JPH0841467A - Coal gasification plant product gas purification method - Google Patents
Coal gasification plant product gas purification methodInfo
- Publication number
- JPH0841467A JPH0841467A JP6175119A JP17511994A JPH0841467A JP H0841467 A JPH0841467 A JP H0841467A JP 6175119 A JP6175119 A JP 6175119A JP 17511994 A JP17511994 A JP 17511994A JP H0841467 A JPH0841467 A JP H0841467A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- slag
- coal gasification
- desulfurization
- bed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Treating Waste Gases (AREA)
- Industrial Gases (AREA)
Abstract
(57)【要約】
【目的】噴流層石炭ガス化プラントの脱塵,脱硫に関係
するガス精製システムを提供する。
【構成】噴流層石炭ガス反応器で生成するガスの精製法
において、反応器の下部からガラス化した固形物を回収
し、的確な粒径分布をもつ固形物を充填する充填塔ある
いは移動層と噴流層反応器の間にサイクロンを設置させ
る脱塵システムを構成させ、反応器から充填層,移動層
の適宜温度域に微粒化した脱硫剤を噴霧させるようにし
た脱塵と脱硫を行わせることを特徴とする。
【効果】本発明は、従来のセラミックフィルタによる場
合に比べ安価であり、除塵性能を調整することが可能で
ある。また、脱硫反応時間を調整できるので高い脱硫性
能が得られる。
(57) [Summary] [Objective] To provide a gas purification system related to dedusting and desulfurization of a spouted bed coal gasification plant. [Structure] In a method for purifying gas produced in a spouted bed coal gas reactor, a packed tower or a moving bed for recovering vitrified solids from the lower part of the reactor and filling the solids with an accurate particle size distribution Establishing a dedusting system with a cyclone installed between spouted bed reactors, and performing dedusting and desulfurization by spraying atomized desulfurizing agent from the reactor to the appropriate temperature range of the packed bed and moving bed. Is characterized by. [Effect] The present invention is less expensive than the conventional ceramic filter, and the dust removal performance can be adjusted. Further, since the desulfurization reaction time can be adjusted, high desulfurization performance can be obtained.
Description
【0001】[0001]
【産業上の利用分野】石炭をガス化し生成するガスのガ
ス精製法及び装置に関し、特に石炭中に含む灰分を溶融
状態で抜き出す噴流層石炭ガス化プラントに好適な生成
ガスのガス精製法を提供する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas refining method and a gas refining method for gasifying coal, and particularly to a gas refining method for a generated gas suitable for a spouted bed coal gasification plant for extracting ash contained in coal in a molten state. To do.
【0002】[0002]
【従来の技術】現状、火力発電ボイラは石炭を燃焼させ
高温ガスを熱交換させスチームタービンにより電力にエ
ネルギ転換する方法が主流である。エネルギ転換効率を
高める目的から石炭をガス化し燃料ガスとする複合発電
プラントが開発されようとしている。このプラントで石
炭をガス化して得られる生成ガスには、固体微粒子とし
てのダストや硫黄化合物,ハロゲン化合物等が含まれて
いる。生成ガスの複合発電プラント以外の多目的な用途
開発からも高効率ガス精製技術が要求されている。2. Description of the Related Art At present, the mainstream of thermal power generation boilers is a method in which coal is burned, high temperature gas is heat-exchanged, and a steam turbine is used to convert energy into electric power. A combined power generation plant that gasifies coal to use as fuel gas is being developed for the purpose of improving energy conversion efficiency. The produced gas obtained by gasifying coal in this plant contains dust as solid fine particles, a sulfur compound, a halogen compound, and the like. High-efficiency gas refining technology is required from the development of multipurpose applications other than the combined power generation plant for generated gas.
【0003】この石炭ガス化反応器は噴流層や流動層方
式が開発されているが、本発明では前者の噴流層石炭ガ
ス化反応器の生成ガスのガス精製法に関する。Although a spouted bed or fluidized bed system has been developed for this coal gasification reactor, the present invention relates to a gas purification method for the product gas of the former spouted bed coal gasification reactor.
【0004】[0004]
【発明が解決しようとする課題】石炭のガス化により生
成するガスを多目的に使用するには、生成ガスを目的に
応じたガス精製が必要になる。本発明では石炭ガス化に
より生成する産業用あるいは複合発電用の燃料ガスを対
象とするガス精製法であり、特に、高効率脱塵と脱硫を
同時に行わせるガス精製が達成できるシステム構成にあ
る。高効率脱塵を目的にするために集塵性能が高い前述
のセラミックフィルタが主流となりつつあるが、高温高
圧下での使用するために、セラミックフィルタの亀裂,
破損の恐れがあり長期間運転に際しての信頼性に問題が
あり改良が急がれている。複合発電プラントに適用した
セラミックフィルタの一部が破損する等の自体になる
と、タービンブレードを摩耗させ多大な損傷を与え、発
電を中止させる緊急事態を招く恐れもある。In order to use the gas produced by the gasification of coal for multiple purposes, it is necessary to purify the produced gas according to the purpose. The present invention is a gas refining method for industrial or combined power generation fuel gas produced by coal gasification, and in particular, has a system configuration capable of achieving high-efficiency dedusting and desulfurization at the same time. The above-mentioned ceramic filter, which has high dust collection performance for the purpose of high-efficiency dust removal, is becoming the mainstream. However, in order to use it under high temperature and high pressure, cracks in the ceramic filter,
There is a risk of damage and there is a problem with reliability during long-term operation, so improvement is urgently needed. If a part of the ceramic filter applied to the combined cycle power plant is damaged itself, the turbine blade may be worn and greatly damaged, which may cause an emergency situation in which power generation is stopped.
【0005】小口径マルチサイクロンのサイクロン個々
の脱塵性能は、タービンブレードの摩耗に影響を及ぼす
3〜5μm以上の大きなばいじんを効率良く除去するこ
とが確認されている。このサイクロンを多数並列に設置
して使用する場合、サイクロン個々に僅かな圧力差が生
じて、サイクロンにより分離されたばいじんが他のサイ
クロン下部より流入する現象があり、これにより集塵性
能が低下しタービンブレードの摩耗の問題を引き起こす
ことが懸念される。また、マルチサイクロンの個々につ
いてのサイクロンは筒径が小さいために、ばいじんを分
離する部分において目詰まりを生じて本来のサイクロン
自体の機能を果たさなくなるという問題も発生する。It has been confirmed that the dust-removing performance of each cyclone of a small-diameter multi-cyclone efficiently removes large dust particles of 3 to 5 μm or more that affect the wear of turbine blades. When multiple cyclones are installed in parallel, a slight pressure difference occurs between the cyclones, and the dust separated by the cyclones may flow in from the bottom of other cyclones, which reduces the dust collection performance. There is concern that it may cause turbine blade wear problems. In addition, since the cyclone of each multi-cyclone has a small tube diameter, there is a problem that clogging occurs at the part for separating dust and so that the original function of the cyclone itself is not fulfilled.
【0006】噴流層石炭ガス化反応器ではばいじんの大
部分は反応器下部から灰分を溶融状態で抜き出すので、
生成ガスに同伴するばいじん量は流動層反応器に比べれ
ば少なくできるが、生成ガスに同伴するばいじんは捕集
が難しい3μm以下の粒径が多い。このサブミクロン粒
子を従来の電気集塵方式で捕集するには、ばいじんの粒
子自体に受ける電荷量が小さく、電界による粒子の移動
速度が遅いので、装置容積が大きくなる欠点につなが
る。また、脱硫剤として添加する微粒石灰石は電気抵抗
が高いために逆電離現象が起こり集塵性能が低下するな
どの問題がある。また、バグフィルタ方式はばいじん粒
径が細かい場合、フィルタの目詰まりが早くなり頻繁に
払い落しを行う必要がり、フィルタの寿命が短くなる問
題点がある。In the spouted bed coal gasification reactor, most of the soot and dust are extracted from the lower part of the reactor in a molten state,
The amount of soot and dust that accompanies the produced gas can be made smaller than that in the fluidized bed reactor, but the soot and dust that accompanies the produced gas has a large particle size of 3 μm or less, which is difficult to collect. In order to collect these submicron particles by the conventional electrostatic precipitating method, the amount of electric charge received by the particles of soot and dust itself is small and the moving speed of the particles due to the electric field is slow, which leads to a drawback that the apparatus volume becomes large. Further, since fine limestone added as a desulfurizing agent has high electric resistance, there is a problem that the reverse ionization phenomenon occurs and the dust collection performance is deteriorated. In addition, the bag filter method has a problem that when the particle size of dust is small, the filter is clogged quickly and it is necessary to frequently remove the filter, which shortens the life of the filter.
【0007】本発明は上記の事情に鑑みてなされたもの
であり、噴流層石炭ガス化反応器から生成するガスから
高効率で固体微粒子を除去することと、同時に脱硫を行
う噴流層ガス化発電プラント用のガス精製法を提供する
ことにある。The present invention has been made in view of the above circumstances, and is a jet-bed gasification power generation system for removing solid fine particles from a gas produced from a jet-bed coal gasification reactor with high efficiency and desulfurization at the same time. It is to provide a gas refining method for a plant.
【0008】[0008]
【課題を解決するための手段】本発明は、高温,高圧,
還元雰囲気の石炭ガス化反応器から生成するガスの精製
法において、石灰石,消石灰,生石灰,酸化バリウム,
水酸化バリウム,炭酸バリウム,酸化マグネシウム,水
酸化マグネシウム,セメントクリンカ,セメントの化合
物から選択するかあるいはその混合物のいずれかを脱硫
剤としてガス温度が1000℃近傍の生成ガス系に噴霧
させた後、その後流に設置するサイクロンに導入するよ
うにし、さらに該サイクロンの後流に設置する噴流層石
炭ガス化反応器の下部から抜き出したスラグを充填した
スラグ充填層を構成させ、該サイクロン出口ガスを該ス
ラグ充填層に導き脱塵と脱硫を行うことを特徴とする。The present invention is directed to high temperature, high pressure,
In the method for refining gas produced from a coal gasification reactor in a reducing atmosphere, limestone, slaked lime, quick lime, barium oxide,
After spraying one of the compounds selected from barium hydroxide, barium carbonate, magnesium oxide, magnesium hydroxide, cement clinker, cement or a mixture thereof as a desulfurizing agent into the produced gas system having a gas temperature of around 1000 ° C, Introduced into a cyclone to be installed in the subsequent flow, further to form a slag packed bed filled with slag extracted from the lower part of the spouted bed coal gasification reactor to be installed in the downstream of the cyclone, the cyclone outlet gas It is characterized by conducting dust removal and desulfurization by introducing it to a slag packed bed.
【0009】また、前記のスラグ充填層を生成ガスの流
れに並列に複数層を設置させ、生成ガスを流通している
スラグ充填部の通風損失あるいは固体微粒子の積層厚さ
が設定の値を検知したら生成ガスを導入しているスラグ
充填層を新たなスラグを充填した充填層の構成部に生成
ガスの流路を切り替えるようにして行う脱塵と脱硫を行
うことを特徴とする。In addition, a plurality of layers are provided in parallel with the slag filling layer in the flow of the generated gas, and the ventilation loss of the slag filling portion in which the generated gas is flowing or the stacking thickness of the solid fine particles detects a set value. Then, the slag packed bed in which the generated gas is introduced is characterized in that dedusting and desulfurization are performed by switching the flow path of the generated gas to the constituent part of the packed bed filled with new slag.
【0010】また、前記サイクロンの後流に噴流層石炭
ガス化反応器から抜き出したスラグの移動層を形成させ
生成ガス中の脱塵と脱硫を行うようにしたことを特徴と
する。Further, a moving bed of the slag extracted from the spouted bed coal gasification reactor is formed in the wake of the cyclone to remove dust and desulfurize the produced gas.
【0011】また、前記スラグ充填層,スラグ移動層か
ら抜き出したスラグと固体微粒子を分級しスラグの一部
を再循環させ脱塵と脱硫を行うことを特徴とする。Further, the slag and the solid fine particles extracted from the slag packed layer and the slag moving layer are classified, and a part of the slag is recirculated to perform dust removal and desulfurization.
【0012】また、前記固体微粒子を酸素過剰条件で燃
焼させることで固体微粒子中の硫黄化合物を酸化し二酸
化硫黄ガスとして発生させ、この二酸化硫黄を含む石灰
石スラリと接触させ硫酸カルシウムに硫黄酸化物を酸化
させ、再生した固体微粒子の一部を前記適宜ガス温度域
のガス流路に噴霧させるようにし脱塵と脱硫を行うこと
を特徴とする。Further, the solid fine particles are burned under an oxygen excess condition to oxidize the sulfur compounds in the solid fine particles to generate sulfur dioxide gas, which is then brought into contact with a limestone slurry containing sulfur dioxide, and calcium sulfate is mixed with sulfur oxides. It is characterized in that dust and desulfurization are performed by spraying a part of the solid fine particles that have been oxidized and regenerated to the gas flow path in the appropriate gas temperature range.
【0013】また、前記固体微粒子を酸素過剰条件で燃
焼させることで固体微粒子中の硫黄化合物を酸化し二酸
化硫黄ガスとして発生させ、二酸化硫黄ガスを除去した
固体微粒子を水に懸濁させたスラリにより該硫黄酸化物
を吸収させるようにしたことを特徴とする。The solid fine particles are burned under an oxygen excess condition to oxidize the sulfur compounds in the solid fine particles to generate sulfur dioxide gas, and the solid fine particles from which the sulfur dioxide gas has been removed are suspended in water by a slurry. It is characterized in that the sulfur oxide is absorbed.
【0014】本願発明は、高効率脱塵と脱硫を同時に達
成させるために、噴流層石炭ガス化反応器から抜き出す
スラグを高効率脱塵のフィルト剤とするスラグ充填層を
構成させ、Ca,Mg系の微粒吸収剤の脱硫反応を10
00℃近傍の温度領域に噴霧させスラグ充填層で脱硫剤
を含む固体微粒子を捕集するシステム構成により、脱
硫反応に必要な滞留時間を長くでき脱硫性能を高める、
本発明のスラグ積層高さと固体微粒子の積層高さを調
整することによりフィルト機能を変化させることができ
るので脱塵性能を所定の値に維持することができる。According to the present invention, in order to achieve high-efficiency dedusting and desulfurization at the same time, a slag packed layer is formed by using slag extracted from a spouted bed coal gasification reactor as a high-efficiency dedusting filter agent, and Ca, Mg Of the desulfurization reaction of the fine-particle absorbent of the system
With a system configuration in which solid particles containing a desulfurizing agent are collected by spraying in a temperature region near 00 ° C. in a slag packed bed, the residence time required for the desulfurization reaction can be lengthened and the desulfurization performance can be improved.
By adjusting the slag stacking height and the solid fine particle stacking height of the present invention, the filter function can be changed, so that the dust removal performance can be maintained at a predetermined value.
【0015】[0015]
【作用】本発明の噴流層石炭ガス化発電プラントの高効
率脱塵と脱硫作用について以下に説明する。噴流層ガス
化反応器は微粒石炭と酸素(酸素ガス或いは空気)を同
時に供給し石炭の一部を燃焼させると同時に他の石炭を
熱分解し燃料ガスの生成と灰分を溶融させる機能であ
る。通常の石炭中には8〜15%の灰分が含まれてお
り、噴流層石炭ガス化反応器ではこの灰分を1450〜
1600℃温度で溶融して噴流層石炭ガス化反応器から
抜き出す。石炭灰自体の主成分はシリカ,アルミナであ
り溶融するとガラス状の安定な固形物が回収できる。こ
の固形物をスラグと呼び、灰分より減容されているので
取扱いも容易で通常は投棄することが対象である。本発
明はこの灰分のガラス状化したスラグを1〜5mm程度の
適宜な粒径分布に粉砕したものを脱塵を行うフィルト剤
にすることで使い捨て可能な高性能脱塵システムを構成
させることにある。即ち、このスラグをフィルト剤とし
たスラグ充填層あるいはスラグ移動層により生成ガスに
含まれる固体微粒子を捕集するガス精製法である。集塵
機能は図1の充填層39の点線で囲った部分を拡大し示
した状態を図4に示す。固体微粒子,脱硫剤,スラグ粒
子の積層状態を示す。従って、スラグ充填層にダストあ
るいは脱硫剤粒子が捕集されそれぞれの積層高さが高く
なると通風損失に対応して集塵性能を高めることができ
る。構造的にスラグ(ガラス状固形物となっていること
もある)6はメッシュ金網や孔のあいた多孔板102で
支えられており、ダスト101や脱硫剤粒子100が積
層し、積層高さが高くなるに従い集塵性能が徐々に高ま
る。集塵効率はフィルト剤の粒径,積層厚さ,ガス流
速,運転経過時間による固体微粒子の積層厚さの変化す
ることにより影響する。The high-efficiency dedusting and desulfurization action of the spouted bed coal gasification power plant of the present invention will be described below. The spouted bed gasification reactor has a function of simultaneously supplying fine coal and oxygen (oxygen gas or air) to burn a part of coal and at the same time thermally decomposing other coal to generate fuel gas and melt ash. Ordinary coal contains 8 to 15% of ash, and the spouted bed coal gasification reactor has 1450 to 100% of this ash.
Melt at a temperature of 1600 ° C. and withdraw from the spouted bed coal gasification reactor. The main components of coal ash itself are silica and alumina, and stable glassy solids can be collected when melted. This solid matter is called slag, and since it is reduced in volume from ash content, it is easy to handle and it is usually targeted for disposal. The present invention is to construct a disposable high-performance dust removal system by using a glass-like slag of this ash crushed to an appropriate particle size distribution of about 1 to 5 mm as a filter agent for dust removal. is there. That is, it is a gas purification method in which solid fine particles contained in the produced gas are collected by a slag packed bed or a slag moving bed using this slag as a filtering agent. FIG. 4 shows a state in which the dust collecting function is an enlarged view of the portion surrounded by the dotted line of the packed bed 39 in FIG. The state of lamination of solid fine particles, desulfurizing agent, and slag particles is shown. Therefore, when dust or desulfurizing agent particles are collected in the slag packed bed and the respective stack heights increase, the dust collection performance can be improved in response to ventilation loss. Structurally, the slag (which may be a glassy solid) 6 is supported by a mesh wire netting or a perforated plate 102 with holes, dust 101 and desulfurizing agent particles 100 are stacked, and the stack height is high. The dust collection performance gradually increases as it becomes. The dust collection efficiency is affected by changes in the particle size of the filtering agent, the stacking thickness, the gas flow rate, and the stacking thickness of the solid particles depending on the elapsed operating time.
【0016】高脱塵機能以外に本発明のもう一つの機能
は、脱硫用の吸収剤を反応器或いはガス流路に噴霧させ
脱硫を行わせスラグ充填層で滞留時間を長くして脱硫反
応を高める点である。それぞれ吸収剤は最適な反応温度
条件と滞留時間が必要である。代表的な石灰石の場合は
800℃近傍から活発にCaO化反応が起こる。CaOの
反応活性について多くの実験結果から判断すると100
0〜1100℃近傍が最も高くなる。従って、石灰石を
脱硫剤に使う場合、反応器からガス流路で最適な温度条
件を選定し噴霧することである。同じCa系吸収剤でも
消石灰の場合はCaOの生成反応は400℃近傍から起
こる。脱硫反応はCaOと石炭の熱分解により生成する
硫化水素との反応であり、反応生成物はCaSが主成分
である。この時のCaOとの反応は表面反応でありCa
Oの粒径,滞留時間で決まる。噴流層ガス化反応器から
ガスタービンにいたるガス流路での滞留時間は数秒であ
り、脱硫反応には充分な時間である。本発明ではスラグ
を充填した充填層で未反応CaO,反応生成物CaO,
ダスト等の固体微粒子を捕集することにより、未反応C
aOの反応率を高めること、さらに充填層に積層する固
体微粒子の厚さを調整することにより前述した高効率脱
塵を行う機能を達成させることができ、噴流層石炭ガス
化発電プラント用の燃料ガスとしてさらには多目的の生
成ガスのガス精製法を提供できる。In addition to the high dedusting function, another function of the present invention is to perform desulfurization by spraying an absorbent for desulfurization into a reactor or a gas flow passage to perform desulfurization and prolong the residence time in a slag packed bed to carry out desulfurization reaction. It is a point to raise. Each absorbent needs optimum reaction temperature conditions and residence time. In the case of typical limestone, the CaO reaction actively occurs at around 800 ° C. Judging from many experimental results, the reaction activity of CaO is 100.
The highest temperature is around 0 to 1100 ° C. Therefore, when using limestone as a desulfurizing agent, it is necessary to select the optimum temperature condition in the gas flow path from the reactor and spray. Even with the same Ca-based absorbent, in the case of slaked lime, the CaO formation reaction occurs from around 400 ° C. The desulfurization reaction is a reaction between CaO and hydrogen sulfide produced by thermal decomposition of coal, and the reaction product is mainly composed of CaS. The reaction with CaO at this time is a surface reaction and Ca
Determined by particle size of O and residence time. The residence time in the gas flow path from the spouted bed gasification reactor to the gas turbine is several seconds, which is a sufficient time for the desulfurization reaction. In the present invention, unreacted CaO, reaction product CaO,
By collecting solid fine particles such as dust, unreacted C
By increasing the reaction rate of aO and adjusting the thickness of the solid fine particles stacked in the packed bed, it is possible to achieve the above-described function of performing highly efficient dedusting, which is a fuel for a spouted bed coal gasification power plant. Further, as a gas, a gas purification method of a multipurpose product gas can be provided.
【0017】図2は本発明を使用することができる噴流
層石炭ガス化反応器とガス精製系の一例を示す。噴流層
石炭ガス化反応器1は、微粉砕した石炭4を空気あるい
は酸素ガス5を同時に反応器内に送り石炭の一部を燃焼
させ石炭の熱分解と灰分を溶融させる熱源とするシステ
ムが特徴である。この時、噴流層石炭ガス化器1の下部
では石炭に含まれる灰分を1500から1600℃の温
度で溶融させ灰分の容積を減容させる機能があり、溶融
した灰分(ガラス状固形物)6は噴流層石炭ガス化反応
器1から固形物(スラグ)抜き出す。この噴流層石炭ガ
ス化反応器1から抜き出す溶融灰分6は抜き出した時点
で冷却しガラス化した安定なスラグとして回収される。
通常、このスラグは安定な物質であり投棄が対象であ
る。FIG. 2 shows an example of a spouted bed coal gasification reactor and gas purification system in which the present invention may be used. The spouted bed coal gasification reactor 1 is characterized by a system in which finely pulverized coal 4 is simultaneously fed with air or oxygen gas 5 into the reactor to burn a part of the coal to thermally decompose the coal and melt ash. Is. At this time, in the lower part of the spouted bed coal gasifier 1, there is a function of melting the ash contained in coal at a temperature of 1500 to 1600 ° C. to reduce the volume of the ash, and the molten ash (glassy solid) 6 is Solid matter (slag) is extracted from the spouted bed coal gasification reactor 1. The molten ash content 6 extracted from the spouted bed coal gasification reactor 1 is cooled at the time of extraction and is recovered as vitrified stable slag.
Usually, this slag is a stable substance and is targeted for dumping.
【0018】噴流層石炭ガス化反応器1からの生成ガス
17は、温度が800〜1000℃近傍でありこれを熱
交換器(例えば冷却器となることができる)7に送り4
00℃に冷却して脱塵器9に送る。ここで石炭ガス化残
留物と脱硫剤2を同時に捕集する。捕集した固体微粒子
は脱硫装置11に送り、精製された生成ガスは燃料電池
用の燃料ガス13,本発明が対象である複合発電プラン
トの燃料ガス14さらには合成ガスや水素製造プラント
15の原料ガスとして多目的に使用される。The produced gas 17 from the spouted bed coal gasification reactor 1 has a temperature near 800 to 1000 ° C. and is sent to a heat exchanger (which can be, for example, a cooler) 7 4
It is cooled to 00 ° C. and sent to the dust remover 9. Here, the coal gasification residue and the desulfurization agent 2 are simultaneously collected. The collected solid fine particles are sent to the desulfurization device 11, and the purified product gas is the fuel gas 13 for the fuel cell, the fuel gas 14 of the combined power generation plant to which the present invention is applied, and the raw material of the synthesis gas and the hydrogen production plant 15. Used as a gas for multiple purposes.
【0019】詳しくは生成ガス中には固体微粒子として
灰分や未燃カーボン,有害ガスとして硫黄化合物,ハロ
ゲン化合物が含まれており、これを除去するためのガス
精製法については種々報告されている。生成ガスには灰
分,未燃カーボンの固体微粒子が含まれる。これを分離
除去するには、高温バグフィルタ,セラミックキヤンド
ルフィルタ,マルチサイクロン,グラニュラベッド,電
気集塵器等が報告されている。脱塵性能は脱塵法により
異なるが処理後のダスト濃度は単位立方メートル当たり
5〜30ミリグラム程度に低減することができる。Specifically, the produced gas contains ash and unburned carbon as solid fine particles and sulfur compounds and halogen compounds as harmful gases, and various gas purification methods for removing these have been reported. The produced gas contains ash and solid particles of unburned carbon. In order to separate and remove this, high temperature bag filters, ceramic candle filters, multi cyclones, granular beds, electrostatic precipitators, etc. have been reported. Although the dust removal performance varies depending on the dust removal method, the dust concentration after the treatment can be reduced to about 5 to 30 mg per cubic meter.
【0020】生成ガスにはダスト以外に硫黄化合物,ハ
ロゲン化合物が含まれる。これらを除去する吸収剤ある
いは吸着剤としては、Fe2O3,Fe2O3−TiO2,Fe
2O3−アルミナ,Zn−Fe,Zn−Ti,Co−Ti
O2 などが報告されている。また、反応器内脱硫法とし
てCa,Mg系の微粒化した物を反応器内に噴霧する方
法が検討されている。また、脱硫剤と並行してハロゲン
化合物を除去するためにNaHCO3 を投入し、NaC
lNaFの化合物として除去する方法が報告されてい
る。また、生成ガスをガスタービン複合発電用燃料ガス
とする場合、生成ガス中のNH3 ガスはガスタービンで
窒素酸化物に酸化されるのでNi系触媒やゼオライト吸
着剤による除去法が検討されている。The produced gas contains sulfur compounds and halogen compounds in addition to dust. As an absorbent or an adsorbent for removing these, Fe 2 O 3 , Fe 2 O 3 -TiO 2 , Fe
2 O 3 -alumina, Zn-Fe, Zn-Ti, Co-Ti
O 2 etc. have been reported. Further, as a method for desulfurization in the reactor, a method of spraying a Ca, Mg-based atomized product into the reactor has been studied. In addition, NaHCO 3 was added in parallel with the desulfurizing agent to remove halogen compounds,
A method of removing it as a compound of 1NaF has been reported. Further, when the generated gas is used as a fuel gas for gas turbine combined power generation, NH 3 gas in the generated gas is oxidized to nitrogen oxides in the gas turbine, so a removal method using a Ni-based catalyst or a zeolite adsorbent is being studied. .
【0021】[0021]
(実施例1)本発明の噴流層石炭ガス化プラントの代表
的なガス精製法の実施例を図1に示す。噴流層石炭ガス
化反応器1には石炭(微粒石炭)4と酸素ガスあるいは
空気5が供給される。供給した石炭4の一部が燃焼し石
炭の熱分解熱源と灰分の溶融熱源に供与される。溶融し
た灰分6は石炭ガス化反応器1外に抜き出される。溶融
した灰分は冷却後にスラグとして回収される。石炭の熱
分解によって生成する生成ガス3は流路17を通り、図
2に示す従来法のガス冷却器7を経て適宜温度に冷却後
にサイクロン30に導き生成ガス中の固体微粒子の部分
的な固体微粒子を50〜70%の割合で粗取りし、捕集
された固体微粒子38は系外に抜き出す。生成ガス31
は、ガラス状の固形物37を充填した充填層39に導入
する。生成ガス中の固体微粒子36は充填層39中のガ
ラス状の固形物37に捕集される。充填層aは通風損失
あるいは固体微粒子36の層厚を検知し所定の値以上に
なったら充填層aに流通している生成ガス31を切り替
え弁32により充填層bに流通させる。固体微粒子を除
去した生成ガスは流れ35からガスタービンに供給す
る。充填層aは固体微粒子とガラス状の固形物を抜き出
し新たにガラス状の固形物を充填する。(Example 1) FIG. 1 shows an example of a typical gas refining method of a spouted bed coal gasification plant of the present invention. The spouted bed coal gasification reactor 1 is supplied with coal (fine coal) 4 and oxygen gas or air 5. Part of the supplied coal 4 is burned and supplied to the thermal decomposition heat source of coal and the melting heat source of ash. The melted ash 6 is extracted to the outside of the coal gasification reactor 1. The molten ash is collected as slag after cooling. The produced gas 3 produced by the thermal decomposition of coal passes through the flow path 17, passes through the conventional gas cooler 7 shown in FIG. 2 and is cooled to an appropriate temperature and then introduced into the cyclone 30 to partially solidify solid fine particles in the produced gas. The fine particles are roughly taken at a rate of 50 to 70%, and the collected solid fine particles 38 are taken out of the system. Product gas 31
Is introduced into the filling layer 39 filled with the glassy solid material 37. The solid fine particles 36 in the produced gas are collected by the glass-like solid material 37 in the packed bed 39. The packed bed a detects the ventilation loss or the layer thickness of the solid fine particles 36, and when the value exceeds a predetermined value, the generated gas 31 flowing in the packed bed a is circulated to the packed bed b by a switching valve 32. The product gas from which solid particulates have been removed is fed from stream 35 to the gas turbine. The filling layer a is made by extracting solid fine particles and glassy solid matter and newly filling them with glassy solid matter.
【0022】本発明では集塵性能及び脱硫性能を高める
ために、噴流層石炭ガス化反応器から充填層群(点線部
分)のガス流路間で、ガス温度が1000℃近傍から石
灰石を噴霧させることで脱硫が起こる。(1)式の生石
灰化反応は温度800℃以上で活発に進行し、その最適
な温度は1000〜1100℃にあり、あまり高温にな
るとCaOの表面がシンタリングを起こし(2)式の脱
硫反応が低下する。In the present invention, in order to improve the dust collection performance and the desulfurization performance, limestone is sprayed from the spouted bed coal gasification reactor between the gas channels of the packed bed group (dotted line portion) at a gas temperature of around 1000 ° C. This causes desulfurization. The quick calcification reaction of the formula (1) actively progresses at a temperature of 800 ° C. or higher, and the optimum temperature is 1000 to 1100 ° C. When the temperature becomes too high, the CaO surface causes sintering and the desulfurization reaction of the formula (2). Is reduced.
【0023】 CaCO3→CaO+CO2 …(1) CaO+H2S→CaS+H2O …(2) また、吸収剤にCa(OH)2 を用いる場合、(3)式の
ように生石灰化反応は400℃近傍から起こるので噴流
層反応器の系外となるガス流通系に噴霧することもでき
る。CaCO 3 → CaO + CO 2 (1) CaO + H 2 S → CaS + H 2 O (2) When Ca (OH) 2 is used as the absorbent, the quick calcification reaction is 400 ° C. as shown in the formula (3). Since it occurs from the vicinity, it can be sprayed to the gas flow system outside the system of the spouted bed reactor.
【0024】 Ca(OH)2→CaO+H2O …(3) (実施例2)本発明の噴流層石炭ガス化プラントのガス
精製法の実施例を図3に示す。図3の実施例は図1の流
れ31までは基本的に同じであり、図1の充填層39に
代わる移動層43の適用例である。移動層45には噴流
層石炭ガス化反応器1の下部から抜き出したガラス状固
形物(溶融灰分)6を冷却したガラス状固形物をホッパ
41に供給する。ホッパ41内のガラス状固形物6は流
れ42から移動層43に供給する。ガラス状の移動層4
3は自重でゆっくり下部に移動させ流れ46からホッパ
ー47に貯め、それを分級器48に送り、捕集した灰
分,未燃カーボン,脱硫剤とガラス状の固形物49を分
離する。ガラス状の固形物49の一部はホッパー41に
使用できるが大部分は投棄が対象である。一方、分級さ
れた灰分,未燃カーボン,脱硫剤には硫黄化合物が大部
分はCaSの形で含まれているのでこれを処理する。処
理法の代表例はCaSを酸素過剰状態で燃焼させると硫
黄酸化物が発生するのでこれを石灰石の懸濁液と接触さ
せることで安定な石膏として回収できる。CaSの燃
焼,石灰石の懸濁液との吸収反応は以下のように起こ
る。Ca (OH) 2 → CaO + H 2 O (3) (Example 2) FIG. 3 shows an example of the gas purification method of the spouted bed coal gasification plant of the present invention. The embodiment of FIG. 3 is basically the same up to the flow 31 of FIG. 1, and is an application example of the moving bed 43 instead of the packed bed 39 of FIG. To the moving bed 45, the glassy solid obtained by cooling the glassy solid (molten ash) 6 extracted from the lower portion of the spouted bed coal gasification reactor 1 is supplied to the hopper 41. The vitreous solids 6 in the hopper 41 are fed from the stream 42 to the moving bed 43. Glassy moving layer 4
3 is slowly moved to the lower part by its own weight and is stored in the hopper 47 from the flow 46 and sent to the classifier 48 to separate the collected ash, unburned carbon, desulfurizing agent and glassy solid 49. A part of the glassy solid material 49 can be used in the hopper 41, but most of the solid material 49 is intended for disposal. On the other hand, most of the classified ash, unburned carbon, and desulfurization agent contain sulfur compounds in the form of CaS, and therefore these are treated. A typical example of the treatment method is that when CaS is burned in an oxygen-excessive state, sulfur oxides are generated. Therefore, by contacting this with a suspension of limestone, stable gypsum can be recovered. The combustion of CaS and the absorption reaction with the suspension of limestone occur as follows.
【0025】 CaS+3/2O2→CaO+SO2 …(4) C+O2→CO2 …(5) CaCO3→CaO+CO2 …(6) CaO+1/2O2+SO2→CaSO4 …(7) 固体微粒子の酸素過剰状態での燃焼は主に(4),
(5),(6)の反応が起こる。(5)式の反応は固体微
粒子として捕集された未燃カーボンであり、(6)式の
反応は石灰石を脱硫剤としたとき、熱分解で生成したC
aOが生成ガス中のCO2 と反応したCaCO3が燃焼
過程で再度CaOになる反応である。(4)で生成する
SO2 ガスは空気を同伴させ石灰石の懸濁液と接触させ
ると(7)式の反応が起こり石膏が回収できる。従っ
て、(4)式で生成するCaOは高温雰囲気に吹き込む
ことにより脱硫剤として、また、水に懸濁させると消化
反応により消石灰(Ca(OH)2)となる。この消石灰
(Ca(OH)2)は水に懸濁した液を(4)式のガスと接
触させると、一旦、CaSO3として固定されるが、こ
れを液相で酸化させるとCaSO4として回収できる。
CaSO4は液相酸化反応では二水塩の石膏として回収
される。CaS + 3 / 2O 2 → CaO + SO 2 (4) C + O 2 → CO 2 (5) CaCO 3 → CaO + CO 2 (6) CaO + 1 / 2O 2 + SO 2 → CaSO 4 (7) Oxygen excess of solid fine particles Combustion in the state is mainly (4),
The reactions (5) and (6) occur. The reaction of the formula (5) is unburned carbon collected as solid fine particles, and the reaction of the formula (6) is C generated by thermal decomposition when limestone is used as a desulfurizing agent.
CaO 3 in which aO reacts with CO 2 in the produced gas becomes CaO again in the combustion process. When the SO 2 gas generated in (4) is brought into contact with a suspension of limestone accompanied with air, the reaction of the formula (7) occurs and gypsum can be recovered. Therefore, CaO generated by the formula (4) becomes slaked lime (Ca (OH) 2 ) as a desulfurizing agent by blowing it into a high-temperature atmosphere, and when suspended in water by digestion reaction. This slaked lime (Ca (OH) 2 ) is once fixed as CaSO 3 when the liquid suspended in water is brought into contact with the gas of formula (4), but it is recovered as CaSO 4 when it is oxidized in the liquid phase. it can.
CaSO 4 is recovered as dihydrate gypsum in the liquid phase oxidation reaction.
【0026】(実施例3)脱硫剤は石灰石,消石灰,生
石灰,酸化バリウム,水酸化バリウム,炭酸バリウム,
酸化マグネシウム,水酸化マグネシウム,セメントクリ
ンカ,セメント等が使用できる。それぞれの脱硫剤はそ
れぞれ熱分解しCaO,BaO,MgOとなり生成ガス
中のH2S と反応しCaS,BaS,MgSの硫黄化合
物を生成する。セメントクリンカ,セメントの主成分が
CaO,SiO2,Al2O3 でありH2S との脱硫反応
は前述の酸化物と同様である。(Example 3) The desulfurizing agent is limestone, slaked lime, quick lime, barium oxide, barium hydroxide, barium carbonate,
Magnesium oxide, magnesium hydroxide, cement clinker, cement, etc. can be used. Each desulfurizing agent is thermally decomposed into CaO, BaO, MgO and reacts with H 2 S in the produced gas to produce a sulfur compound of CaS, BaS, MgS. The main components of cement clinker and cement are CaO, SiO 2 , and Al 2 O 3 , and the desulfurization reaction with H 2 S is the same as that of the above-mentioned oxide.
【0027】このうちで安価な石灰石、消灰石が用いら
れる場合が多く、図5に生成ガス中のCO2,H2O分圧
と分解温度の関係を自由エネルギ関係から推定すると、
生成ガス中のCO2 濃度が10%の場合の石灰石分解温
度は770℃近傍から活発に分解し始め、生成ガス中の
水分が10%の場合には398℃近傍から消石灰の分解
反応が進行する。CO2,H2Oの濃度が少ないときはそ
れぞれの分解開始温度は低くできる。従って、微粒石灰
石を脱硫剤にするには噴流層石炭ガス化反応器のガス温
度が1000〜1100℃領域に微粒石灰石を噴霧する
ことでCaOと脱硫反応が進行する。また、脱硫剤に消
石灰を使う場合には生成ガスの温度が500〜600℃
に噴霧することができる。Of these, inexpensive limestone and slaked ash are often used, and the relationship between the partial pressures of CO 2 and H 2 O in the produced gas and the decomposition temperature is estimated from the free energy relationship in FIG.
When the CO 2 concentration in the produced gas is 10%, the limestone decomposition temperature begins to be actively decomposed from around 770 ° C, and when the moisture in the produced gas is 10%, the decomposition reaction of slaked lime proceeds from around 398 ° C. . When the concentrations of CO 2 and H 2 O are low, the decomposition start temperature of each can be lowered. Therefore, in order to use fine limestone as a desulfurizing agent, CaO and desulfurization reaction proceed by spraying fine limestone in the gas temperature range of the spouted bed coal gasification reactor in the range of 1000 to 1100 ° C. When slaked lime is used as the desulfurizing agent, the temperature of the produced gas is 500 to 600 ° C.
Can be sprayed on.
【0028】(実施例4)平均粒径10μmの石灰石を
脱硫剤とし硫化水素700ppm を含む模擬ガスによる温
度1000℃での脱硫実験結果、平均粒径10μmの飛
行滞留時間とCaO化とCaS生成の同時反応を調べた結
果、Ca/S=2の場合、滞留時間1.2秒で78%,
2.2秒で92%,滞留時間が3秒では94.5%であっ
た。Ca/Sを2.5 に高めると脱硫率は飛躍的に高ま
り、滞留時間2.2 秒で95%であった。また、脱硫率
は脱硫剤の噴霧速度に大きく影響し、排ガスと脱硫剤の
噴霧速度の差が大きくなるほど脱硫率が高くなる。(Example 4) As a result of desulfurization experiment at a temperature of 1000 ° C. with a simulated gas containing 700 ppm of hydrogen sulfide using limestone having an average particle diameter of 10 μm as a desulfurizing agent, flight residence time of 10 μm in average particle diameter and CaO formation and CaS formation were confirmed. As a result of examining the simultaneous reaction, in the case of Ca / S = 2, 78% at a residence time of 1.2 seconds,
It was 92% at 2.2 seconds and 94.5% at residence time of 3 seconds. When the Ca / S was increased to 2.5, the desulfurization rate dramatically increased, and it was 95% at the residence time of 2.2 seconds. Further, the desulfurization rate has a great influence on the spray rate of the desulfurizing agent, and the desulfurization rate increases as the difference between the spray rates of the exhaust gas and the desulfurizing agent increases.
【0029】(実施例5)石灰石,消石灰,生石灰,酸
化バリウム,水酸化バリウム,炭酸バリウム,酸化マグ
ネシウム,水酸化マグネシウム,セメントクリンカ,セ
メントそれぞれについて硫化水素700ppm を含む模擬
ガスによる温度1000℃、Ca/Sが2の場合につい
ての脱硫率を調べた。石灰石のCaOとSO2 の反応率
を1とした場合、消石灰,生石灰,酸化バリウム,水酸
化バリウム,炭酸バリウム,酸化マグネシウム,水酸化
マグネシウム,セメントクリンカ,セメントはそれぞれ
1.4,1.3,1.2,1.35,1.1,1.2,1.25,
1.35及び1.12であった。なお、セメント,セメン
トクリンカは元素分析からCaOの含有量から評価し
た。(Embodiment 5) Limestone, slaked lime, quicklime, barium oxide, barium hydroxide, barium carbonate, magnesium oxide, magnesium hydroxide, cement clinker and cement, each having a simulated gas containing 700 ppm of hydrogen sulfide at a temperature of 1000 ° C., Ca The desulfurization rate was investigated when / S was 2. When the reaction rate of CaO and SO 2 in limestone is 1, slaked lime, quick lime, barium oxide, barium hydroxide, barium carbonate, magnesium oxide, magnesium hydroxide, cement clinker, and cement are respectively
1.4, 1.3, 1.2, 1.35, 1.1, 1.2, 1.25,
They were 1.35 and 1.12. Cement and cement clinker were evaluated from the content of CaO by elemental analysis.
【0030】(実施例6)また、充填層及び移動層の集
塵性能は本発明のガラス状の固形物粒径,層厚,排ガス
流速,ダストの積層厚さに比例する。充填層及び移動層
に充填するガラス状の固形物の平均粒径を2500μm
の場合、0.1m に積層したときの通風損失は充填塔,
移動層で大差なく470から550mmaqである。これ
にダストの固体微粒子が12mm積層したときの通風損失
は250mm上昇した。このときの集塵性能は入り口ダス
ト濃度が立方メータ当たり1.1 gのとき、97%であ
った。移動層の除塵率は充填層より低くなり94.5 %
であった。除塵率はガラス状の固形物の粒径分布が同じ
であれば、ダスト積層高さと排ガス流速に影響し、積層
厚さが5mmのとき充填層の場合91.4 %で、20mmに
増加したとこの除塵率は97.4 %であった。(Embodiment 6) Further, the dust collecting performance of the packed bed and the moving bed is proportional to the particle size of the glassy solid of the present invention, the layer thickness, the exhaust gas flow rate, and the dust stacking thickness. The average particle size of the glassy solids packed in the packed bed and the moving bed is 2500 μm.
In the case of, the ventilation loss when laminated to 0.1 m is
It is 470 to 550 mmaq in the moving bed. Ventilation loss increased by 250 mm when 12 mm of solid particles of dust were laminated on this. The dust collection performance at this time was 97% when the inlet dust concentration was 1.1 g per cubic meter. Dust removal rate of moving bed is lower than packed bed 94.5%
Met. If the particle size distribution of glassy solids is the same, the dust removal rate affects the dust stack height and the exhaust gas flow velocity, and when the stack thickness is 5 mm, it is 91.4% in the case of the packed bed, and increases to 20 mm. The dust removal rate was 97.4%.
【0031】以上の本発明法によるガス精製法におい
て、噴流層石炭ガス化反応器,サイクロン,充填層或い
は移動層の組合せたガス精製法システムで、適宜温度域
に脱硫用の吸収剤を微粒化状態で噴霧させることにより
脱硫と共に脱塵性能を高めることができる。In the gas refining method according to the method of the present invention described above, a desulfurization absorbent is atomized to an appropriate temperature range in a gas refining method system in which a spouted bed coal gasification reactor, a cyclone, a packed bed or a moving bed are combined. By spraying in the state, it is possible to improve desulfurization and dust removal performance.
【0032】[0032]
【発明の効果】本発明は、従来のようなセラミックフィ
ルタによる場合に比べ安価であり、また、除塵性能を調
整することが可能である。また、脱硫反応時間を調整で
きるので高い脱硫性能が得られる。充填塔,移動層で捕
集される固体微粒子は本発明のガラス状固形物と分離さ
せ噴流層反応器とは関係なく安定化処理することがで
き、硫黄酸化物を除去した固体微粒子はSO2 吸収剤と
して循環使用できる。The present invention is less expensive than the conventional ceramic filter, and the dust removal performance can be adjusted. Further, since the desulfurization reaction time can be adjusted, high desulfurization performance can be obtained. Packed column, the solid particles are collected in transfer layer can be treated stabilized regardless of the glassy solid and was separated spouted bed reactor of the present invention, solid particulate removing sulfur oxides SO 2 Can be reused as an absorbent.
【図1】本発明の代表的な噴流層石炭ガス化プラントの
ガス精製システム。FIG. 1 is a gas purification system for a typical spouted bed coal gasification plant of the present invention.
【図2】本発明を使用することができる噴流層石炭ガス
化プラントのガス精製システムの一例。FIG. 2 is an example of a gas purification system for a spouted bed coal gasification plant in which the present invention can be used.
【図3】本発明の移動層とサイクロンを組み合わせたガ
ス精製システム。FIG. 3 is a gas purification system combining the moving bed of the present invention and a cyclone.
【図4】ガラス状固形物のダスト,脱硫剤のフイルト作
用原理図。FIG. 4 is a diagram showing the principle of a glass solid dust and a desulfurizing agent filter action.
【図5】代表的脱硫剤の分解温度。FIG. 5: Decomposition temperature of representative desulfurizing agents.
1…噴流層石炭ガス化反応器、2…脱硫剤、4…石炭、
5…空気あるいは酸素ガス、6…ガラス状固形物、7…
冷却器、9…除塵器、10,35,44…生成ガス、3
0…サイクロン、32…切り替え弁、38…固体微粒
子、39…充填層、43…移動層、47…ホッパー、4
8…分級器。1 ... Spouted bed coal gasification reactor, 2 ... Desulfurizing agent, 4 ... Coal,
5 ... Air or oxygen gas, 6 ... Glassy solid matter, 7 ...
Cooler, 9 ... Dust remover, 10, 35, 44 ... Generated gas, 3
0 ... Cyclone, 32 ... Switching valve, 38 ... Solid particulates, 39 ... Packed bed, 43 ... Moving bed, 47 ... Hopper, 4
8 ... Classifier.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C10J 3/54 J 3/72 F C10K 1/28 1/30 (72)発明者 宮寺 博 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C10J 3/54 J 3/72 F C10K 1/28 1/30 (72) Inventor Hiroshi Miyadera Ibaraki Prefecture Hitachi City Omika-cho 7-1-1, Hitachi Ltd. Hitachi Research Laboratory
Claims (6)
器から生成するガスの精製法において、石灰石,消石
灰,生石灰,酸化バリウム,水酸化バリウム,炭酸バリ
ウム,酸化マグネシウム,水酸化マグネシウム,セメン
トクリンカ,セメントの化合物から選択するかあるいは
その混合物のいずれかを脱硫剤としてガス温度が1000℃
近傍の生成ガス系に噴霧させた後、その後流に設置する
サイクロンに導入するようにし、さらに該サイクロンの
後流に設置する噴流層石炭ガス化反応器の下部から抜き
出したスラグを充填したスラグ充填層を構成させ、該サ
イクロン出口ガスを該スラグ充填層に導き脱塵と脱硫を
行うことを特徴とする石炭ガス化プラント生成ガスの精
製法。1. A method for refining gas produced from a coal gasification reactor in a high temperature, high pressure, reducing atmosphere, wherein limestone, slaked lime, quick lime, barium oxide, barium hydroxide, barium carbonate, magnesium oxide, magnesium hydroxide, cement. The gas temperature is 1000 ° C using either a clinker or cement compound or a mixture thereof as a desulfurizing agent.
After spraying the generated gas system in the vicinity, it is introduced into a cyclone installed in the subsequent stream, and further, slag filling filled with slag extracted from the lower part of the spouted bed coal gasification reactor installed in the downstream of the cyclone. A method for purifying a gas produced in a coal gasification plant, which comprises forming a layer and introducing the cyclone outlet gas to the slag packed bed to perform dedusting and desulfurization.
の流れに並列に複数層を設置させ、生成ガスを流通して
いるスラグ充填部の通風損失あるいは固体微粒子の積層
厚さが設定の値を検知したら生成ガスを導入しているス
ラグ充填層を新たなスラグを充填した充填層の構成部に
生成ガスの流路を切り替えるようにして行う脱塵と脱硫
を行うことを特徴とする石炭ガス化プラント生成ガスの
精製法。2. The slag packing layer according to claim 1 is installed in parallel with the flow of the generated gas to set a plurality of layers, and the ventilation loss of the slag filling section in which the generated gas is flowing or the laminated thickness of solid fine particles is set. When the value of is detected, the slag packed bed introducing the generated gas is characterized by performing dedusting and desulfurization by switching the flow path of the generated gas to the constituent part of the packed bed filled with the new slag. Method for refining gas produced from coal gasification plant.
流層石炭ガス化反応器から抜き出したスラグの移動層を
形成させ生成ガス中の脱塵と脱硫を行うようにしたこと
を特徴とする石炭ガス化プラント生成ガスの精製法。3. A moving bed of slag extracted from a spouted bed coal gasification reactor is formed in the wake of the cyclone according to claim 1 to remove dust and desulfurize the produced gas. Method for refining gas produced by coal gasification plant.
層,スラグ移動層から抜き出したスラグと固体微粒子を
分級しスラグの一部を再循環させ脱塵と脱硫を行うこと
を特徴とする石炭ガス化プラント生成ガスの精製法。4. The slag packed bed and the slag extracted from the slag moving bed according to claims 1, 2, and 3 are classified, and a part of the slag is recirculated to perform dedusting and desulfurization. Method for refining gas produced by coal gasification plant.
条件で燃焼させることで固体微粒子中の硫黄化合物を酸
化し二酸化硫黄ガスとして発生させ、この二酸化硫黄を
含む石灰石スラリと接触させ硫酸カルシウムに硫黄酸化
物を酸化させ、再生した固体微粒子の一部を請求項1に
記述する適宜ガス温度域のガス流路に噴霧させるように
し脱塵と脱硫を行うことを特徴とする石炭ガス化プラン
ト生成ガスの精製法。5. The solid fine particles described in claim 4 are burned under an oxygen excess condition to oxidize the sulfur compounds in the solid fine particles to generate sulfur dioxide gas, which is then brought into contact with a limestone slurry containing this sulfur dioxide and calcium sulfate. A coal gasification plant, characterized in that sulfur oxides are oxidised, and a part of the regenerated solid fine particles is sprayed into the gas flow path in the gas temperature range described in claim 1 to carry out dedusting and desulfurization. Product gas purification method.
条件で燃焼させることで固体微粒子中の硫黄化合物を酸
化し二酸化硫黄ガスとして発生させ、二酸化硫黄ガスを
除去した固体微粒子を水に懸濁させたスラリにより該硫
黄酸化物を吸収させるようにしたことを特徴とする石炭
ガス化プラント生成ガスの精製法。6. The solid fine particles according to claim 4 are burned under an oxygen excess condition to oxidize a sulfur compound in the solid fine particles to generate sulfur dioxide gas, and the solid fine particles from which the sulfur dioxide gas has been removed are suspended in water. A method for refining a gas produced from a coal gasification plant, characterized in that the sulfur oxide is absorbed by a turbid slurry.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6175119A JPH0841467A (en) | 1994-07-27 | 1994-07-27 | Coal gasification plant product gas purification method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6175119A JPH0841467A (en) | 1994-07-27 | 1994-07-27 | Coal gasification plant product gas purification method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0841467A true JPH0841467A (en) | 1996-02-13 |
Family
ID=15990615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6175119A Pending JPH0841467A (en) | 1994-07-27 | 1994-07-27 | Coal gasification plant product gas purification method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0841467A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105176613A (en) * | 2015-09-10 | 2015-12-23 | 洛阳三信石化设备有限公司 | Dry-method natural gas desulphurization reactor |
CN107150998A (en) * | 2017-06-07 | 2017-09-12 | 中国科学院过程工程研究所 | A kind of coal desulfurization and the system and method for reclaiming elemental sulfur |
CN114032393A (en) * | 2021-10-29 | 2022-02-11 | 神华准格尔能源有限责任公司 | Reaction system for preparing aluminum silicon powder from high-aluminum coal |
CN114032392A (en) * | 2021-10-29 | 2022-02-11 | 神华准格尔能源有限责任公司 | A kind of method for preparing aluminum-silicon powder with high-aluminum coal |
-
1994
- 1994-07-27 JP JP6175119A patent/JPH0841467A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105176613A (en) * | 2015-09-10 | 2015-12-23 | 洛阳三信石化设备有限公司 | Dry-method natural gas desulphurization reactor |
CN107150998A (en) * | 2017-06-07 | 2017-09-12 | 中国科学院过程工程研究所 | A kind of coal desulfurization and the system and method for reclaiming elemental sulfur |
CN114032393A (en) * | 2021-10-29 | 2022-02-11 | 神华准格尔能源有限责任公司 | Reaction system for preparing aluminum silicon powder from high-aluminum coal |
CN114032392A (en) * | 2021-10-29 | 2022-02-11 | 神华准格尔能源有限责任公司 | A kind of method for preparing aluminum-silicon powder with high-aluminum coal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4833877A (en) | Process for the reduction of pollutant emissions from power stations with combined gas/steam turbine processes with preceding coal gasification | |
KR100440430B1 (en) | Dry desulfurization method of combustion gas | |
US20110014106A1 (en) | COMBUSTION FLUE GAS SOx TREATMENT VIA DRY SORBENT INJECTION | |
JPH0421524B2 (en) | ||
CN111773915B (en) | Flue gas dry desulfurization process | |
JP2651029B2 (en) | Gas cleaning method | |
JP2014024052A (en) | Fly ash circulation type exhaust gas treatment method | |
CN209155342U (en) | A kind of flue gas multiple pollutant dry method cooperation-removal device | |
US4640825A (en) | Process for simultaneous removal of SO2 and NOx from gas streams | |
KR100278949B1 (en) | Systems and methods for removing sulfur species from hot gases from coal | |
KR960010380B1 (en) | Purification method of exhaust gas | |
JPH11210489A (en) | Gasification power generation method and gasification power generation facility | |
JPH0841467A (en) | Coal gasification plant product gas purification method | |
JPH09104878A (en) | Gas purifying apparatus | |
CN101462022B (en) | Circulating fluid bed flue-gas desulfurizing device | |
CA2038953A1 (en) | Process for the removal or reduction of gaseous contaminants | |
CN103084057B (en) | Process for extracting coal ash to produce desulfurizer in pulverized coal combustion | |
JP2633886B2 (en) | Desulfurizing agent and method for treating hydrogen sulfide-containing gas using it | |
JP4355817B2 (en) | High temperature exhaust gas purification treatment agent and high temperature exhaust gas purification treatment method using the same | |
JP4723922B2 (en) | Manufacturing method of carbonaceous adsorbent, removal method of environmental pollutant using the same, and removal apparatus | |
JPH0975667A (en) | Treatment of exhaust gas | |
JPH10287887A (en) | Coal gas purification system | |
RU2095128C1 (en) | Method for cleaning effluent gases of oil burners and device for its embodiment | |
CN112933910A (en) | Moving bed coupling absorption desulfurization method based on flue gas semidry method | |
JP3818963B2 (en) | Combustion exhaust gas treatment method and apparatus |