact strength containing a large amount of a rubber component in an exterior material such as a bumper of an automobile. Has been used. Further, in JP-A-3-197549, a crystalline ethylene-propylene block copolymer and a thermoplastic elastomer having a saturated main chain (for example, ethylene-propylene copolymer rubber), and an inorganic filler (for example, talc, etc.) are disclosed. ) Is disclosed as a main component of the polypropylene resin composition having improved paintability. Further, in JP-A-5-98122, the melt index is 30 to 120 g / 10 mi.
n ethylene-propylene block copolymer, a binary copolymer elastomer of ethylene and propylene or butene-1, and a copolymer elastomer selected from the ternary copolymer of these with cyclopentadiene or ethylidene norbornene, and A polypropylene resin composition containing an inorganic filler is disclosed. Such a bumper material is sufficiently improved in not only Izod impact strength but also low temperature embrittlement temperature by a large amount of rubber.
【0004】一方、特開昭58−83015号公報には
耐衝撃性に優れるエチレン−プロピレンブロック共重合
体として共重合部のエチレン/プロピレン比が60/4
0〜95/5であり、更に、共重合部の極限粘度[η]
が4〜15であるものが提案されている。また、その実
施例中には、共重合部の重合において後半にエチレンの
吹き込み量を増加させる共重合部2段重合が開示されて
いる。On the other hand, JP-A-58-83015 discloses that an ethylene-propylene block copolymer having excellent impact resistance has an ethylene / propylene ratio of 60/4 in the copolymerized portion.
0 to 95/5, and further, the intrinsic viscosity [η] of the copolymerization part
Has been proposed. Further, in the examples, a two-stage polymerization of a copolymerization section is disclosed in which the blowing amount of ethylene is increased in the latter half of the polymerization of the copolymerization section.
【0005】[0005]
【発明が解決しようとする課題】しかし、このような材
料は多量のゴムを含む為に剛性が低く、表面に強固な塗
装を施さないと傷が付き易いので自動車の内装材等の余
り強固な塗装を施さないか、全く未塗装で使用する部分
には使用出来なかった。また、ポリプロピレンに対して
ゴムの価格が高いので原料コストが高くなり、製品の価
格も高くなる恐れがあった。フィラー量を増やしその分
ゴムを添加して衝撃強さを高めることも可能だが、その
分比重が高くなり材料の軽量化にはならなかった。本発
明の目的は、剛性と低温脆化温度のバランスに優れ、且
つ流動性にも優れた自動車内装材用ポリプロピレン樹脂
組成物を提供することにある。However, since such a material contains a large amount of rubber, it has a low rigidity and is easily scratched unless a strong coating is applied on the surface. It couldn't be used on the part that was not painted or was unpainted at all. Further, since the price of rubber is higher than that of polypropylene, the raw material cost is high and the price of the product may be high. Although it is possible to increase the impact strength by increasing the amount of filler and adding rubber to that extent, the specific gravity increased by that amount and the material was not made lighter. An object of the present invention is to provide a polypropylene resin composition for automobile interior materials, which has an excellent balance of rigidity and low temperature embrittlement temperature and also has excellent fluidity.
【0006】[0006]
【課題を解決するための手段】本発明者等は、前述の問
題点を解決すべく鋭意研究を進めた結果、内装材用ポリ
プロピレンとして従来使用されていたエチレン−プロピ
レンブロック共重合体に比べて共重合部の平均極限粘度
が高いエチレン−プロピレンブロック共重合体を用いる
事により剛性、低温脆化温度、流動性のバランスに優れ
た材料が得られる事を見出し、本発明に到った。即ち本
発明の自動車内装材用ポリプロピレン樹脂組成物は、エ
チレン−プロピレン共重合部の極限粘度([η])の平
均が7〜12g/dlであるエチレン−プロピレンブロ
ック共重合体(A)95〜85重量%、及び平均粒径が
1〜4μmである無機充填剤(B)5〜15重量%から
なるポリプロピレン樹脂組成物であって、該樹脂組成物
のメルトインデックス(MI)が15〜40g/10m
inであり、曲げ弾性率(FM)が2300〜3000
MPaであり、低温脆化温度(LB)が30℃未満であ
り、且つFMとLBとの関係が不等式: FM>8.4×LB+2300 を満足する事を特徴とする。Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that compared with ethylene-propylene block copolymers that have been conventionally used as polypropylene for interior materials. The inventors have found that a material having an excellent balance of rigidity, low temperature embrittlement temperature, and fluidity can be obtained by using an ethylene-propylene block copolymer having a high average intrinsic viscosity of the copolymerized portion, and arrived at the present invention. That is, the polypropylene resin composition for automobile interior materials of the present invention has an ethylene-propylene block copolymer (A) 95- having an average intrinsic viscosity ([η]) of the ethylene-propylene copolymer portion of 7-12 g / dl. A polypropylene resin composition comprising 85% by weight and 5 to 15% by weight of an inorganic filler (B) having an average particle size of 1 to 4 μm, and the melt index (MI) of the resin composition is 15 to 40 g / 10m
and the flexural modulus (FM) is 2300-3000.
MPa, the low temperature embrittlement temperature (LB) is less than 30 ° C., and the relationship between FM and LB satisfies the inequality: FM> 8.4 × LB + 2300.
【0007】本発明のポリプロピレン樹脂組成物で用い
るエチレン−プロピレンブロック共重合体(A)は、そ
の共重合部の極限粘度(以下[η]と略称する)の平均
値、即ち平均[η]が7〜12g/dl、好ましくは8
〜10g/dlのものである。共重合部の平均[η]が
7g/dl未満では低温脆化温度が十分に低くならず、
衝撃強さが十分でない。また、12g/dlを超えると
溶融混練時に共重合部がホモポリプロピレンのマトリッ
クス中に微細に分散することが難しく、常温アイゾット
衝撃強さ等が十分でなく、更に、熱分解し易いのでリサ
イクル使用すると流動性、衝撃強さがリサイクル毎に変
化してしまい、安定してリサイクル使用することができ
ない。The ethylene-propylene block copolymer (A) used in the polypropylene resin composition of the present invention has an average value of intrinsic viscosity (hereinafter abbreviated as [η]) of its copolymerized portion, that is, an average [η]. 7-12 g / dl, preferably 8
10 to 10 g / dl. When the average [η] of the copolymerized part is less than 7 g / dl, the low temperature embrittlement temperature is not sufficiently low,
Impact strength is not sufficient. Further, if it exceeds 12 g / dl, it is difficult to finely disperse the copolymerized portion in the matrix of homopolypropylene during melt-kneading, the room temperature Izod impact strength is not sufficient, and further it is easily decomposed by heat so that it can be recycled. The fluidity and impact strength change with each recycling, and stable recycling cannot be achieved.
【0008】エチレン−プロピレンブロック共重合体
(A)においては、その共重合部のエチレン/プロピレ
ンの重量比が0.8〜2.0の範囲内にあることが好まし
い。しかし、その範囲の中でも、エチレン/プロピレン
の重量比が低い方にあると引張破断伸び、常温アイゾッ
ト衝撃強さに優れるが、低温アイゾット衝撃強さ、低温
脆化温度、剛性に劣り、またエチレン/プロピレンの重
量比が高い方にあると低温アイゾット衝撃強さ、低温脆
化温度、剛性に優れるが、引張破断伸び、常温アイゾッ
ト衝撃強さに劣る。In the ethylene-propylene block copolymer (A), the weight ratio of ethylene / propylene in the copolymerized portion is preferably in the range of 0.8 to 2.0. However, in that range, when the ethylene / propylene weight ratio is lower, the tensile elongation at break and the room temperature Izod impact strength are excellent, but the low temperature Izod impact strength, the low temperature embrittlement temperature, and the rigidity are poor, and the ethylene / propylene When the weight ratio of propylene is higher, the low temperature Izod impact strength, the low temperature embrittlement temperature and the rigidity are excellent, but the tensile elongation at break and the room temperature Izod impact strength are poor.
【0009】また、高流動性であり、且つ、共重合部が
高分子量であれば、ホモ部は非常に低分子量である必要
がある。そのため、通常ホモ部を重合する場合、多量の
水素を吹き込んで低分子量化するが、連続して高分子量
である共重合部を重合する場合、ホモ部重合時に吹き込
まれた水素の脱気が十分でないと高分子量共重合部を重
合する場合の水素濃度の調整による分子量調整が難し
く、優れた性能を有する共重合部を得難い。また重合時
間も長くなり収率が悪い。エチレン−プロピレンブロッ
ク共重合体(A)を二段で重合し、前半部で低分子量共
重合部を重合し、後半部で高分子量共重合部を重合して
もよいが、エチレン−プロピレンブロック共重合体
(A)を三段で重合し、その際に第一段重合生成物(C
1)の共重合部のエチレン/プロピレンの重量比が0.
5〜1.2であり、第二段重合生成物(C2)の共重合
部のエチレン/プロピレンの重量比が0.9〜2.0であ
り、第三段重合生成物(C3)の共重合部のエチレン/
プロピレンの重量比が1.5〜3.0であり、C2+C3
の共重合部のエチレン/プロピレンの重量比が1.3〜
2.5であり、(C1+C2+C3)に対するC1の比
率が30〜60重量%であり、C2の比率が20〜50
重量%であり、且つC3の比率が20〜50重量%であ
るように重合したものが、エチレン−プロピレンブロッ
ク共重合体を一段又は二段で重合したものより曲げ弾
性、衝撃強さ、伸び、流動性のバランスに優れているの
で好ましい。Further, if the copolymer has a high fluidity and the copolymer part has a high molecular weight, the homo part needs to have a very low molecular weight. Therefore, usually, when polymerizing the homo-part, a large amount of hydrogen is blown to lower the molecular weight, but when polymerizing the copolymerized part having a high molecular weight continuously, degassing of the hydrogen blown during the homo-part polymerization is sufficient. Otherwise, it is difficult to adjust the molecular weight by adjusting the hydrogen concentration when polymerizing the high molecular weight copolymerized portion, and it is difficult to obtain the copolymerized portion having excellent performance. Also, the polymerization time becomes long and the yield is poor. The ethylene-propylene block copolymer (A) may be polymerized in two stages, the low molecular weight copolymerization part may be polymerized in the first half and the high molecular weight copolymerization part may be polymerized in the second half. The polymer (A) is polymerized in three stages, in which case the first stage polymerization product (C
The ethylene / propylene weight ratio of the copolymerized portion of 1) is 0.1.
5 to 1.2, the ethylene / propylene weight ratio of the copolymerization part of the second stage polymerization product (C2) is 0.9 to 2.0, and the copolymerization ratio of the third stage polymerization product (C3) is Polymerization part of ethylene /
The weight ratio of propylene is 1.5 to 3.0, and C2 + C3
The ethylene / propylene weight ratio of the copolymerization part of is 1.3-
2.5, the ratio of C1 to (C1 + C2 + C3) is 30 to 60% by weight, and the ratio of C2 is 20 to 50.
The polymer which is polymerized so that the C3 ratio is 20 to 50% by weight is more flexible in bending elasticity, impact strength and elongation than the one obtained by polymerizing the ethylene-propylene block copolymer in one or two steps. It is preferable because it has an excellent flowability balance.
【0010】C2の共重合部のエチレン/プロピレンの
重量比の値はC1の共重合部のエチレン/プロピレンの
重量比の値の1.1〜2倍であり、C2の共重合部のエ
チレン/プロピレンの重量比の値はC3の共重合部のエ
チレン/プロピレンの重量比の値の0.9〜0.5倍であ
ることが好ましい。C1の共重合部のエチレン/プロピ
レンの重量比が0.5未満の場合又は(C1+C2+C
3)に対するC1の比率が60重量%を超える場合に
は、低温脆化温度、剛性の点で必ずしも十分ではなく、
またC3の共重合部のエチレン/プロピレンの重量比が
3.0を超える場合又は(C1+C2+C3)に対する
C1の比率が30重量%未満の場合には、引張破断伸
び、常温アイゾット衝撃強さの点で必ずしも十分ではな
い。C1の共重合部のエチレン/プロピレンの重量比が
1.5を超える場合又はC3の共重合部のエチレン/プ
ロピレンの重量比が1.5未満の場合には、共重合部を
一段重合したものに比べて優位性はない。C2の共重合
部のエチレン/プロピレンの重量比が0.9未満の場合
にはC3を安定的に重合することが困難であり、その結
果として低温衝撃強さに劣り、またC2の共重合部のエ
チレン/プロピレンの重量比が2.0を超えるためには
C1を重合した後に多量のエチレンを吹き込む必要があ
り、その結果としてエチレン成分が多くなり、ペレット
化時に十分には分散できない超高分子量の共重合体が副
生して引張破断伸びに劣る場合がある。共重合部(C1
+C2+C3)が、エチレン−プロピレンブロック共重
合体(A)の中で15〜25重量%を占めることが好ま
しく、15重量%未満の場合には低温アイゾット衝撃強
さ、低温脆化温度、引張破断伸びが十分ではなく、また
25重量%を超える場合にはポリプロピレンパウダーは
べとつき易いので、重合後の後処理、フィラーとの混
合、ペレット化の工程で問題を生じ易い。The ethylene / propylene weight ratio value of the C2 copolymerization portion is 1.1 to 2 times the ethylene / propylene weight ratio value of the C1 copolymerization portion, and the ethylene / propylene weight ratio value of the C2 copolymerization portion is The value of the weight ratio of propylene is preferably 0.9 to 0.5 times the value of the weight ratio of ethylene / propylene in the C3 copolymerization part. When the ethylene / propylene weight ratio of the C1 copolymerization part is less than 0.5 or (C1 + C2 + C
When the ratio of C1 to 3) exceeds 60% by weight, the low temperature embrittlement temperature and the rigidity are not always sufficient,
When the ethylene / propylene weight ratio of the C3 copolymerized portion exceeds 3.0 or the ratio of C1 to (C1 + C2 + C3) is less than 30% by weight, tensile elongation at break and room temperature Izod impact strength are high. Not always enough. If the ethylene / propylene weight ratio of the C1 copolymerization portion exceeds 1.5 or if the ethylene / propylene weight ratio of the C3 copolymerization portion is less than 1.5, a one-stage polymerization of the copolymerization portion is carried out. There is no advantage compared to. When the ethylene / propylene weight ratio of the C2 copolymerized portion is less than 0.9, it is difficult to stably polymerize C3, resulting in poor low temperature impact strength, and the C2 copolymerized portion. In order for the ethylene / propylene weight ratio of above to exceed 2.0, it is necessary to blow a large amount of ethylene after polymerizing C1, and as a result, the ethylene component increases and the ultra high molecular weight that cannot be sufficiently dispersed during pelletization. In some cases, the copolymer (1) is by-produced and the tensile elongation at break is inferior. Copolymerization part (C1
+ C2 + C3) preferably accounts for 15 to 25% by weight in the ethylene-propylene block copolymer (A), and if less than 15% by weight, low temperature Izod impact strength, low temperature embrittlement temperature, tensile elongation at break. Is not sufficient, and when it exceeds 25% by weight, the polypropylene powder is apt to become sticky, so that problems are likely to occur in the steps of post-treatment after polymerization, mixing with filler, and pelletization.
【0011】本発明のポリプロピレン樹脂組成物で用い
るエチレン−プロピレンブロック共重合体(A)のホモ
部の平均[η]については、フィラーを添加し、ペレッ
ト化した場合にMIが15g/10min以上、好まし
くは20g/10min以上、より好ましくは25g/
10min以上、最も好ましくは30g/10min以
上となる様に選択する。15g/10min未満のもの
では、流動性が不十分で薄肉化に適さない。また、その
上限は、特に特定されるものではないが、射出成形時の
バリ等の問題から40g/10min以下が好ましい。
また、ホモ部の立体規則性については、[mmmm]が
97%以上であるものが剛性に優れている。Regarding the average [η] of the homo part of the ethylene-propylene block copolymer (A) used in the polypropylene resin composition of the present invention, when a filler is added and pelletized, MI is 15 g / 10 min or more, Preferably 20 g / 10 min or more, more preferably 25 g /
It is selected to be 10 min or more, and most preferably 30 g / 10 min or more. If it is less than 15 g / 10 min, the fluidity is insufficient and it is not suitable for thinning. Further, the upper limit thereof is not particularly specified, but is preferably 40 g / 10 min or less in view of problems such as burrs during injection molding.
Regarding the stereoregularity of the homo portion, those having [mmmm] of 97% or more have excellent rigidity.
【0012】本発明のポリプロピレン樹脂組成物に用い
るエチレン−プロピレンブロック共重合体(A)として
は、通常のスラリー重合法、塊状重合法、気相重合法の
何れの重合方法で得られたものであっても使用できる
が、特にスラリー重合法で重合すると剛性、耐熱性と常
温アイゾット衝撃強さ、低温脆化温度のバランスを低下
させるアタクチックポリプロピレン、低分子量のアイソ
タクチックポリプロピレン、低分子量の共重合部が溶媒
により除去されるので最も優れたエチレン−プロピレン
ブロック共重合体が得られので好ましい。本発明のポリ
プロピレン樹脂組成物はエチレン−プロピレンブロック
共重合体(A)を95〜85重量%含む。エチレン−プ
ロピレンブロック共重合体(A)の含有量は一緒に用い
る無機充填剤の必要量によって決定されるものであり、
その限定理由は後記の通りである。The ethylene-propylene block copolymer (A) used in the polypropylene resin composition of the present invention is obtained by any of ordinary slurry polymerization method, bulk polymerization method and gas phase polymerization method. It can be used even if it exists, but especially when polymerized by the slurry polymerization method, atactic polypropylene, a low molecular weight isotactic polypropylene, and a low molecular weight copolymer that reduce the balance of rigidity, heat resistance and room temperature Izod impact strength, low temperature embrittlement temperature Since the polymerized part is removed by the solvent, the most excellent ethylene-propylene block copolymer is obtained, which is preferable. The polypropylene resin composition of the present invention contains 95 to 85% by weight of the ethylene-propylene block copolymer (A). The content of the ethylene-propylene block copolymer (A) is determined by the required amount of the inorganic filler used together,
The reason for the limitation is as described below.
【0013】本発明のポリプロピレン樹脂組成物で用い
る無機充填剤は、平均粒径が1〜4μm、好ましくは1
〜3μm、より好ましくは1.5〜2.5μm、最も好ま
しくは1.8〜2.3μmの範囲のものであり、そのよう
な無機充填剤としてタルク、炭酸カルシウム、カーボン
ブラック、シリカ、クレー、チタン酸カリウム、炭酸マ
グネシウム等が用いられ、好ましくはタルクが用いられ
る。平均粒径が1μm未満の無機充填剤は剛性を低下さ
せるので好ましくない。また、平均粒径が4μmを超え
る無機充填剤を用いるとアイゾット衝撃強さ、低温脆化
温度、引張破断伸びに劣ったものとなるので好ましくな
い。また、無機充填剤の全部又は一部として成形収縮率
の異方性が著しく問題に成らない範囲で硫酸マグネシウ
ムウイスカ、チタン酸カリウムウイスカ等の繊維状のフ
ィラーを用いる事も可能である。無機充填剤は5〜15
重量%、好ましくは7〜13重量%、更に好ましくは8
〜12重量%、最も好ましくは9〜12重量%の添加量
で用いられる。添加量が5重量%未満の場合には、肉薄
化した場合、剛性が不足する。一方、15重量%を超え
る場合には、従来の自動車用内装材に比べて軽量化の効
果が無く、またフローマーク、ウエルドラインの目立ち
が生じ易い。The inorganic filler used in the polypropylene resin composition of the present invention has an average particle size of 1 to 4 μm, preferably 1
˜3 μm, more preferably 1.5 to 2.5 μm, most preferably 1.8 to 2.3 μm, and such inorganic fillers include talc, calcium carbonate, carbon black, silica, clay, Potassium titanate, magnesium carbonate and the like are used, and talc is preferably used. An inorganic filler having an average particle size of less than 1 μm is not preferable because it lowers the rigidity. Further, it is not preferable to use an inorganic filler having an average particle size of more than 4 μm, because it is inferior in Izod impact strength, low temperature embrittlement temperature, and tensile elongation at break. It is also possible to use fibrous fillers such as magnesium sulfate whiskers and potassium titanate whiskers as the inorganic fillers in whole or in part as long as the anisotropy of the molding shrinkage is not a serious problem. 5 to 15 for inorganic filler
% By weight, preferably 7 to 13% by weight, more preferably 8
~ 12 wt%, most preferably 9-12 wt%. If the amount added is less than 5% by weight, the rigidity becomes insufficient when the wall is thinned. On the other hand, when it exceeds 15% by weight, the effect of weight reduction is not obtained as compared with the conventional automobile interior material, and the flow marks and weld lines are apt to stand out.
【0014】本発明のポリプロピレン樹脂組成物は上記
の組成を有するものであるが、その中でその曲げ弾性率
が2300MPaを超え、好ましくは2300MPaを
超え、3000MPa以下、より好ましくは2350〜
2800MPa、最も好ましくは2400〜2700M
Paであるものを選択し、本発明の対象とする。本発明
のポリプロピレン樹脂組成物は、自動車内装材に供せら
れるので、曲げ弾性率が2300MPa以下では指で押
して凹む等の不具合を生じ易く、商品価値が低減する。The polypropylene resin composition of the present invention has the above-mentioned composition, in which the flexural modulus thereof exceeds 2300 MPa, preferably exceeds 2300 MPa and 3000 MPa or less, more preferably 2350 to.
2800 MPa, most preferably 2400-2700 M
Those having Pa are selected to be the subject of the present invention. Since the polypropylene resin composition of the present invention is used for automobile interior materials, when the bending elastic modulus is 2300 MPa or less, problems such as depression by pushing with a finger are likely to occur, and the commercial value is reduced.
【0015】さらに、本発明のポリプロピレン樹脂組成
物は、曲げ弾性率(FM)(単位:MPa)と低温脆化
温度(LB)(単位:℃)とが、 FM>8.4×LB+2300、及び LB<30 の関係を有する組成物であることが必要である。上式右
辺の値が曲げ弾性率(FM)を上回る値を与えるような
高い低温脆化温度のポリプロピレン樹脂組成物では、曲
げ弾性率と低温脆化温度とのバランスが悪く、低温状態
での組立作業等で部品が破損する恐れがある。また、低
温脆化温度が30℃以上であると、製品が脆くなり、自
動車内装材として使用できなくなる。Further, the polypropylene resin composition of the present invention has a flexural modulus (FM) (unit: MPa) and a low temperature embrittlement temperature (LB) (unit: ° C) of FM> 8.4 × LB + 2300, and It is necessary that the composition has a relationship of LB <30. In a polypropylene resin composition having a high low-temperature brittleness temperature such that the value on the right side of the above equation exceeds the flexural modulus (FM), the flexural modulus and the low-temperature brittleness temperature are not well balanced, and the assembly in a low temperature state is difficult. Parts may be damaged during work. If the low temperature embrittlement temperature is 30 ° C. or higher, the product becomes brittle and cannot be used as an automobile interior material.
【0016】本発明においては前記エチレン−プロピレ
ンブロック共重合体(A)以外にも物性を著しく低下さ
せない範囲でその他の樹脂を配合してもよい。このよう
な樹脂としてはエチレン−プロピレン共重合体エラスト
マー(EPR)、エチレン−プロピレン−ジエン共重合
体エラストマー(EPDM)、エチレン−ブテン−1共
重合体エラストマー(EBM)、超低密度ポリエチレ
ン、スチレン−ブタジエンブロック共重合体エラストマ
ー、スチレン−ブタジエンランダム共重合体エラストマ
ー、スチレン−イソプレンブロック共重合体エラストマ
ー等を例示することができる。In the present invention, in addition to the ethylene-propylene block copolymer (A), other resins may be blended as long as the physical properties are not significantly deteriorated. Examples of such resins include ethylene-propylene copolymer elastomer (EPR), ethylene-propylene-diene copolymer elastomer (EPDM), ethylene-butene-1 copolymer elastomer (EBM), ultra-low density polyethylene, styrene- Examples thereof include a butadiene block copolymer elastomer, a styrene-butadiene random copolymer elastomer, and a styrene-isoprene block copolymer elastomer.
【0017】本発明のポリプロピレン樹脂組成物は、従
来の自動車用内装材に使用されていた耐候性改良剤、耐
熱性改良剤、分散剤、顔料等をそのまま利用することが
できる。本発明のポリプロピレン樹脂組成物について
は、ポリプロピレン、無機充填剤及び各種添加剤をリボ
ンブレンダー、ヘンシェルミキサー等により混合した
後、バンバリーミキサー、熱ロール、押出機、コニーダ
ー等の装置で溶融混練しペレット状にした後、射出成形
する従来の製造方法が利用可能である。In the polypropylene resin composition of the present invention, the weather resistance improver, heat resistance improver, dispersant, pigment and the like which have been used in conventional interior materials for automobiles can be used as they are. Regarding the polypropylene resin composition of the present invention, polypropylene, an inorganic filler and various additives are mixed by a ribbon blender, a Henschel mixer, and the like, and then melt-kneaded and pelletized by a device such as a Banbury mixer, a heat roll, an extruder, and a kneader. After that, the conventional manufacturing method of injection molding is available.
【0018】本発明のポリプロピレン樹脂組成物は自動
車内装材として用いられる。自動車内装材とは例えば、
フロントピラー、センタピラー、リアピラー、ドアトリ
ム、アームレスト、コンソールボックス等が挙げられ
る。このような内装材は通常射出成形により、通常の条
件で成形することができる。これらの自動車部品は、組
み立て時等の衝撃、自動車使用時の衝撃に対応する為に
低温脆化温度以外にもアイゾット衝撃強さ、引張破断伸
びに優れたものが好ましい。例えば23℃でのアイゾッ
ト衝撃強さが4kg/cm2以上、更に好ましくは5kg/cm2、
最も好ましくは6kg/cm2以上であり、引張破断伸びは3
0%以上、より好ましくは100%以上、最も好ましく
は300%以上である。The polypropylene resin composition of the present invention is used as an automobile interior material. What is an automobile interior material?
Examples include front pillars, center pillars, rear pillars, door trims, armrests, and console boxes. Such an interior material can be molded by usual injection molding under normal conditions. It is preferable that these automobile parts are excellent in Izod impact strength and tensile elongation at break in addition to the low temperature embrittlement temperature in order to cope with impact during assembly and the like during use in automobiles. For example, the Izod impact strength at 23 ° C is 4 kg / cm 2 or more, more preferably 5 kg / cm 2 ,
Most preferably, it is 6 kg / cm 2 or more, and the tensile elongation at break is 3
It is 0% or more, more preferably 100% or more, and most preferably 300% or more.
【0019】[0019]
【実施例】以下に製造例、実施例により本発明を詳細に
説明する。 エチレン−プロピレンブロック共重合体の製造例 容積250リットルのSUS製オートクレーブに窒素気
流中でヘプタン100リットルを装入し、プロピレンで
重合系内を置換した。一方、別のガラス容器にヘプタ
ン、塩化マグネシウムにフタル酸ジエチルを添加粉砕し
て得た粉砕物を四塩化チタンで熱処理した後洗浄して得
た担持触媒成分、トリエチルアルミニウム、シクロヘキ
シルメチルジメトキシシランよりなる触媒を準備し、こ
れをオートクレーブに装入し、温度75℃、圧力5kg
/cm2(ゲージ圧)の条件で4時間重合を行った。そ
の間、水素分圧を調節して生成ポリプロピレンの[η]
が約1になるようにした。このようにしてプロピレンホ
モ重合部を得た。次いでオートクレーブ内を真空ポンプ
で減圧にして残存するプロピレンと水素を除去し、重合
温度50℃、重合圧力1.8kg/cm2(ゲージ圧)の
条件で、共重合部での生成共重合体のエチレン(EL)
/プロピレン(PL)の重量比が1.5で[η]が約9
になるように気相のEL、PL及び水素の分圧を調節し
て2時間重合を行った。なお、共重合部での生成ポリマ
ーの割合が全ポリマーに対して約18重量%になること
を目標に重合を行って表1に示すエチレン−プロピレン
ブロック共重合体PP−1を得た。EXAMPLES The present invention will be described in detail below with reference to production examples and examples. Production Example of Ethylene-Propylene Block Copolymer 100 liters of heptane was charged in a 250 liters volume autoclave made of SUS in a nitrogen stream, and the inside of the polymerization system was replaced with propylene. On the other hand, it consists of a supported catalyst component, triethylaluminum, and cyclohexylmethyldimethoxysilane, which was obtained by adding heptanes to another glass container, adding diethyl phthalate to magnesium chloride, and pulverizing the pulverized product, which was heat-treated with titanium tetrachloride and then washed. Prepare a catalyst, charge it in an autoclave, and set the temperature to 75 ℃ and the pressure to 5kg.
Polymerization was carried out for 4 hours under the condition of / cm 2 (gauge pressure). During that time, the hydrogen partial pressure is adjusted to adjust the [η] of the produced polypropylene.
Was set to about 1. In this way, a propylene homopolymer part was obtained. Then, the inside of the autoclave was decompressed with a vacuum pump to remove the residual propylene and hydrogen, and under the conditions of a polymerization temperature of 50 ° C. and a polymerization pressure of 1.8 kg / cm 2 (gauge pressure), the copolymer produced in the copolymerization section Ethylene (EL)
/ Propylene (PL) weight ratio is 1.5 and [η] is about 9
The partial pressures of EL, PL, and hydrogen in the gas phase were adjusted so that the reaction was carried out, and the polymerization was carried out for 2 hours. The ethylene-propylene block copolymer PP-1 shown in Table 1 was obtained by carrying out the polymerization so that the ratio of the produced polymer in the copolymerization portion to the total polymer was about 18% by weight.
【0020】上記の重合方法において、プロピレンホモ
重合部を生成させる際の水素濃度、プロピレン−エチレ
ン共重合部を生成させる際のEL/PLの重量比及び水
素濃度を変化させて重合を行うことによって表1に示す
エチレン−プロピレンブロック共重合体PP−2〜PP
−6、PP−9及びPP−10を得た。上記の重合方法
において、プロピレン−エチレン共重合部を生成させる
際の重合をに三段重合とし、EL/PLの重量比を後段
ほど高くして表1に示すエチレン−プロピレンブロック
共重合体PP−7、PP−8及びPP−11を得た。In the above-mentioned polymerization method, the polymerization is carried out by changing the hydrogen concentration when forming the propylene homopolymerization part, the EL / PL weight ratio when forming the propylene-ethylene copolymerization part and the hydrogen concentration. Ethylene-propylene block copolymers PP-2 to PP shown in Table 1
-6, PP-9 and PP-10 were obtained. In the above-mentioned polymerization method, the polymerization at the time of producing the propylene-ethylene copolymerization part is three-stage polymerization, and the weight ratio of EL / PL is increased in the latter part so that the ethylene-propylene block copolymer PP- shown in Table 1 is obtained. 7, PP-8 and PP-11 were obtained.
【0021】上記の諸方法によって得たエチレン−プロ
ピレンブロック共重合体PP−1〜PP−11の組成、
特性値を表1に纏める。これらのエチレン−プロピレン
ブロック共重合体は以下の実施例及び比較例で用いた。
尚、以下の表1、表2及び表3に記載のポリプロピレン
のホモ部の[η]、共重合部の平均[η]、第一段重合
生成物C1の共重合部の[η1]、第二段重合生成物C
2の共重合部の[η2]、第三段重合生成物C3の共重
合部の[η3]は、それぞれホモ部重合が終了した時点
で重合物を採取して測定した極限粘度、C1成分の重合
が終了した時点で重合物を採取して測定した極限粘度、
C2成分の重合が終了した時点で重合物を採取して測定
した極限粘度、C3成分の重合が終了した時点で重合物
を採取して測定した極限粘度から求め、ホモ部[mmm
m]は13C−NMRによって測定し、MIはASTM
D−1238法(荷重2.16kg)により測定し、曲
げ弾性率はASTM D−790( 曲げ速度2mm/m
in)法により測定し、アイゾット衝撃強さは23℃と
−30℃におけるアイゾット衝撃強さをASTM D−
256法(切削ノッチ付き)により測定し、引張破断伸
びはASTM D−638( 引張速度10mm/mi
n) により測定し、低温脆化温度はASTM D−74
6法により測定した。また、無機充填剤の平均粒径はレ
ーザー回折式粒度分布測定方法(測定装置:島津製作所
社製SALD−2000A)によって測定した。なお、
共重合部のEL/PLの重量比について、第一段重合生
成物C1の重量比をE/P1、第二段重合生成物C2の
重量比をE/P2、第三段重合生成物C3の重量比をE
/P3と記載した。共重合部量の合計量FrTo、共重
合部[η]の平均値である平均[η]、及び共重合部の
EL/PLの重量比の平均値E/PAvは下記の計算式
によって求めたものである: FrTo=C1+C2+C3、 平均[η]=(C1×[η1]+C2×[η2]+C3×[η3])/(C
1+C2+C3) 、 E/PAv=(C1×E/P1+C2×E/P2+C3×E/P3)/(C
1+C2+C3) 。Compositions of ethylene-propylene block copolymers PP-1 to PP-11 obtained by the above-mentioned methods,
The characteristic values are summarized in Table 1. These ethylene-propylene block copolymers were used in the following examples and comparative examples.
In addition, in the following Table 1, Table 2 and Table 3, the homo-part [η] of the polypropylene, the average [η] of the copolymerization part, the [η1] of the copolymerization part of the first-stage polymerization product C1, the Two-stage polymerization product C
[Η2] of the copolymerization part of No. 2 and [η3] of the copolymerization part of the third stage polymerization product C3 are the intrinsic viscosities measured by sampling the polymer at the time when the homopolymerization is completed, Intrinsic viscosity measured by sampling the polymer at the end of the polymerization,
Obtained from the intrinsic viscosity measured by collecting the polymer at the time when the polymerization of the C2 component was completed and the intrinsic viscosity measured by collecting the polymer at the time when the polymerization of the C3 component was completed, the homo-part [mmm
m] is measured by 13 C-NMR, MI is ASTM
The flexural modulus was measured by the D-1238 method (load 2.16 kg), and the flexural modulus was determined by ASTM D-790 (bending speed 2 mm / m.
in) method, and the Izod impact strength at 23 ° C and -30 ° C is measured according to ASTM D-
The tensile breaking elongation is measured according to the ASTM method D-638 (tensile speed 10 mm / mi).
n), the low temperature embrittlement temperature is ASTM D-74.
It was measured by method 6. The average particle size of the inorganic filler was measured by a laser diffraction particle size distribution measuring method (measuring device: Shimadzu SALD-2000A). In addition,
Regarding the EL / PL weight ratio of the copolymerization part, the weight ratio of the first-stage polymerization product C1 is E / P1, the weight ratio of the second-stage polymerization product C2 is E / P2, and the third-stage polymerization product C3 is E weight ratio
It was described as / P3. The total amount FrTo of the amount of the copolymerized portion, the average [η] that is the average value of the copolymerized portion [η], and the average value E / PAv of the weight ratio of EL / PL of the copolymerized portion were calculated by the following formulas. What is: FrTo = C1 + C2 + C3, average [η] = (C1 × [η1] + C2 × [η2] + C3 × [η3]) / (C
1 + C2 + C3), E / PAv = (C1 × E / P1 + C2 × E / P2 + C3 × E / P3) / (C
1 + C2 + C3).
【0022】実施例1〜3 スラリー重合方法によって得たエチレン−プロピレンブ
ロック共重合体PP−1〜PP−3の何れか92重量
部、タルク“LMS300”(富士タルク(株)製、平
均粒径2μm、以下タルク1と略称する)8重量部、熱
安定剤として“アイオノール”0.05重量部、「イル
ガノックス1010」0.1重量部、分散材としてステ
アリン酸カルシウム0.1重量部をヘンシェルミキサー
で混合した後、36mmニーデングデスク付二軸押出機
にて220℃、15kg/hr の押出条件で押出してペレッ
トを得、型締圧100トンの射出成形機にて物性測定用
の試験片を得て物性を測定した。表2に、エチレン−プ
ロピレンブロック共重合体とタルクとの配合比、生成樹
脂組成物のMI、曲げ弾性率、23℃アイゾット衝撃強
さ、−30℃アイゾット衝撃強さ、引張破断伸び、低温
脆化温度、比重を示す。Examples 1 to 92 92 parts by weight of any of ethylene-propylene block copolymers PP-1 to PP-3 obtained by the slurry polymerization method, talc "LMS300" (manufactured by Fuji Talc Co., Ltd., average particle size) 8 parts by weight of 2 μm, abbreviated as talc 1 hereinafter), 0.05 parts by weight of “Ionol” as a heat stabilizer, 0.1 parts by weight of “Irganox 1010”, and 0.1 parts by weight of calcium stearate as a dispersant, a Henschel mixer. After mixing with, a 36 mm twinning extruder with a kneading desk was used to extrude pellets under the extrusion conditions of 220 ° C and 15 kg / hr to obtain pellets, and a test piece for measuring physical properties was measured using an injection molding machine with a mold clamping pressure of 100 tons. Then, the physical properties were measured. In Table 2, the mixing ratio of the ethylene-propylene block copolymer and talc, the MI of the resulting resin composition, the flexural modulus, the 23 ° C Izod impact strength, the -30 ° C Izod impact strength, the tensile elongation at break, and the low temperature brittleness. The temperature and specific gravity are shown.
【0023】比較例1、2 共重合部の平均[η]がそれぞれ15、4のエチレン−
プロピレンブロック共重合体PP−4、PP−5を使用
した以外は実施例1と同様にしてペレット化し成形し、
物性測定用の試験片を得て物性を測定した。表2にエチ
レン−プロピレンブロック共重合体とタルクとの配合
比、生成樹脂組成物のMI、曲げ弾性率、23℃アイゾ
ット衝撃強さ、−30℃アイゾット衝撃強さ、引張破断
伸び、低温脆化温度、比重を示す。共重合部の[η]が
15のエチレン−プロピレンブロック共重合体PP−4
を使用して得た樹脂組成物は引張破断伸び、23℃アイ
ゾット衝撃強さに劣り、共重合部の[η]が4のエチレ
ン−プロピレンブロック共重合体PP−5を使用して得
た樹脂組成物は引張破断伸び、23℃アイゾット衝撃強
さ、−30℃アイゾット衝撃強さ、低温脆化温度に劣っ
ていた。Comparative Examples 1 and 2 Ethylene-containing copolymers having an average [η] of 15 and 4 respectively
Pelletizing and molding in the same manner as in Example 1 except that the propylene block copolymers PP-4 and PP-5 were used,
A test piece for measuring physical properties was obtained and the physical properties were measured. Table 2 shows the mixing ratio of ethylene-propylene block copolymer and talc, MI of the resin composition, flexural modulus, 23 ° C Izod impact strength, -30 ° C Izod impact strength, tensile elongation at break, low temperature embrittlement. Indicates temperature and specific gravity. Ethylene-propylene block copolymer PP-4 having [η] of 15 in the copolymerization part
The resin composition obtained by using the above is inferior in tensile elongation at break and 23 ° C. Izod impact strength, and a resin obtained by using the ethylene-propylene block copolymer PP-5 having [η] of 4 in the copolymerization part. The composition was inferior in tensile elongation at break, 23 ° C. Izod impact strength, −30 ° C. Izod impact strength and low temperature embrittlement temperature.
【0024】比較例3 MIが本発明の範囲外となる例として、ホモ部の[η]
が高くて立体規則性が通常のポリプロピレンとほぼ等し
いエチレン−プロピレンブロック共重合体PP−6を使
用した以外は実施例1と同様にしてペレット化し成形
し、物性測定用の試験片を得て物性を測定した。表2に
エチレン−プロピレンブロック共重合体とタルクとの配
合比、生成樹脂組成物のMI、曲げ弾性率、23℃アイ
ゾット衝撃強さ、−30℃アイゾット衝撃強さ、引張破
断伸び、低温脆化温度、比重を示す。ホモ部の立体規則
性が低く、曲げ弾性率が低かった。また、低温脆化温
度、−30℃アイゾット衝撃強さ等も低かった。更にM
Iが低く、成形時にフローマークを生じた。Comparative Example 3 As an example in which MI is out of the range of the present invention, [η] in the homo region is
And the stereoregularity is almost the same as that of ordinary polypropylene, except that the ethylene-propylene block copolymer PP-6 was used, pelletized and molded in the same manner as in Example 1, and a test piece for measuring physical properties was obtained. Was measured. Table 2 shows the mixing ratio of ethylene-propylene block copolymer and talc, MI of the resin composition, flexural modulus, 23 ° C Izod impact strength, -30 ° C Izod impact strength, tensile elongation at break, low temperature embrittlement. Indicates temperature and specific gravity. The homoregularity of the homo region was low and the flexural modulus was low. Further, the low temperature embrittlement temperature and the -30 ° C Izod impact strength were also low. Furthermore M
I was low, and flow marks were generated during molding.
【0025】比較例4 平均粒径が9μmのタルク”80R”(浅田製粉製)
(以下タルク2と略称する)をタルクとして用いた以外
は実施例1と同様にしてペレット化し成形し、物性測定
用の試験片を得て物性を測定した。表2にエチレン−プ
ロピレンブロック共重合体とタルクとの配合比、生成樹
脂組成物のMI、曲げ弾性率、23℃アイゾット衝撃強
さ、−30℃アイゾット衝撃強さ、引張破断伸び、低温
脆化温度、比重を示す。実施例1の樹脂組成物と比べて
引張破断伸び、23℃アイゾット衝撃強さ、−30℃ア
イゾット衝撃強さ、低温脆化温度に劣っていた。Comparative Example 4 Talc “80R” (made by Asada Flour Milling) having an average particle size of 9 μm
Pellets were molded in the same manner as in Example 1 except that talc (hereinafter abbreviated as talc 2) was used, and a test piece for measuring physical properties was obtained to measure physical properties. Table 2 shows the mixing ratio of ethylene-propylene block copolymer and talc, MI of the resin composition, flexural modulus, 23 ° C Izod impact strength, -30 ° C Izod impact strength, tensile elongation at break, low temperature embrittlement. Indicates temperature and specific gravity. It was inferior to the resin composition of Example 1 in tensile elongation at break, 23 ° C. Izod impact strength, −30 ° C. Izod impact strength and low temperature embrittlement temperature.
【0026】比較例5 平均粒径が1.5μmのタルク”FFR”(浅田製粉
製)より分級機により平均粒径が0.7μmのタルク
(以下タルク3と略称する)を採取して用いた以外は実
施例1と同様にしてペレット化し成形し、物性測定用の
試験片を得て物性を測定した。表2にエチレン−プロピ
レンブロック共重合体とタルクとの配合比、生成樹脂組
成物のMI、曲げ弾性率、23℃アイゾット衝撃強さ、
−30℃アイゾット衝撃強さ、引張破断伸び、低温脆化
温度、比重を示す。実施例1の樹脂組成物と比べ曲げ弾
性率に劣っていた。Comparative Example 5 Talc having an average particle size of 0.7 μm (hereinafter abbreviated as talc 3) was sampled from a talc “FFR” (made by Asada Flour Milling) having an average particle size of 1.5 μm and used. Other than the above, pelletization and molding were performed in the same manner as in Example 1 to obtain a test piece for measuring physical properties, and physical properties were measured. Table 2 shows the blending ratio of the ethylene-propylene block copolymer and talc, the MI of the resulting resin composition, the flexural modulus, the 23 ° C. Izod impact strength,
-30 ° C Izod impact strength, tensile elongation at break, low temperature embrittlement temperature, and specific gravity are shown. The flexural modulus was inferior to that of the resin composition of Example 1.
【0027】実施例4、5 エチレン/プロピレンの比を変えて共重合部が3成分に
なる様に重合して得たエチレン−プロピレンブロック共
重合体PP−7、PP−8を90重量部使用し、タルク
として平均粒径が2.2μmのタルク”SKC2”
((株)勝光山製)(以下タルク4と略称する)を10
重量部使用した以外は実施例1と同様にしてペレット化
し成形し、物性測定用の試験片を得て物性を測定した。
表3にエチレン−プロピレンブロック共重合体とタルク
との配合比、生成樹脂組成物のMI、曲げ弾性率、23
℃アイゾット衝撃強さ、−30℃アイゾット衝撃強さ、
引張破断伸び、低温脆化温度、比重を示す。共重合部を
一段重合した得たPP−1等を使用した樹脂組成物より
曲げ弾性率と衝撃強さとのバランスの更に優れた樹脂組
成物が得られた。Examples 4 and 5 90 parts by weight of ethylene-propylene block copolymers PP-7 and PP-8 obtained by polymerizing so that the copolymerization part has 3 components by changing the ethylene / propylene ratio. Talc "SKC2" with an average particle size of 2.2 μm
(Made by Shokoyama Co., Ltd.) (hereinafter abbreviated as talc 4) is 10
Pelletization and molding were carried out in the same manner as in Example 1 except that parts by weight were used, and test pieces for measuring physical properties were obtained and the physical properties were measured.
In Table 3, the compounding ratio of the ethylene-propylene block copolymer and talc, MI of the produced resin composition, flexural modulus, 23
℃ Izod impact strength, -30 ℃ Izod impact strength,
It shows tensile elongation at break, low temperature embrittlement temperature, and specific gravity. A resin composition having a better balance of flexural modulus and impact strength than the resin composition using PP-1 or the like obtained by one-step polymerization of the copolymerized portion was obtained.
【0028】実施例6 共重合部のエチレン/プロピレンの重量比が異なるエチ
レン−プロピレンブロック共重合体PP−9、PP−1
0をそれぞれ45重量部づつブレンドして使用した以外
は実施例4と同様にしてペレット化し成形し、物性測定
用の試験片を得て物性を測定した。表3にエチレン−プ
ロピレンブロック共重合体とタルクとの配合比、生成樹
脂組成物のMI、曲げ弾性率、23℃アイゾット衝撃強
さ、−30℃アイゾット衝撃強さ、引張破断伸び、低温
脆化温度、比重を示す。Example 6 Ethylene-propylene block copolymers PP-9 and PP-1 having different ethylene / propylene weight ratios in the copolymerization part
Pelletization and molding were carried out in the same manner as in Example 4 except that 45 parts by weight of each of 0 was blended and used, and a test piece for measuring physical properties was obtained to measure physical properties. Table 3 shows the mixing ratio of the ethylene-propylene block copolymer and talc, MI of the resulting resin composition, flexural modulus, 23 ° C. Izod impact strength, −30 ° C. Izod impact strength, tensile elongation at break, low temperature embrittlement. Indicates temperature and specific gravity.
【0029】実施例7 エチレン−プロピレンブロック共重合体PP−11を用
いた以外は、実施例4と同様にしてペレット化し成形
し、物性測定用の試験片を得て物性を測定した。表3に
エチレン−プロピレンブロック共重合体とタルクとの配
合比、生成樹脂組成物のMI、曲げ弾性率、23℃アイ
ゾット衝撃強さ、−30℃アイゾット衝撃強さ、引張破
断伸び、低温脆化温度、比重を示す。Example 7 Pelletization and molding were carried out in the same manner as in Example 4 except that the ethylene-propylene block copolymer PP-11 was used, and a test piece for measuring physical properties was obtained to measure physical properties. Table 3 shows the mixing ratio of the ethylene-propylene block copolymer and talc, MI of the resulting resin composition, flexural modulus, 23 ° C. Izod impact strength, −30 ° C. Izod impact strength, tensile elongation at break, low temperature embrittlement. Indicates temperature and specific gravity.
【0030】実施例8 ベースPPとしてPP−8を87重量部、EPRとして
「EP07P」(日本合成ゴム(株)製 ムーニー粘度
70、エチレン量73重量%)を用いた以外は実施例4
と同様にしてペレット化し成形し、物性測定用の試験片
を得て物性を測定した。表3にエチレン−プロピレンブ
ロック共重合体とタルクとの配合比、生成樹脂組成物の
MI、曲げ弾性率、23℃アイゾット衝撃強さ、−30
℃アイゾット衝撃強さ、引張破断伸び、低温脆化温度、
比重を示す。実施例4の樹脂組成物と比べて、曲げ弾性
率は低下したがアイゾット衝撃強さ、低温脆化温度が改
良された。また、自動車のリアピラー(1.5、2.0、
3.0mmのリブ付き)を成形したが問題無かった。Example 8 Example 4 except that 87 parts by weight of PP-8 was used as the base PP and "EP07P" (manufactured by Nippon Synthetic Rubber Co., Ltd., Mooney viscosity 70, ethylene amount 73% by weight) was used as the EPR.
Pelletizing and molding were performed in the same manner as in 1. to obtain a test piece for measuring physical properties, and the physical properties were measured. Table 3 shows the compounding ratio of the ethylene-propylene block copolymer and talc, MI of the resin composition produced, flexural modulus, 23 ° C. Izod impact strength, -30.
℃ Izod impact strength, tensile elongation at break, low temperature embrittlement temperature,
Indicates specific gravity. Compared with the resin composition of Example 4, the flexural modulus was reduced, but the Izod impact strength and low temperature embrittlement temperature were improved. Also, the rear pillars (1.5, 2.0,
A 3.0 mm rib was molded, but there was no problem.
【0031】比較例7 PP−8を97重量部使用し、タルクを加えない以外は
実施例8と同様にしてペレット化し成形し、物性測定用
の試験片を得て物性を測定した。表3にエチレン−プロ
ピレンブロック共重合体とタルクとの配合比、生成樹脂
組成物のMI、曲げ弾性率、23℃アイゾット衝撃強
さ、−30℃アイゾット衝撃強さ、引張破断伸び、低温
脆化温度、比重を示す。実施例8と同様にリアピラーを
成形したが曲げ弾性率が低い為に柔らか過ぎ、指で押す
と凹んだ。Comparative Example 7 PP-8 was used in an amount of 97 parts by weight and pelletized and molded in the same manner as in Example 8 except that talc was not added, and a test piece for measuring physical properties was obtained to measure physical properties. Table 3 shows the mixing ratio of the ethylene-propylene block copolymer and talc, MI of the resulting resin composition, flexural modulus, 23 ° C. Izod impact strength, −30 ° C. Izod impact strength, tensile elongation at break, low temperature embrittlement. Indicates temperature and specific gravity. A rear pillar was molded in the same manner as in Example 8, but it was too soft because of its low flexural modulus and dented when pressed with a finger.
【0032】比較例8 PP−8を57重量部使用し、タルクを40重量部使用
した以外は実施例8と同様にしてペレット化し成形し、
物性測定用の試験片を得て物性を測定した。表3にエチ
レン−プロピレンブロック共重合体とタルクとの配合
比、生成樹脂組成物のMI、曲げ弾性率、23℃アイゾ
ット衝撃強さ、−30℃アイゾット衝撃強さ、引張破断
伸び、低温脆化温度、比重を示す。実施例8の樹脂組成
物と比べてMIが低くアイゾット衝撃強、低温脆化温
度、引張破断伸びに劣っていた。また実施例8と同様に
リアピラーを成形したが流動性が悪く、厚みが1.5m
mのリブに充填不足が見られた。また、成形品表面にフ
ローマーク、ウエルドラインが目立った。Comparative Example 8 Pelletization and molding were carried out in the same manner as in Example 8 except that 57 parts by weight of PP-8 and 40 parts by weight of talc were used.
A test piece for measuring physical properties was obtained and the physical properties were measured. Table 3 shows the mixing ratio of the ethylene-propylene block copolymer and talc, MI of the resulting resin composition, flexural modulus, 23 ° C. Izod impact strength, −30 ° C. Izod impact strength, tensile elongation at break, low temperature embrittlement. Indicates temperature and specific gravity. Compared with the resin composition of Example 8, MI was low and it was inferior in Izod impact strength, low temperature embrittlement temperature, and tensile elongation at break. A rear pillar was molded in the same manner as in Example 8, but the fluidity was poor and the thickness was 1.5 m.
Insufficient filling was observed in the rib of m. In addition, flow marks and weld lines were noticeable on the surface of the molded product.
【0033】[0033]
【表1】 [Table 1]
【0034】[0034]
【表2】 [Table 2]
【0035】[0035]
【表3】 [Table 3]
【0036】[0036]
【発明の効果】本発明のポリプロピレン樹脂組成物は、
フィラーで複合化された従来の自動車内装材に比べ曲げ
弾性率と低温脆化温度のバランスに優れるのでフィラー
量を減少又は肉薄化し、部品を軽量する材料として最適
である。また、本発明のポリプロピレン樹脂組成物は流
動性にも優れているので薄肉化された射出成形品の製造
が可能である。本発明のポリプロピレン樹脂組成物は自
動車内装材の中でもピラー類、ルーフサイド、ドアトリ
ム等の比較的高い剛性が求められる部品を製造するのに
最適である。本発明のポリプロピレン樹脂組成物を用い
て成形された自動車内装材はそのままで製品として自動
車に取りつける事が可能であるが、更に表面に艶消し塗
料等を塗布したり、本革、人工革、布等を接着材等を用
い張りつける事も可能である。また、ナイロン、ポリエ
ステル繊維を植毛する事も可能である。更に、本発明の
ポリプロピレン樹脂組成物は流動性に優れているので低
圧でのスタンピング成形が可能であり、その際、接着材
を使わずに表皮材と溶融状態で接着が可能である。The polypropylene resin composition of the present invention is
It has an excellent balance of flexural modulus and low temperature embrittlement temperature as compared with the conventional automobile interior materials compounded with fillers, and therefore it is optimal as a material for reducing the amount of filler or thinning it and making parts lighter. Further, since the polypropylene resin composition of the present invention has excellent fluidity, it is possible to manufacture a thin injection-molded product. The polypropylene resin composition of the present invention is most suitable for producing parts requiring relatively high rigidity such as pillars, roof side, door trim among automobile interior materials. An automobile interior material molded using the polypropylene resin composition of the present invention can be directly attached to an automobile as a product, but further coated with a matte coating on the surface, genuine leather, artificial leather, or cloth. It is also possible to attach them to each other using an adhesive or the like. In addition, it is also possible to flock nylon and polyester fibers. Further, since the polypropylene resin composition of the present invention has excellent fluidity, it is possible to perform stamping molding under low pressure, and at that time, it is possible to bond in a molten state with a skin material without using an adhesive material.
【0037】本発明のポリプロピレン樹脂組成物は主と
してポリプロピレンと無機充填剤からなりリサイクル使
用しても問題無く、成形不良品を粉砕し射出成形時に一
部バージン材に混ぜて使用する事も可能であり、色変え
等により生じた廃材を粉砕し、黒色等の色に着色し、自
動車内装材以外の部品に使用する事も可能であり、廃材
を他のポリプロピレン樹脂組成物と混合して使用する事
も可能である。The polypropylene resin composition of the present invention is mainly composed of polypropylene and an inorganic filler and can be recycled without any problem. It is also possible to crush a defective molding product and mix it with a virgin material at the time of injection molding. It is also possible to pulverize waste materials generated by color change, etc. and color them with black color etc., and use them for parts other than automobile interior materials. Use the waste materials by mixing with other polypropylene resin composition. Is also possible.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 青塚 和憲 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 野村 孝夫 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 西尾 武純 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazunori Aotsuka, Toyota City, Aichi Prefecture, Toyota Town, Toyota Motor Co., Ltd. (72) Inventor, Takao Nomura, Toyota City, Aichi Prefecture, Toyota City, Ltd. (72) 72) Inventor Takesumi Nishio 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Co., Ltd.
Claims (3)
度([η])の平均が7〜12g/dlであるエチレン
−プロピレンブロック共重合体(A)95〜85重量
%、及び平均粒径が1〜4μmである無機充填剤(B)
5〜15重量%からなるポリプロピレン樹脂組成物であ
って、該樹脂組成物のメルトインデックス(MI)が1
5〜40g/10minであり、曲げ弾性率(FM)が
2300〜3000MPaであり、低温脆化温度(L
B)が30℃未満であり、且つFMとLBとの関係が不
等式: FM>8.4×LB+2300 を満足する事を特徴とする自動車内装材用ポリプロピレ
ン樹脂組成物。1. An ethylene-propylene block copolymer (A) having an average intrinsic viscosity ([η]) of the ethylene-propylene copolymer part of 7 to 12 g / dl (A) of 95 to 85% by weight, and an average particle size of Inorganic filler (B) having a size of 1 to 4 μm
A polypropylene resin composition comprising 5 to 15% by weight, the melt index (MI) of the resin composition being 1
5 to 40 g / 10 min, flexural modulus (FM) of 2300 to 3000 MPa, low temperature embrittlement temperature (L
B) is less than 30 ° C., and the relation between FM and LB satisfies the inequality: FM> 8.4 × LB + 2300. A polypropylene resin composition for automobile interior materials, characterized in that:
(A)が三段で重合されたものであり、第一段重合生成
物(C1)の共重合部のエチレン/プロピレンの重量比
が0.5〜1.2であり、第二段重合生成物(C2)の共
重合部のエチレン/プロピレンの重量比が0.9〜2.0
であり、第三段重合生成物(C3)の共重合部のエチレ
ン/プロピレンの重量比が1.5〜3.0であり、C2+
C3の共重合部のエチレン/プロピレンの重量比が1.
3〜2.5であり、(C1+C2+C3)に対するC1
の比率が30〜60重量%であり、C2の比率が20〜
50重量%であり、且つC3の比率が20〜50重量%
であることを特徴とする請求項1記載の自動車内装材用
ポリプロピレン樹脂組成物。2. The ethylene-propylene block copolymer (A) is polymerized in three stages, and the ethylene / propylene weight ratio of the copolymerized portion of the first stage polymerization product (C1) is 0.5. To 1.2, and the ethylene / propylene weight ratio of the copolymerization part of the second-stage polymerization product (C2) is 0.9 to 2.0.
And the ethylene / propylene weight ratio of the copolymerization part of the third stage polymerization product (C3) is 1.5 to 3.0, and C2 +
The weight ratio of ethylene / propylene in the C3 copolymerization part is 1.
3 to 2.5, and C1 for (C1 + C2 + C3)
The ratio of C2 is 30-60% by weight, and the ratio of C2 is 20-
50% by weight, and the ratio of C3 is 20 to 50% by weight
The polypropylene resin composition for automobile interior materials according to claim 1, wherein
脂組成物を成形してなる自動車内装材。3. An automobile interior material formed by molding the polypropylene resin composition according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3737495A JPH0859953A (en) | 1994-02-25 | 1995-02-24 | Polypropylene resin composition for automobile interior materials |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6-27144 | 1994-02-25 | ||
JP2714494 | 1994-02-25 | ||
JP3737495A JPH0859953A (en) | 1994-02-25 | 1995-02-24 | Polypropylene resin composition for automobile interior materials |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0859953A true JPH0859953A (en) | 1996-03-05 |
Family
ID=26365039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3737495A Pending JPH0859953A (en) | 1994-02-25 | 1995-02-24 | Polypropylene resin composition for automobile interior materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0859953A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7368498B2 (en) | 2003-10-01 | 2008-05-06 | Sumitomo Chemical Company Limited | Polypropylene resin composition and injection-molded article made of the same |
-
1995
- 1995-02-24 JP JP3737495A patent/JPH0859953A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7368498B2 (en) | 2003-10-01 | 2008-05-06 | Sumitomo Chemical Company Limited | Polypropylene resin composition and injection-molded article made of the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7582696B2 (en) | Polypropylene-based resin composition and molded article thereof | |
US6384122B1 (en) | Thermoplastic resin composition and injection molded article thereof | |
JP5076966B2 (en) | Polypropylene resin composition and molded body | |
EP0739943B1 (en) | Thermoplastic resin composition and injection molded article thereof | |
US6759465B1 (en) | Thermoplastic resin composition and injection-molded object thereof | |
JP4595316B2 (en) | PROPYLENE POLYMER, POLYPROPYLENE RESIN COMPOSITION CONTAINING THE POLYMER, AND INJECTION MOLDED COMPRISING THE COMPOSITION | |
JP2008013757A (en) | Polypropylene resin composition and automobile injection molded article comprising the same | |
JP2004018647A (en) | Moldability modifier for polypropylene-based resin and polypropylene-based resin composition containing the same | |
US6730728B2 (en) | Propylene resin composition excellent in moldability and physical properties | |
US7268185B2 (en) | Thermoplastic resin composition and its injection molded article | |
JP2008019346A (en) | Polypropylene resin composition | |
CN1296512A (en) | Propylene resin composition and interior automotive member comprising the the same | |
CN104672625B (en) | Resin combination | |
JPH0699605B2 (en) | Thermoplastic resin composition | |
EP0784074B1 (en) | Propylene resin composition for interior material for automobiles, and interior material for automobiles | |
US6639002B2 (en) | Thermoplastic resin composition and its injection molded article | |
US6593409B2 (en) | Thermoplastic resin composition and injection-molded article thereof | |
JP2002145941A (en) | Moldability modifier for polypropylene resin and polypropylene resin composition containing the same | |
JP3544252B2 (en) | Polypropylene resin composition for automobile interior parts and interior parts for automobiles | |
JPH0859953A (en) | Polypropylene resin composition for automobile interior materials | |
JP2000109639A (en) | Polypropylene based resin composition excellent in moldability and molded appearance | |
AU726782B2 (en) | Polyolefin composition for exterior trims | |
JPH0971713A (en) | Resin composition for automobile bumpers and automobile bumpers obtained therefrom | |
JP2005194337A (en) | Polypropylene resin composition and molded body thereof | |
EP0669372A1 (en) | Polypropylene resin composition for motorcar-trimming materials |