[go: up one dir, main page]

JPH0852427A - Ultrasonic exciter - Google Patents

Ultrasonic exciter

Info

Publication number
JPH0852427A
JPH0852427A JP6211977A JP21197794A JPH0852427A JP H0852427 A JPH0852427 A JP H0852427A JP 6211977 A JP6211977 A JP 6211977A JP 21197794 A JP21197794 A JP 21197794A JP H0852427 A JPH0852427 A JP H0852427A
Authority
JP
Japan
Prior art keywords
piezoelectric vibrator
terminal
vibrating
thickness direction
vibrating needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6211977A
Other languages
Japanese (ja)
Inventor
Koji Toda
耕司 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6211977A priority Critical patent/JPH0852427A/en
Publication of JPH0852427A publication Critical patent/JPH0852427A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To enable driving with a small size and light weight, low voltage and low electric power consumption by forming a shape having a through-hole in parallel with a thickness direction and having a section perpendicular to a thickness direction to a frame mold structure, specifying the ratio of the length in the thickness direction thereof to the shortest distance between the outer edge and inner edge of the frame mold and fixing a diaphragm in a prescribed manner to this through-hole, thereby forming a piezoelectric vibrator. CONSTITUTION:The piezoelectric vibrator 1 is composed of piezoelectric ceramics 5 and electrodes P1, P2, Q. The piezoelectric ceramics 5 is composed of a hollow columnar having a columnar through-hole. This through-hole is penetrated in parallel with the thickness direction of the piezoelectric vibrator 1. The section perpendicular to the thickness direction of the piezoelectric vibrator 1 is formed to the hollow frame mold structure. The ratio of the length in the thickness direction to the shortest distance between the inside and outside edges of the frame mold is set at about 1. The electrodes P1, P2 are formed on the one end face perpendicular to the thickness direction of the piezoelectric ceramics 5 and the electrode Q is formed on the other end face. The electric signals having the frequency approximately equal to the resonance frequency of the composite consisting of the piezoelectric vibrator 1, the diaphragm 2 and the vibration needle 3 are impressed to the terminal Tp1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明は、圧電振動子と振動板と
振動針とから成り、圧電振動子の振動を振動板を経由し
て振動針に伝搬させることにより振動針の表面に振動変
位を発生させ、トリミングなどへの応用が可能な超音波
励振器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises a piezoelectric vibrator, a vibrating plate, and a vibrating needle. By vibrating the vibration of the piezoelectric vibrator to the vibrating needle via the vibrating plate, the vibration of the vibrating needle is displaced. The present invention relates to an ultrasonic exciter that can be applied to trimming and the like.

【従来の技術】超音波励振器によって発生させた弾性振
動を利用することにより超音波モータを構成することが
可能である。従来の超音波励振器を応用した超音波モー
タは、振動子によって発生させた弾性振動を摩擦力を介
して可動体に伝達し該可動体に一方向の駆動力を与える
というものであった。このとき、前記振動子表面での変
位は一般に楕円軌道を描く。進行波型超音波モータで
は、進行波が弾性体に励振されその表面の質点は楕円軌
道を描くので、可動体に一方向の駆動力が生じるのであ
る。進行波型超音波モータはカメラのオートフォーカス
機構などに実用化されているが、直線運動に応用する場
合、振動系の規模が大きくなることから効率が低下する
という問題点を有する。定在波を利用するタイプの超音
波リニアモータの代表的なものとして、矩形平板状圧電
振動子を利用するものがある。一方向性の駆動力は、振
動子に接着された直線状金属平板の端部の楕円運動から
得られ、この部分にローラを加圧接触させることによっ
て回転動力を得ている。この方式は小型化が可能であ
り、紙送りデバイス等への応用が期待できるが、2相式
の高周波電源が必要であるという問題点を有する。この
ようにして、従来の超音波励振器を利用した超音波モー
タでは、振動系の規模が大きくなることから効率が低下
するという問題や、小型化が可能であっても比較的複雑
な回路構成を必要とする等の問題点を有していた。そし
て何よりも、振動子と可動体との距離に制限があるとい
う欠点を有していた。すなわち、振動子から離れた場所
にある可動体にその振動のエネルギーを伝搬することが
困難であった。
2. Description of the Related Art An ultrasonic motor can be constructed by utilizing elastic vibration generated by an ultrasonic exciter. An ultrasonic motor to which a conventional ultrasonic exciter has been applied is one in which elastic vibration generated by a vibrator is transmitted to a movable body via a frictional force to give a driving force in one direction to the movable body. At this time, the displacement on the oscillator surface generally draws an elliptical orbit. In the traveling wave type ultrasonic motor, the traveling wave is excited by the elastic body, and the mass point on the surface draws an elliptical orbit, so that a driving force in one direction is generated in the movable body. The traveling wave type ultrasonic motor has been put to practical use in an autofocus mechanism of a camera, etc., but when it is applied to a linear motion, it has a problem that the efficiency decreases because the scale of the vibration system becomes large. A typical example of a type of ultrasonic linear motor that uses a standing wave is one that uses a rectangular flat plate-shaped piezoelectric vibrator. The unidirectional driving force is obtained from the elliptical movement of the end of the linear metal flat plate adhered to the vibrator, and the roller is pressed against this portion to obtain rotational power. This system can be miniaturized and can be expected to be applied to a paper feeding device or the like, but has a problem that a two-phase high frequency power source is required. In this way, in the ultrasonic motor using the conventional ultrasonic exciter, there is a problem that the efficiency decreases due to an increase in the scale of the vibration system, and a relatively complicated circuit configuration even if the size can be reduced. There was a problem such as that Above all, it has a drawback that the distance between the vibrator and the movable body is limited. That is, it is difficult to propagate the energy of the vibration to the movable body that is located away from the vibrator.

【発明が解決しようとする課題】本発明の目的は構造が
簡単で、小型軽量で、回路構成が簡単で、低電圧で低消
費電力駆動が可能で、応用領域が広い超音波励振器を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an ultrasonic exciter which has a simple structure, is small and lightweight, has a simple circuit configuration, can be driven with low voltage and low power consumption, and has a wide range of applications. To do.

【課題を解決するための手段】請求項1に記載の超音波
励振器は、圧電振動子と、該圧電振動子に固着された振
動板と、該振動板に接触された少なくとも1つの振動針
とから成る超音波励振器であって、前記振動針の表面の
一部は前記振動板の一方の板面、または前記振動板の両
板面を貫く貫通孔の内面に接触され、前記圧電振動子は
柱状の圧電磁器、電極PおよびQから成り、前記電極P
およびQは前記圧電磁器の厚さ方向に垂直な両端面のそ
れぞれに形成されており、前記圧電振動子は該圧電振動
子の厚さ方向に平行に貫通された貫通穴を有し、該厚さ
方向に垂直な断面の形が枠型構造を成し、該厚さ方向の
長さと、前記枠型の外縁と内縁との最短距離との比がほ
ぼ1に等しく、前記振動板は、前記貫通穴の開口を覆う
位置または該貫通穴の内部に前記圧電振動子の前記厚さ
方向に垂直な端面にほぼ平行に固着され、前記振動板の
周縁は前記圧電振動子に固着されており、前記電極Pお
よびQのうちで少なくとも電極Pは互いに絶縁された2
つの部分P1およびP2に分割されていて、前記部分P1
には端子TP1が設けられ、前記部分P2には端子TP2
設けられ、前記電極Qには端子TQが設けられていて、
前記端子TP1と前記端子TQとの間に前記圧電振動子の
共振周波数とほぼ等しい周波数の電圧を印加することに
より前記圧電振動子を励振する手段が設けられており、
前記圧電振動子の前記共振周波数は、前記圧電振動子と
前記振動板と前記振動針とから成る複合体の共振周波数
にほぼ等しく、前記圧電振動子の励振を前記振動板を経
由して前記振動針に伝搬させることにより前記振動針の
表面に振動変位を発生させることを特徴とする。請求項
2に記載の超音波励振器は、前記振動針が直線状、湾曲
状、コイル状またはそれらの組合せで成る構造を有する
ことを特徴とする。請求項3に記載の超音波励振器は、
前記振動針が少なくとも2つに分岐していることを特徴
とする。請求項4に記載の超音波励振器は、前記振動針
の分岐した部分が少なくとも2つに分岐していることを
特徴とする。請求項5に記載の超音波励振器は、前記振
動針の長さ方向に垂直な断面の形が角縁状または環状を
成すことを特徴とする。請求項6に記載の超音波励振器
は、前記圧電振動子が角縁状または円環状であることを
特徴とする。請求項7に記載の超音波励振器は、前記圧
電振動子励振手段が、直流電源と前記端子TP1との間に
接続された昇圧用のコイルと、出力電圧端子が前記端子
P1に接続され入力電圧端子が前記端子TP2に接続され
ることにより前記端子TP2に現われる圧電気を帰還電圧
として受けるトランジスタとを備え、前記圧電振動子励
振手段は、前記トランジスタを増幅素子とし前記複合体
を共振素子とする自励発振駆動回路を構成することを特
徴とする。
An ultrasonic exciter according to claim 1 is a piezoelectric vibrator, a vibrating plate fixed to the piezoelectric vibrator, and at least one vibrating needle in contact with the vibrating plate. And a part of the surface of the vibrating needle is brought into contact with one plate surface of the vibrating plate or an inner surface of a through hole penetrating both plate surfaces of the vibrating plate, and the piezoelectric vibration The child consists of a columnar piezoelectric ceramic, electrodes P and Q, and said electrode P
And Q are respectively formed on both end surfaces perpendicular to the thickness direction of the piezoelectric ceramic, and the piezoelectric vibrator has through holes penetrating in parallel to the thickness direction of the piezoelectric vibrator. The shape of the cross section perpendicular to the vertical direction forms a frame structure, and the ratio of the length in the thickness direction and the shortest distance between the outer edge and the inner edge of the frame mold is substantially equal to 1, and the diaphragm is A position that covers the opening of the through hole or the inside of the through hole is fixed substantially parallel to the end face of the piezoelectric vibrator perpendicular to the thickness direction, and the peripheral edge of the vibration plate is fixed to the piezoelectric vibrator. At least the electrode P of the electrodes P and Q is insulated from each other.
Is divided into two parts P 1 and P 2 , said part P 1
Is provided with a terminal T P1 , the portion P 2 is provided with a terminal T P2 , and the electrode Q is provided with a terminal T Q.
Means are provided between the terminal T P1 and the terminal T Q for exciting the piezoelectric vibrator by applying a voltage having a frequency substantially equal to the resonance frequency of the piezoelectric vibrator,
The resonance frequency of the piezoelectric vibrator is substantially equal to the resonance frequency of a composite body including the piezoelectric vibrator, the vibrating plate, and the vibrating needle, and the vibration of the piezoelectric vibrator is transmitted via the vibrating plate to the vibration. A vibration displacement is generated on the surface of the vibrating needle by propagating to the needle. An ultrasonic exciter according to a second aspect of the invention is characterized in that the vibrating needle has a structure that is linear, curved, coiled, or a combination thereof. The ultrasonic exciter according to claim 3,
The vibrating needle is branched into at least two. An ultrasonic exciter according to a fourth aspect is characterized in that the branched portion of the vibrating needle is branched into at least two. An ultrasonic exciter according to a fifth aspect of the invention is characterized in that a cross section of the vibrating needle perpendicular to the lengthwise direction has a shape of an edge or a ring. An ultrasonic exciter according to a sixth aspect of the invention is characterized in that the piezoelectric vibrator has an edge shape or an annular shape. The ultrasonic exciter according to claim 7, wherein the piezoelectric vibrator exciting means is a boosting coil connected between a DC power supply and the terminal T P1 , and an output voltage terminal is connected to the terminal T P1 . is a transistor having an input voltage terminal receiving a piezoelectric appearing at the terminals T P2 by being connected to the terminal T P2 as a feedback voltage, said piezoelectric vibrator excitation means, said complex and amplifying element the transistor Is a self-excited oscillation drive circuit.

【作用】本発明の超音波励振器は圧電振動子と振動板と
少なくとも1つの振動針とから成る簡単な構造を有す
る。振動板は圧電振動子に固着され、振動針の表面の一
部は振動板の一方の板面または振動板の両板面を貫く貫
通孔の内面に接触されている。圧電振動子は電極Pおよ
びQから成り、電極PおよびQは圧電磁器の厚さ方向に
垂直な両端面のそれぞれに形成されている。電極Pおよ
びQのうちで少なくとも電極Pは互いに絶縁された2つ
の部分P1およびP2に分割されていて、部分P1には端
子TP1が設けられ、部分P2には端子TP2が設けられ、
電極Qには端子TQが設けられている。また、本発明の
超音波励振器では、端子TP1と端子TQとの間に圧電振
動子の共振周波数とほぼ等しい周波数の電圧を印加する
ことにより圧電振動子を励振する手段が設けられてい
る。この圧電振動子励振手段を駆動することにより、圧
電振動子が励振される。このとき、圧電振動子の共振周
波数が圧電振動子と振動板と振動針とから成る複合体の
共振周波数とほぼ等しい構造が採用されることにより、
圧電振動子が効率よく励振される。このような簡単な構
造の圧電振動子の採用により、超音波励振器の小型化が
可能となる。また、自励式駆動が可能となることから電
池での駆動も容易になり、さらに、温度などの環境変化
に対応しうる形で低消費電力で低電圧での駆動が可能と
なる。この圧電振動子の励振は振動板を振動させ、さら
に、振動板に接触する振動針を振動させる。このように
して、振動針の表面に振動変位が発生する。圧電振動子
として貫通穴を有する柱状構造を採用することができ
る。その貫通穴は圧電振動子の厚さ方向に平行に貫通
し、圧電振動子の厚さ方向に垂直な断面の形は中空の枠
型構造を成し、厚さ方向の長さと、枠型の外縁と内縁と
の最短距離との比はほぼ1に等しい。たとえば、圧電振
動子として角縁状または円環状構造を採用することがで
きる。このとき、振動板は圧電振動子の貫通穴の開口を
覆う位置または貫通穴の内部に圧電振動子の厚さ方向に
垂直な端面にほぼ平行に固着されている。この場合、振
動板の周縁が圧電振動子に固着されている。従って、圧
電振動子と振動板と振動針との複合体の結合振動が増強
され、圧電振動子の振動は振動板に効率よく伝搬され
る。この振動板の振動は振動針を効率よく振動させるこ
とを可能にする。本発明の超音波励振器では振動針とし
て直線状、湾曲状、コイル状またはそれらの組合せで成
る構造を採用することができる。すなわち、振動針を振
動板の一方の板面または振動板の両板面を貫く貫通孔の
内面に固着または圧接させた構造、つまり、振動板の板
面や貫通孔の内面に接触させた構造であれば振動針の表
面に振動変位が生じるのであり、振動針は細長い形状を
したものであれば、折れ曲がっていようといまいと長さ
が長くても短くても振動針の表面に振動変位が生じる。
また、たとえばY字型のような少なくとも2つに分岐し
た構造を振動針として採用することも可能であり、その
分岐した部分がさらに少なくとも2つに分岐した構造を
振動針として採用することも可能である。このような場
合、振動針の分岐した先々の表面においても振動変位が
生じている。本発明の超音波励振器では、振動針として
棒状を成す構造を採用することが可能であるとともに、
振動針としてその長さ方向に垂直な断面の形が角縁状ま
たは環状を成す構造、つまり、管状構造を採用すること
ができる。管状構造を採用した場合には、振動針の内壁
面においても振動変位が生じる。本発明の超音波励振器
における圧電振動子励振手段は、直流電源と端子TP1
の間に接続された昇圧用のコイルを備えている。また、
出力電圧端子が端子TP1に接続され入力電圧端子が端子
P2に接続されたトランジスタを備えている。このトラ
ンジスタは端子TP2に現われる圧電気を帰還電圧として
受けるためのものである。このようにして、圧電振動子
励振手段は、トランジスタを増幅素子とし、圧電振動子
と振動板と振動針との複合体を共振回路とする自励発振
駆動回路を構成しており、圧電振動子の共振周波数に周
波数を自動的に追尾できるようにしている。そのうえ、
コイルの逆起電圧を利用した回路を備えることにより、
電源電圧より高い電圧で圧電振動子を駆動できるように
している。この逆起電圧回路はコイルの特性を利用する
ことで高電圧を発生させるもので、トランスの使用と比
較して価格、重量および容積の点で有利である。また、
回路構成が簡単で小型であり、電源効率及び周波数特性
が良い等の特徴をもたらすことができる。図12は3端
子方式の自励回路の構成図を示している。3端子方式と
は、圧電振動子との接続のために3つの端子を有し、各
端子を互いに独立した目的に利用する方式である。圧電
振動子の片側の電極は電圧を印加するドライブ電極D
と、増幅器に電力の一部をフィードバックするためのフ
ィードバック電極Fに分割されており、もう一方の電極
はグランド電極Gとして接地されている。本発明の超音
波励振器では圧電振動子における電極Pの部分P1およ
びP2がドライブ電極Dおよびフィードバック電極Fに
相当し、電極Qがグランド電極Gに相当する。図12に
おけるこの方式は、パワーアンプで180°だけ位相の
シフトをすることから、圧電振動子のドライブ電極Dと
フィードバック電極F間で位相が180°シフトする周
波数で自励発振する。
The ultrasonic exciter of the present invention has a simple structure including a piezoelectric vibrator, a diaphragm and at least one vibrating needle. The vibrating plate is fixed to the piezoelectric vibrator, and a part of the surface of the vibrating needle is in contact with one plate surface of the vibrating plate or the inner surface of the through hole penetrating both plate surfaces of the vibrating plate. The piezoelectric vibrator includes electrodes P and Q, and the electrodes P and Q are formed on both end surfaces of the piezoelectric ceramic which are perpendicular to the thickness direction. At least the electrode P of the electrodes P and Q is divided into two parts P 1 and P 2 which are insulated from each other, and the part P 1 is provided with a terminal T P1 and the part P 2 is provided with a terminal T P2. Is provided,
The electrode Q is provided with a terminal T Q. Further, the ultrasonic exciter of the present invention is provided with means for exciting the piezoelectric vibrator by applying a voltage having a frequency substantially equal to the resonance frequency of the piezoelectric vibrator between the terminal T P1 and the terminal T Q. There is. By driving this piezoelectric vibrator excitation means, the piezoelectric vibrator is excited. At this time, by adopting a structure in which the resonance frequency of the piezoelectric vibrator is substantially equal to the resonance frequency of the complex composed of the piezoelectric vibrator, the diaphragm, and the vibrating needle,
The piezoelectric vibrator is efficiently excited. By adopting the piezoelectric vibrator having such a simple structure, the ultrasonic exciter can be downsized. In addition, since self-excited driving is possible, driving with a battery is facilitated, and further, driving with low power consumption and low voltage is possible in a form that can cope with environmental changes such as temperature. The excitation of the piezoelectric vibrator vibrates the vibrating plate, and further vibrates the vibrating needle that contacts the vibrating plate. In this way, vibrational displacement occurs on the surface of the vibrating needle. A columnar structure having a through hole can be adopted as the piezoelectric vibrator. The through hole penetrates in parallel to the thickness direction of the piezoelectric vibrator, and the shape of the cross section perpendicular to the thickness direction of the piezoelectric vibrator forms a hollow frame-shaped structure. The ratio of the shortest distance between the outer edge and the inner edge is approximately equal to 1. For example, it is possible to adopt a square-edged or annular structure as the piezoelectric vibrator. At this time, the vibrating plate is fixed to the position covering the opening of the through hole of the piezoelectric vibrator or inside the through hole substantially parallel to the end face perpendicular to the thickness direction of the piezoelectric vibrator. In this case, the peripheral edge of the diaphragm is fixed to the piezoelectric vibrator. Therefore, the combined vibration of the complex of the piezoelectric vibrator, the vibration plate, and the vibrating needle is enhanced, and the vibration of the piezoelectric vibrator is efficiently propagated to the vibration plate. The vibration of the diaphragm enables the vibrating needle to vibrate efficiently. In the ultrasonic exciter of the present invention, a vibrating needle may have a linear shape, a curved shape, a coil shape, or a combination thereof. That is, the structure in which the vibrating needle is fixed or pressed against the inner surface of the through hole that penetrates one plate surface of the diaphragm or both plate surfaces of the diaphragm, that is, the structure in which the vibrating needle is in contact with the plate surface of the diaphragm or the inner surface of the through hole. If so, vibration displacement will occur on the surface of the vibrating needle.If the vibrating needle has an elongated shape, it will not be bent or bent, and the vibration displacement will be on the surface of the vibrating needle. Occurs.
Further, it is also possible to employ a structure having at least two branches such as a Y-shape as the vibrating needle, and a structure in which the branched portion is further branched into at least two can also be adopted as the vibrating needle. Is. In such a case, the vibration displacement is also generated on the surface where the vibrating needle branches off. In the ultrasonic exciter of the present invention, it is possible to adopt a rod-shaped structure as the vibrating needle,
As the vibrating needle, it is possible to adopt a structure in which the shape of the cross section perpendicular to the lengthwise direction is a square edge or a ring, that is, a tubular structure. When the tubular structure is adopted, vibrational displacement also occurs on the inner wall surface of the vibrating needle. The piezoelectric vibrator exciting means in the ultrasonic exciter of the present invention includes a boosting coil connected between the DC power supply and the terminal T P1 . Also,
It comprises a transistor whose output voltage terminal is connected to terminal T P1 and whose input voltage terminal is connected to terminal T P2 . This transistor is for receiving the piezoelectricity appearing at the terminal T P2 as a feedback voltage. In this way, the piezoelectric vibrator excitation means constitutes a self-excited oscillation drive circuit using a transistor as an amplification element and a composite of a piezoelectric vibrator, a diaphragm and a vibrating needle as a resonance circuit. The frequency can be automatically tracked to the resonance frequency of. Besides,
By providing a circuit that uses the back electromotive force of the coil,
The piezoelectric vibrator can be driven with a voltage higher than the power supply voltage. This counter electromotive voltage circuit generates a high voltage by utilizing the characteristics of the coil, and is advantageous in terms of price, weight and volume as compared with the use of a transformer. Also,
Features such as a simple circuit configuration, a small size, and good power supply efficiency and frequency characteristics can be brought about. FIG. 12 shows a configuration diagram of a three-terminal system self-exciting circuit. The three-terminal system has three terminals for connection with the piezoelectric vibrator, and each terminal is used for the purpose of being independent of each other. The electrode on one side of the piezoelectric vibrator is a drive electrode D that applies voltage.
And a feedback electrode F for feeding back a part of electric power to the amplifier, and the other electrode is grounded as a ground electrode G. In the ultrasonic exciter of the present invention, the parts P 1 and P 2 of the electrode P in the piezoelectric vibrator correspond to the drive electrode D and the feedback electrode F, and the electrode Q corresponds to the ground electrode G. In this system shown in FIG. 12, since the phase is shifted by 180 ° by the power amplifier, self-excited oscillation occurs at the frequency at which the phase is shifted by 180 ° between the drive electrode D and the feedback electrode F of the piezoelectric vibrator.

【実施例】図1は本発明の超音波励振器の第1の実施例
を示す断面図である。本実施例は圧電振動子1、振動板
2、振動針3および自励発振駆動回路4から成る。但
し、図1では自励発振駆動回路4が省いて描かれてい
る。圧電振動子1は圧電磁器5、電極P1,P2および電
極Qから成る。電極P1には端子TP1が設けられ、電極
2には端子TP2が設けられ、電極Qには端子TQが設け
られている。圧電磁器5は円柱状の貫通穴を有する中空
円柱状のTDK91A材(製品名)で成り、厚さは4m
m、厚さ方向に垂直な断面の外径は14mm、内径は8
mmである。圧電磁器5の分極軸の方向は厚さ方向に一
致しており、この厚さ方向に垂直な一方の端面に電極P
1およびP2が互いに絶縁される形で形成され、もう一方
の端面には電極Qが形成されている。各電極はアルミニ
ウム薄膜で成る。振動板2はステンレス製で、直径が1
0mmの円盤で成り、厚さは0.05mmである。振動
板2はその一方の板面の周縁が圧電振動子1の電極Qを
有する方の端面に固着されていて、圧電振動子1と一体
化されている。振動針3は真鍮製のパイプで成り、その
長さ方向に垂直な断面の外経は0.6mm、内経は0.
2mmである。図2は図1の超音波励振器を示す斜視図
である。図1の超音波励振器の駆動時、圧電振動子1と
振動板2と振動針3との複合体の共振周波数にほぼ等し
い周波数を有する電気信号を端子TP1を介して圧電振動
子1に入力すると、圧電振動子1に圧電的に振動が励振
される。振動板2を圧電振動子1の一方の端面上に一体
的に固着させる構造を採用していることから、圧電振動
子1の振動に伴って振動板2は振動され、この振動は振
動針3を振動させ、振動針3の表面に振動変位が生じ
る。振動針3の長さは最高でほぼ1mのものが動作可能
であった。また、本実施例では振動針3を振動板2に固
着させたが、固着せずに圧接させた場合にもほぼ同様な
効果が得られることが確認された。図3は自励発振駆動
回路4の一実施例を示す構成図である。図3において
D、FおよびGはそれぞれドライブ電極D、フィードバ
ック電極Fおよびグランド電極Gを示し、ドライブ電極
Dおよびフィードバック電極Fがそれぞれ電極P1およ
びP2に対応し、グランド電極Gが電極Qに対応してい
る。端子TP1を介して圧電振動子1に電圧を引加するこ
とにより圧電振動子1に励振された振動は、その大部分
が振動板2に伝搬され、残部がその振動に応じて圧電振
動子1に引加された電圧とは逆相の電圧として端子TP2
から出力される。この動作の繰り返しによって正帰還の
自励発振が生じる。つまり、複合体の共振周波数にほぼ
等しい周波数を有する電気信号が雰囲気温度の変化に追
随して安定して圧電振動子1に供給される。このように
して、常に自らの最適の発振状態を維持することを可能
にしている。従って、他励駆動の際に問題となる発熱等
により複合体の共振周波数が偏移して発振条件が悪くな
るという問題点が解決される。また、1つのコイル
1、1つのトランジスタTr、2つの抵抗R1および
2、および1つのダイオードDという極く少ない部品
で回路を構成することが可能である。しかも、部品点数
が少ないにもかかわらず、直流電源を利用することがで
き電力効率もよいことから、電源の小型化対応を可能に
している。図4は圧電振動子1単体における電極P1
電極Qとの間のアドミタンスの振幅および位相と、周波
数との関係を示す特性図である。アドミタンスは周波数
がほぼ91.9kHzのときにピークを示している。ま
た、位相が零のときの周波数が共振周波数を示すことか
ら、共振周波数の1つがほぼ91.9kHzであること
がわかる。図5は圧電振動子1と振動板2との結合体に
おける電極P1と電極Qとの間のアドミタンスの振幅お
よび位相と、周波数との関係を示す特性図である。アド
ミタンスは周波数がほぼ93.9kHzのときにピーク
を示している。また、位相が零のときの周波数が共振周
波数を示すことから、共振周波数の1つがほぼ93.9
kHzであることがわかる。この93.9kHzという
値は圧電振動子1単体の共振周波数にほぼ等しいといえ
る。図6は圧電振動子1と振動板2と振動針3との複合
体における電極P1と電極Qとの間のアドミタンスの振
幅および位相と、周波数との関係を示す特性図である。
但し、振動針3の長さが46mmの場合を示す。アドミ
タンスは周波数がほぼ94.0kHzのときにピークを
示している。また、位相が零のときの周波数が共振周波
数を示すことから、共振周波数の1つがほぼ94.0k
Hzであることがわかる。この94.0kHzという値
は圧電振動子1単体の共振周波数および圧電振動子1と
振動板2との結合体の共振周波数にほぼ等しいといえ
る。図7は圧電振動子1単体における共振周波数付近で
のサセプタンスとコンダクタンスとの関係を示す特性
図、すなわち共振周波数付近でのアドミタンスサークル
を示す図である。サセプタンスが零のときのコンダクタ
ンスの最大値は91.9kHzで起こる。図8は圧電振
動子1と振動板2との結合体における共振周波数付近で
のサセプタンスとコンダクタンスとの関係を示す特性
図、すなわち共振周波数付近でのアドミタンスサークル
を示す図である。サセプタンスが零のときのコンダクタ
ンスの最大値は93.9kHzで起こる。この93.9
kHzという値は圧電振動子1単体の場合とほぼ等しい
といえる。図9は圧電振動子1と振動板2と振動針3と
の複合体における共振周波数付近でのサセプタンスとコ
ンダクタンスとの関係を示す特性図、すなわち共振周波
数付近でのアドミタンスサークルを示す図である。但
し、振動針3の長さが46mmの場合を示す。サセプタ
ンスが零のときのコンダクタンスの最大値は94.0k
Hzで起こる。この94.0kHzという値は圧電振動
子1単体の場合および圧電振動子1と振動板2との結合
体の場合とほぼ等しいといえる。図10は本発明の超音
波励振器の第2の実施例を示す斜視図である。本実施例
は圧電振動子6、振動板7、振動針8および自励発振駆
動回路4から成る。但し、図10では自励発振駆動回路
4が省いて描かれている。振動板7は圧電振動子6の一
方の端面に圧電振動子6と一体的に連なって固着されて
いる。振動針8は振動板2の一方の板面に固着されてい
る。圧電振動子6は圧電磁器9、電極P1,P2および電
極Qから成る。電極P1には端子TP1が設けられ、電極
2には端子TP2が設けられ、電極Qには端子TQが設け
られている。圧電磁器9は角柱状の貫通穴を有する中空
角柱状のTDK91A材(製品名)で成り、その厚さは
4mm、厚さ方向に垂直な断面の形状は角縁状であっ
て、外縁は1辺が14mmの正方形、内縁は1辺が8m
mの正方形で成る。圧電磁器9の分極軸の方向は厚さ方
向に一致しており、この厚さ方向に垂直な一方の端面に
電極P1およびP2が互いに絶縁される形で形成され、も
う一方の端面には電極Qが形成されている。各電極はア
ルミニウム薄膜で成る。振動板7はステンレス製で、1
辺が10mmの正方形の板で成り、厚さは0.05mm
である。振動板7はその一方の板面の周縁が圧電振動子
6の電極Qを有する方の端面に固着されていて、圧電振
動子6と一体化されている。振動針8は真鍮製の棒で成
り、その長さ方向に垂直な断面の形は1辺が0.6mm
の正方形で成り、振動針8は屈曲している。図11は振
動針3および振動針8の代わりに用いられる振動針を示
す斜視図である。上図は長さが1mのらせんパイプ状の
振動針を、下図は様々に折れ曲がり分岐した形の棒状の
振動針を示す。どちらの振動針もそれらのすべての表面
において振動変位を生じることが確認された。また、振
動針どうしを半田接合した場合や、振動針が高分子系樹
脂等で被覆された場合にも振動針としての機能を果たす
ことが確認された。
FIG. 1 is a sectional view showing a first embodiment of the ultrasonic exciter of the present invention. This embodiment comprises a piezoelectric vibrator 1, a diaphragm 2, a vibrating needle 3 and a self-excited oscillation drive circuit 4. However, in FIG. 1, the self-excited oscillation drive circuit 4 is omitted. The piezoelectric vibrator 1 is composed of a piezoelectric ceramic 5, electrodes P 1 and P 2 and an electrode Q. The electrode P 1 is provided with a terminal T P1 , the electrode P 2 is provided with a terminal T P2 , and the electrode Q is provided with a terminal T Q. The piezoelectric ceramic 5 is made of a hollow cylindrical TDK91A material (product name) having a cylindrical through hole and has a thickness of 4 m.
m, the outer diameter of the cross section perpendicular to the thickness direction is 14 mm, and the inner diameter is 8
mm. The direction of the polarization axis of the piezoelectric ceramic 5 coincides with the thickness direction, and the electrode P is provided on one end face perpendicular to this thickness direction.
1 and P 2 are formed so as to be insulated from each other, and an electrode Q is formed on the other end surface. Each electrode is made of an aluminum thin film. The diaphragm 2 is made of stainless steel and has a diameter of 1
It consists of a 0 mm disc and has a thickness of 0.05 mm. The vibrating plate 2 is fixed to the end face of the piezoelectric vibrator 1 on the side having the electrode Q, and is integrated with the piezoelectric vibrator 1. The vibrating needle 3 is made of a brass pipe, and the cross section perpendicular to the length direction has an outer diameter of 0.6 mm and an inner diameter of 0.
It is 2 mm. FIG. 2 is a perspective view showing the ultrasonic exciter of FIG. When the ultrasonic exciter of FIG. 1 is driven, an electric signal having a frequency substantially equal to the resonance frequency of the complex of the piezoelectric vibrator 1, the diaphragm 2 and the vibrating needle 3 is applied to the piezoelectric vibrator 1 via the terminal T P1. When input, a piezoelectric vibration is excited in the piezoelectric vibrator 1. Since the vibrating plate 2 is integrally fixed to one end surface of the piezoelectric vibrator 1, the vibrating plate 2 is vibrated along with the vibration of the piezoelectric vibrator 1, and the vibrating needle 3 vibrates. Is vibrated, and a vibration displacement occurs on the surface of the vibrating needle 3. The vibrating needle 3 having a maximum length of about 1 m was operable. Further, although the vibrating needle 3 is fixed to the vibrating plate 2 in the present embodiment, it was confirmed that substantially the same effect can be obtained even when the vibrating needle 3 is pressed and contacted without being fixed. FIG. 3 is a block diagram showing an embodiment of the self-excited oscillation drive circuit 4. In FIG. 3, D, F, and G respectively indicate the drive electrode D, the feedback electrode F, and the ground electrode G, the drive electrode D and the feedback electrode F correspond to the electrodes P 1 and P 2 , respectively, and the ground electrode G corresponds to the electrode Q. It corresponds. Most of the vibration excited in the piezoelectric vibrator 1 by applying a voltage to the piezoelectric vibrator 1 via the terminal T P1 is propagated to the diaphragm 2, and the rest is in accordance with the vibration. As a voltage having a phase opposite to the voltage applied to the terminal T P2
Output from By repeating this operation, positive feedback self-excited oscillation occurs. That is, an electric signal having a frequency substantially equal to the resonance frequency of the composite body is stably supplied to the piezoelectric vibrator 1 following changes in the ambient temperature. In this way, it is possible to always maintain its own optimum oscillation state. Therefore, the problem that the resonance frequency of the composite is deviated due to heat generation or the like, which is a problem during the separately-excited driving, and the oscillation condition is deteriorated, is solved. In addition, it is possible to configure the circuit with a very small number of components such as one coil L 1 , one transistor Tr , two resistors R 1 and R 2 , and one diode D. Moreover, even though the number of parts is small, a DC power supply can be used and power efficiency is high, which enables downsizing of the power supply. FIG. 4 is a characteristic diagram showing the relationship between the frequency and the amplitude and phase of the admittance between the electrode P 1 and the electrode Q in the piezoelectric vibrator 1 alone. The admittance shows a peak when the frequency is approximately 91.9 kHz. Further, since the frequency when the phase is zero indicates the resonance frequency, it can be seen that one of the resonance frequencies is approximately 91.9 kHz. FIG. 5 is a characteristic diagram showing the relationship between the amplitude and phase of the admittance between the electrode P 1 and the electrode Q in the combination of the piezoelectric vibrator 1 and the diaphragm 2 and the frequency. The admittance shows a peak when the frequency is approximately 93.9 kHz. Further, since the frequency when the phase is zero indicates the resonance frequency, one of the resonance frequencies is approximately 93.9.
It can be seen that the frequency is kHz. It can be said that the value of 93.9 kHz is substantially equal to the resonance frequency of the piezoelectric vibrator 1 alone. FIG. 6 is a characteristic diagram showing the relationship between the frequency and the amplitude and phase of the admittance between the electrode P 1 and the electrode Q in the composite of the piezoelectric vibrator 1, the diaphragm 2 and the vibrating needle 3.
However, the case where the length of the vibrating needle 3 is 46 mm is shown. The admittance shows a peak when the frequency is approximately 94.0 kHz. Since the frequency when the phase is zero indicates the resonance frequency, one of the resonance frequencies is approximately 94.0k.
It can be seen that it is Hz. It can be said that the value of 94.0 kHz is substantially equal to the resonance frequency of the piezoelectric vibrator 1 alone and the resonance frequency of the combination of the piezoelectric vibrator 1 and the diaphragm 2. FIG. 7 is a characteristic diagram showing the relationship between susceptance and conductance in the vicinity of the resonance frequency in the piezoelectric vibrator 1 alone, that is, a diagram showing an admittance circle in the vicinity of the resonance frequency. The maximum value of conductance when the susceptance is zero occurs at 91.9 kHz. FIG. 8 is a characteristic diagram showing the relationship between the susceptance and the conductance in the vicinity of the resonance frequency in the combined body of the piezoelectric vibrator 1 and the diaphragm 2, that is, the diagram showing the admittance circle in the vicinity of the resonance frequency. The maximum conductance at zero susceptance occurs at 93.9 kHz. This 93.9
It can be said that the value of kHz is almost equal to that of the piezoelectric vibrator 1 alone. FIG. 9 is a characteristic diagram showing the relationship between the susceptance and the conductance near the resonance frequency in the complex of the piezoelectric vibrator 1, the diaphragm 2, and the vibrating needle 3, that is, a diagram showing the admittance circle near the resonance frequency. However, the case where the length of the vibrating needle 3 is 46 mm is shown. The maximum value of conductance when the susceptance is zero is 94.0k.
Occurs in Hz. It can be said that the value of 94.0 kHz is substantially equal to that of the piezoelectric vibrator 1 alone and the combination of the piezoelectric vibrator 1 and the diaphragm 2. FIG. 10 is a perspective view showing a second embodiment of the ultrasonic exciter of the present invention. This embodiment includes a piezoelectric vibrator 6, a diaphragm 7, a vibrating needle 8 and a self-excited oscillation drive circuit 4. However, in FIG. 10, the self-excited oscillation drive circuit 4 is omitted. The vibrating plate 7 is fixed to one end surface of the piezoelectric vibrator 6 so as to be integrally connected to the piezoelectric vibrator 6. The vibrating needle 8 is fixed to one plate surface of the diaphragm 2. The piezoelectric vibrator 6 is composed of a piezoelectric ceramic 9, electrodes P 1 and P 2 and an electrode Q. The electrode P 1 is provided with a terminal T P1 , the electrode P 2 is provided with a terminal T P2 , and the electrode Q is provided with a terminal T Q. The piezoelectric ceramic 9 is made of a hollow prismatic TDK91A material (product name) having a prismatic through hole, has a thickness of 4 mm, and the cross section perpendicular to the thickness direction has a square edge shape and an outer edge of 1 mm. Square with sides of 14 mm, inner edge is 8 m on each side
It consists of m squares. The direction of the polarization axis of the piezoelectric ceramic 9 coincides with the thickness direction, the electrodes P 1 and P 2 are formed on one end face perpendicular to this thickness direction in a manner insulated from each other, and on the other end face. Has an electrode Q formed thereon. Each electrode is made of an aluminum thin film. The diaphragm 7 is made of stainless steel, and 1
It is a square plate with sides of 10 mm and a thickness of 0.05 mm.
Is. The vibrating plate 7 is integrated with the piezoelectric vibrator 6 by fixing the peripheral edge of one plate surface to the end surface of the piezoelectric vibrator 6 having the electrode Q. The vibrating needle 8 is made of a brass rod, and the cross section perpendicular to the length direction has a side of 0.6 mm.
The vibrating needle 8 is bent. FIG. 11 is a perspective view showing a vibrating needle used instead of the vibrating needle 3 and the vibrating needle 8. The upper figure shows a spiral pipe-shaped vibrating needle with a length of 1 m, and the lower figure shows a bar-shaped vibrating needle with various bent and branched shapes. It was confirmed that both vibrating needles cause vibrational displacement on all of their surfaces. It was also confirmed that the vibrating needles function as vibrating needles even when the vibrating needles are soldered together or when the vibrating needles are covered with a polymer resin or the like.

【発明の効果】本発明の超音波励振器は圧電振動子と、
圧電振動子に固着された振動板と、振動板に接触された
少なくとも1つの振動針と、圧電振動子励振手段とを備
える。圧電振動子は柱状の圧電磁器と、圧電磁器の厚さ
方向に垂直な両端面のそれぞれに形成された電極Pおよ
びQから成る。電極PおよびQのうちで少なくとも電極
Pは互いに絶縁された2つの部分P1およびP2に分割さ
れていて、部分P1には端子TP1が設けられ、部分P2
は端子TP2が設けられ、電極Qには端子TQが設けられ
ている。圧電振動子励振手段は、端子TP1と端子TQ
の間に圧電振動子の共振周波数とほぼ等しい周波数の電
圧を印加することにより圧電振動子を励振するものであ
る。圧電振動子の共振周波数が圧電振動子と振動板と振
動針とから成る複合体の共振周波数とほぼ等しいとき、
圧電振動子が効率よく励振される。このような簡単な構
造の圧電振動子の採用により、超音波励振器の小型化が
可能となる。また、自励式駆動が可能となることから電
池での駆動も容易になり、さらに、温度などの環境変化
に対応しうる形で低消費電力で低電圧での駆動が可能と
なる。この圧電振動子の励振は振動板を振動させ、さら
に、振動板に接触する振動針を振動させる。このように
して、振動針の表面に振動変位が発生する。圧電振動子
として貫通穴を有する柱状構造を採用することができ
る。その貫通穴は圧電振動子の厚さ方向に平行に貫通
し、圧電振動子の厚さ方向に垂直な断面の形は中空の枠
型構造を成し、厚さ方向の長さと、枠型の外縁と内縁と
の最短距離との比はほぼ1に等しい。振動板は、圧電振
動子の貫通穴の開口を覆う位置または貫通穴の内部に圧
電振動子の厚さ方向に垂直な端面にほぼ平行に固着され
ている。このとき、振動板の周縁が圧電振動子に固着さ
れている。従って、圧電振動子と振動板と振動針との複
合体の結合振動が増強され、圧電振動子の励振は振動板
に効率よく伝搬される。この振動板の振動は振動針を効
率よく振動させることを可能にする。また、圧電振動子
として、たとえば角縁状または円環状構造を採用するこ
とができる。振動針として直線状、湾曲状、コイル状ま
たはそれらの組合せで成る構造を採用することができ
る。振動針を振動板の一方の板面または振動板の両板面
を貫く貫通孔の内面に固着または圧接させた構造、つま
り、振動板の板面や貫通孔の内面に接触させた構造であ
れば振動針の表面に振動変位が生じるのであり、振動針
は細長い形状をしたものであれば、折れ曲がっていよう
といまいと長さが長くても短くても振動針の表面に振動
変位が生じる。また、たとえば先端が少なくとも2つに
分岐した構造を振動針として採用することも可能であ
り、その分岐した部分がさらに少なくとも2つに分岐し
た構造を振動針として採用することも可能である。この
ような場合、振動針の分岐した先々の表面においても振
動変位が生じている。さらに、振動針として棒状を成す
構造や、振動針の長さ方向に垂直な断面の形が角縁状ま
たは環状を成す構造、つまり、管状構造を採用すること
ができる。管状構造を採用した場合には、振動針の内壁
面においても振動変位が生じる。圧電振動子励振手段
は、直流電源と端子TP1との間に接続された昇圧用のコ
イルと、出力電圧端子が端子TP1に接続され入力電圧端
子が端子TP2に接続されたトランジスタをと備えてい
る。このトランジスタは端子TP2に現われる圧電気を帰
還電圧として受けるためのものである。このようにし
て、圧電振動子励振手段は、トランジスタを増幅素子と
し、圧電振動子と振動板と振動針との複合体を共振回路
とする自励発振駆動回路を構成しており、圧電振動子の
共振周波数に周波数を自動的に追尾できるようにしてい
る。そのうえ、コイルの逆起電圧を利用した回路を備え
ることにより、電源電圧より高い電圧で圧電振動子を駆
動できるようにしている。この逆起電圧回路はコイルの
特性を利用することで高電圧を発生させるもので、トラ
ンスの使用と比較して価格、重量および容積の点で有利
である。また、回路構成が簡単で小型であり、電源効率
及び周波数特性が良い等の特徴をもたらすことができ
る。
The ultrasonic exciter of the present invention comprises a piezoelectric vibrator,
The piezoelectric vibrator includes a vibrating plate fixed to the piezoelectric vibrator, at least one vibrating needle in contact with the vibrating plate, and a piezoelectric vibrator exciting unit. The piezoelectric vibrator is composed of a columnar piezoelectric ceramic and electrodes P and Q formed on both end surfaces perpendicular to the thickness direction of the piezoelectric ceramic. At least the electrode P of the electrodes P and Q is divided into two parts P 1 and P 2 which are insulated from each other, and the part P 1 is provided with a terminal T P1 and the part P 2 is provided with a terminal T P2. The electrode Q is provided with a terminal T Q. The piezoelectric vibrator exciting means excites the piezoelectric vibrator by applying a voltage having a frequency substantially equal to the resonance frequency of the piezoelectric vibrator between the terminals T P1 and T Q. When the resonance frequency of the piezoelectric vibrator is approximately equal to the resonance frequency of the complex composed of the piezoelectric vibrator, the diaphragm and the vibrating needle,
The piezoelectric vibrator is efficiently excited. By adopting the piezoelectric vibrator having such a simple structure, the ultrasonic exciter can be downsized. In addition, since self-excited driving is possible, driving with a battery is facilitated, and further, driving with low power consumption and low voltage is possible in a form that can cope with environmental changes such as temperature. The excitation of the piezoelectric vibrator vibrates the vibrating plate, and further vibrates the vibrating needle that contacts the vibrating plate. In this way, vibrational displacement occurs on the surface of the vibrating needle. A columnar structure having a through hole can be adopted as the piezoelectric vibrator. The through hole penetrates in parallel to the thickness direction of the piezoelectric vibrator, and the shape of the cross section perpendicular to the thickness direction of the piezoelectric vibrator forms a hollow frame-shaped structure. The ratio of the shortest distance between the outer edge and the inner edge is approximately equal to 1. The vibrating plate is fixed to the position covering the opening of the through hole of the piezoelectric vibrator or inside the through hole substantially in parallel to the end face perpendicular to the thickness direction of the piezoelectric vibrator. At this time, the peripheral edge of the vibration plate is fixed to the piezoelectric vibrator. Therefore, the combined vibration of the complex of the piezoelectric vibrator, the diaphragm and the vibrating needle is enhanced, and the excitation of the piezoelectric vibrator is efficiently propagated to the diaphragm. The vibration of the diaphragm enables the vibrating needle to vibrate efficiently. Moreover, as the piezoelectric vibrator, for example, a rim-shaped or annular structure can be adopted. The vibrating needle may have a linear shape, a curved shape, a coil shape, or a combination thereof. A structure in which the vibrating needle is fixed or pressed against the inner surface of the through hole that penetrates one plate surface of the diaphragm or both plate surfaces of the diaphragm, that is, the structure in which the vibrating needle is in contact with the plate surface of the diaphragm or the inner surface of the through hole. For example, vibrational displacement occurs on the surface of the vibrating needle, and if the vibrating needle has an elongated shape, the vibrational displacement occurs on the surface of the vibrating needle regardless of whether it is bent or not, whether the length is long or short. Further, for example, a structure in which the tip is branched into at least two can be adopted as the vibrating needle, and a structure in which the branched portion is further branched into at least two can be adopted as the vibrating needle. In such a case, the vibration displacement is also generated on the surface where the vibrating needle branches off. Further, it is possible to adopt a rod-shaped structure as the vibrating needle, or a structure in which the shape of the cross section perpendicular to the length direction of the vibrating needle is a square edge or a ring, that is, a tubular structure. When the tubular structure is adopted, vibrational displacement also occurs on the inner wall surface of the vibrating needle. The piezoelectric vibrator exciting means includes a boosting coil connected between the DC power supply and the terminal T P1, and a transistor having an output voltage terminal connected to the terminal T P1 and an input voltage terminal connected to the terminal T P2. I have it. This transistor is for receiving the piezoelectricity appearing at the terminal T P2 as a feedback voltage. In this way, the piezoelectric vibrator excitation means constitutes a self-excited oscillation drive circuit using a transistor as an amplification element and a composite of a piezoelectric vibrator, a diaphragm and a vibrating needle as a resonance circuit. The frequency can be automatically tracked to the resonance frequency of. In addition, by providing a circuit using the counter electromotive voltage of the coil, the piezoelectric vibrator can be driven at a voltage higher than the power supply voltage. This counter electromotive voltage circuit generates a high voltage by utilizing the characteristics of the coil, and is advantageous in terms of price, weight and volume as compared with the use of a transformer. Further, it is possible to bring about features such as a simple circuit configuration and a small size, and good power supply efficiency and frequency characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の超音波励振器の第1の実施例を示す断
面図。
FIG. 1 is a sectional view showing a first embodiment of an ultrasonic exciter according to the present invention.

【図2】図1の超音波励振器を示す斜視図。FIG. 2 is a perspective view showing the ultrasonic exciter of FIG.

【図3】自励発振駆動回路4の一実施例を示す構成図。FIG. 3 is a configuration diagram showing an embodiment of a self-excited oscillation drive circuit 4.

【図4】圧電振動子1単体における電極P1と電極Qと
の間のアドミタンスの振幅および位相と、周波数との関
係を示す特性図。
FIG. 4 is a characteristic diagram showing the relationship between the amplitude and phase of the admittance between the electrode P 1 and the electrode Q in the piezoelectric vibrator 1 alone and the frequency.

【図5】圧電振動子1と振動板2との結合体における電
極P1と電極Qとの間のアドミタンスの振幅および位相
と、周波数との関係を示す特性図。
5 is a characteristic diagram showing the relationship between the frequency and the amplitude and phase of the admittance between the electrode P 1 and the electrode Q in the combined body of the piezoelectric vibrator 1 and the diaphragm 2. FIG.

【図6】圧電振動子1と振動板2と振動針3との複合体
における電極P1と電極Qとの間のアドミタンスの振幅
および位相と、周波数との関係を示す特性図。
FIG. 6 is a characteristic diagram showing the relationship between the amplitude and phase of the admittance between the electrode P 1 and the electrode Q and the frequency in the complex of the piezoelectric vibrator 1, the diaphragm 2 and the vibrating needle 3.

【図7】圧電振動子1単体における共振周波数付近での
サセプタンスとコンダクタンスとの関係を示す特性図。
FIG. 7 is a characteristic diagram showing a relationship between susceptance and conductance in the vicinity of a resonance frequency of the piezoelectric vibrator 1 alone.

【図8】圧電振動子1と振動板2との結合体における共
振周波数付近でのサセプタンスとコンダクタンスとの関
係を示す特性図。
FIG. 8 is a characteristic diagram showing the relationship between susceptance and conductance in the vicinity of the resonance frequency in the combined body of the piezoelectric vibrator 1 and the diaphragm 2.

【図9】圧電振動子1と振動板2と振動針3との複合体
における共振周波数付近でのサセプタンスとコンダクタ
ンスとの関係を示す特性図。
9 is a characteristic diagram showing a relationship between susceptance and conductance in the vicinity of a resonance frequency in a composite body of the piezoelectric vibrator 1, the diaphragm 2, and the vibrating needle 3. FIG.

【図10】本発明の超音波励振器の第2の実施例を示す
斜視図。
FIG. 10 is a perspective view showing a second embodiment of the ultrasonic exciter of the present invention.

【図11】振動針3および振動針8の代わりに用いられ
る振動針を示す斜視図。
FIG. 11 is a perspective view showing a vibrating needle used instead of the vibrating needle 3 and the vibrating needle 8.

【図12】3端子方式の自励回路の構成図。FIG. 12 is a configuration diagram of a three-terminal system self-exciting circuit.

【符号の説明】[Explanation of symbols]

1 圧電振動子 2 振動板 3 振動針 4 自励発振駆動回路 5 圧電磁器 P1,P2,Q 電極 TP1,TP2,TQ 端子 L1 昇圧用コイル Tr トランジスタ R1,R2 抵抗 D ダイオード1 Piezoelectric vibrator 2 Vibration plate 3 Vibrating needle 4 Self-excited oscillation drive circuit 5 Piezoelectric ceramics P 1 , P 2 , Q electrode T P1 , T P2 , T Q terminal L 1 Boost coil Tr transistor R 1 , R 2 resistance D diode

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 圧電振動子と、該圧電振動子に固着され
た振動板と、該振動板に接触された少なくとも1つの振
動針とから成る超音波励振器であって、 前記振動針の表面の一部は前記振動板の一方の板面、ま
たは前記振動板の両板面を貫く貫通孔の内面に接触さ
れ、 前記圧電振動子は柱状の圧電磁器、電極PおよびQから
成り、 前記電極PおよびQは前記圧電磁器の厚さ方向に垂直な
両端面のそれぞれに形成されており、 前記圧電振動子は該圧電振動子の厚さ方向に平行に貫通
された貫通穴を有し、該厚さ方向に垂直な断面の形が枠
型構造を成し、該厚さ方向の長さと、前記枠型の外縁と
内縁との最短距離との比がほぼ1に等しく、 前記振動板は、前記貫通穴の開口を覆う位置または該貫
通穴の内部に前記圧電振動子の前記厚さ方向に垂直な端
面にほぼ平行に固着され、 前記振動板の周縁は前記圧電振動子に固着されており、 前記電極PおよびQのうちで少なくとも電極Pは互いに
絶縁された2つの部分P1およびP2に分割されていて、 前記部分P1には端子TP1が設けられ、前記部分P2には
端子TP2が設けられ、前記電極Qには端子TQが設けら
れていて、 前記端子TP1と前記端子TQとの間に前記圧電振動子の
共振周波数とほぼ等しい周波数の電圧を印加することに
より前記圧電振動子を励振する手段が設けられており、 前記圧電振動子の前記共振周波数は、前記圧電振動子と
前記振動板と前記振動針とから成る複合体の共振周波数
にほぼ等しく、 前記圧電振動子の励振を前記振動板を経由して前記振動
針に伝搬させることにより前記振動針の表面に振動変位
を発生させることを特徴とする超音波励振器。
1. An ultrasonic exciter comprising a piezoelectric vibrator, a vibrating plate fixed to the piezoelectric vibrator, and at least one vibrating needle in contact with the vibrating plate, the surface of the vibrating needle. Part of the vibration plate is in contact with one plate surface of the vibration plate or an inner surface of a through hole that penetrates both plate surfaces of the vibration plate, and the piezoelectric vibrator includes a columnar piezoelectric ceramic and electrodes P and Q. P and Q are formed on both end surfaces of the piezoelectric ceramic which are perpendicular to the thickness direction, and the piezoelectric vibrator has a through hole penetrating in parallel to the thickness direction of the piezoelectric vibrator. The shape of the cross section perpendicular to the thickness direction forms a frame-type structure, and the ratio of the length in the thickness direction and the shortest distance between the outer edge and the inner edge of the frame die is approximately 1, and the diaphragm is Perpendicular to the thickness direction of the piezoelectric vibrator at a position that covers the opening of the through hole or inside the through hole. Substantially parallel to fixed to an end face, divided the periphery of the diaphragm is fixed to the piezoelectric vibrator, at least the electrode P among the electrodes P and Q are two to the portion P 1 and P 2 which are insulated from one another The portion P 1 is provided with a terminal T P1 , the portion P 2 is provided with a terminal T P2 , the electrode Q is provided with a terminal T Q , and the terminal T P1 and the terminal T P1 are provided. Means for exciting the piezoelectric vibrator by applying a voltage having a frequency substantially equal to the resonance frequency of the piezoelectric vibrator to the terminal T Q is provided, and the resonance frequency of the piezoelectric vibrator is The resonance frequency of the composite of the piezoelectric vibrator, the vibrating plate, and the vibrating needle is approximately equal to the surface of the vibrating needle by propagating the excitation of the piezoelectric vibrator to the vibrating needle via the vibrating plate. Generate vibration displacement in Ultrasonic exciter, characterized in that.
【請求項2】 前記振動針が直線状、湾曲状、コイル状
またはそれらの組合せで成る構造を有することを特徴と
する請求項1に記載の超音波励振器。
2. The ultrasonic exciter according to claim 1, wherein the vibrating needle has a linear shape, a curved shape, a coil shape, or a combination thereof.
【請求項3】 前記振動針が少なくとも2つに分岐して
いることを特徴とする請求項2に記載の超音波励振器。
3. The ultrasonic exciter according to claim 2, wherein the vibrating needle is branched into at least two.
【請求項4】 前記振動針の分岐した部分が少なくとも
2つに分岐していることを特徴とする請求項3に記載の
超音波励振器。
4. The ultrasonic exciter according to claim 3, wherein the branched portion of the vibrating needle is branched into at least two.
【請求項5】 前記振動針の長さ方向に垂直な断面の形
が角縁状または環状を成すことを特徴とする請求項2,
3または4に記載の超音波励振器。
5. A vibrating needle having a cross-section perpendicular to the length direction of the vibrating needle, which has a rectangular shape or an annular shape.
The ultrasonic exciter according to 3 or 4.
【請求項6】 前記圧電振動子は角縁状または円環状で
あることを特徴とする請求項1,2,3,4または5に
記載の超音波励振器。
6. The ultrasonic exciter according to claim 1, 2, 3, 4, or 5, wherein the piezoelectric vibrator has a rectangular shape or an annular shape.
【請求項7】 前記圧電振動子励振手段は、直流電源と
前記端子TP1との間に接続された昇圧用のコイルと、出
力電圧端子が前記端子TP1に接続され入力電圧端子が前
記端子TP2に接続されることにより前記端子TP2に現わ
れる圧電気を帰還電圧として受けるトランジスタとを備
え、 前記圧電振動子励振手段は、前記トランジスタを増幅素
子とし前記複合体を共振素子とする自励発振駆動回路を
構成することを特徴とする請求項1,2,3,4,5ま
たは6に記載の超音波励振器。
7. The piezoelectric vibrator exciting means comprises a step-up coil connected between a DC power supply and the terminal T P1 , an output voltage terminal connected to the terminal T P1 and an input voltage terminal connected to the terminal. and a transistor receiving piezoelectric appearing at the terminals T P2 by being connected to a T P2 as a feedback voltage, said piezoelectric vibrator excitation means is self-excited to resonance element the complex and amplifying element the transistor The ultrasonic exciter according to claim 1, 2, 3, 4, 5 or 6, which constitutes an oscillation drive circuit.
JP6211977A 1994-08-13 1994-08-13 Ultrasonic exciter Pending JPH0852427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6211977A JPH0852427A (en) 1994-08-13 1994-08-13 Ultrasonic exciter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6211977A JPH0852427A (en) 1994-08-13 1994-08-13 Ultrasonic exciter

Publications (1)

Publication Number Publication Date
JPH0852427A true JPH0852427A (en) 1996-02-27

Family

ID=16614848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6211977A Pending JPH0852427A (en) 1994-08-13 1994-08-13 Ultrasonic exciter

Country Status (1)

Country Link
JP (1) JPH0852427A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102713078A (en) * 2010-01-15 2012-10-03 新日本制铁株式会社 Pile-driving method and vibration control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102713078A (en) * 2010-01-15 2012-10-03 新日本制铁株式会社 Pile-driving method and vibration control method

Similar Documents

Publication Publication Date Title
US5561337A (en) Ultrasonic vibrating actuator
JP2708250B2 (en) Mass flow detector
US3904896A (en) Piezoelectric oscillator system
US6952072B2 (en) Ultrasonic motor and electronic apparatus utilizing ultrasonic motor
JPH0852216A (en) Ultrasonic inhalator
JPH0852427A (en) Ultrasonic exciter
JP3551421B2 (en) Ultrasonic actuator
JP3769735B2 (en) Ultrasonic exciter
JP3551420B2 (en) Ultrasonic actuator
JPH09225401A (en) Vibration device for notification
JP2006149180A (en) Flat-type piezoelectric ultrasonic motor
JP3083902B2 (en) Ultrasonic atomizer
US5565726A (en) Ultrasonic vibrating actuator
JP3398870B2 (en) Ultrasonic atomizer
JPH0852426A (en) Ultrasonic exciter
JP3708226B2 (en) Flow velocity measuring device
JPH05137359A (en) Ultrasonic vibrator and ultrasonic driving apparatus
JPH08281165A (en) Ultrasonic atomizing device
JPH01264582A (en) Ultrasonic linear motor
JP3111201B2 (en) Ultrasonic device drive circuit
JPH08289574A (en) Ultrasonic actuator
JPH02188169A (en) Ultrasonic motor
JP3527998B2 (en) Ultrasonic deposition equipment
JP2599844B2 (en) Ultrasonic generator
JPH05161877A (en) Piezoelectric ceramic oscillator