[go: up one dir, main page]

JPH0835116A - Polyester fiber for air bag base fabric - Google Patents

Polyester fiber for air bag base fabric

Info

Publication number
JPH0835116A
JPH0835116A JP6166925A JP16692594A JPH0835116A JP H0835116 A JPH0835116 A JP H0835116A JP 6166925 A JP6166925 A JP 6166925A JP 16692594 A JP16692594 A JP 16692594A JP H0835116 A JPH0835116 A JP H0835116A
Authority
JP
Japan
Prior art keywords
base fabric
single fiber
polyester fiber
impact resistance
compressive stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6166925A
Other languages
Japanese (ja)
Other versions
JP2944891B2 (en
Inventor
Fuyuki Terasaka
冬樹 寺阪
Masayasu Nagao
正康 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15840208&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0835116(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP6166925A priority Critical patent/JP2944891B2/en
Publication of JPH0835116A publication Critical patent/JPH0835116A/en
Application granted granted Critical
Publication of JP2944891B2 publication Critical patent/JP2944891B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Woven Fabrics (AREA)
  • Air Bags (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain polyester fibers reduced in single fiber fineness, increased in both mechanical strength and elongation, and reduced in the compressive stress in the single fiber sectional direction, thus capable of giving air bag base fabrics good in air impermeability and storability and excellent in impact resistance and durability. CONSTITUTION:The objective polyester fiber has the following characteristics: intrinsic viscosity: 20.8 (owing to solid phase polymerization); ethylene terephthalate unit accounts for 2 90mol% of the total recurring units; single fiber fineness: 0.3-4.0 denier; tenacity: >=8.0g/de; tensile elongation: >=14%; and sectional compressive stress: <=20kg/mm<2>. Using the polyester fibers, highly airtight and high-density woven fabrics can be easily obtained, with adequate impact resistance even in the case of low base fabric basis weight.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は安全を確保するためのエ
アバッグに適したポリエステル繊維に関する。さらに詳
しくは、コーティングが施されていなくても耐衝撃性、
耐久性に優れた衝撃吸収性エアバッグを得ることのでき
るポリエステル繊維に関する。
FIELD OF THE INVENTION The present invention relates to a polyester fiber suitable for an airbag for ensuring safety. More specifically, impact resistance even without coating,
The present invention relates to a polyester fiber capable of obtaining a shock absorbing airbag having excellent durability.

【0002】[0002]

【従来の技術】近年、自動車衝突時の乗員安全確保のた
め、エアバッグシステムが実用化されつつある。通常エ
アバッグは、折りたたまれて格納されており、衝突を検
知すると高圧ガスにより膨脹して、乗員の安全を確保す
るよう設置されている。したがって、エアバッグ基布に
要求される重要な特性としては、高圧ガスの通気阻止性
が高く、また瞬間的な膨脹に耐え得る耐衝撃性、長期間
格納が可能な耐久性を有していることがあげられる。
2. Description of the Related Art In recent years, airbag systems have been put into practical use in order to ensure passenger safety in the event of an automobile collision. The airbag is usually folded and stored, and when a collision is detected, the airbag is inflated by high-pressure gas and installed so as to ensure the safety of an occupant. Therefore, important properties required for the airbag base fabric are high air-permeability of high-pressure gas, impact resistance capable of withstanding momentary inflation, and durability capable of long-term storage. Can be mentioned.

【0003】しかるに、従来多用されているナイロン繊
維は耐衝撃性は良好であるものの吸湿性が大きいため、
長期間格納により吸湿して単糸径が太くなり、コーティ
ングを施さないノンコートエアバッグ基布とした場合に
は通気阻止性が低下するといった耐久性の点に問題があ
る。
However, since nylon fibers which have been widely used in the past have good impact resistance, they have high hygroscopicity.
There is a problem in terms of durability such that the yarn absorbs moisture after storage for a long period of time, the diameter of the single yarn becomes large, and in the case of a non-coated airbag base fabric which is not coated, the air permeability is lowered.

【0004】一方特開平3―167312号公報、及び
特開平3―167046号公報等には、タフネスが12
0以上で結節強度が4.1g/d以上の、耐衝撃性が改
善されたエアバッグ用ポリエステル繊維が提案されてい
るが、これらの繊維はいずれも繊維断面方向の圧縮応力
(約22kg/mm2 )が大きいために、繊維横断面方
向の変形によるエネルギー吸収が小さい。このため、ノ
ンコートエアバッグ基布とした場合には、通気阻止性と
耐衝撃性とを同時に満足させようとすると基布目付が大
きくなって、格納性が低下するという問題がある。
On the other hand, in Japanese Patent Application Laid-Open Nos. 3-167312 and 3-167046, the toughness is 12
Polyester fibers for airbags having a knot strength of 0 or more and a knot strength of 4.1 g / d or more and improved impact resistance have been proposed, but all of these fibers have compressive stress (about 22 kg / mm) in the fiber cross-sectional direction. Since 2 ) is large, energy absorption due to deformation in the fiber cross section is small. Therefore, in the case of the non-coated airbag base fabric, there is a problem that the base fabric weight becomes large and the storability is deteriorated when it is attempted to satisfy both the airflow blocking property and the impact resistance.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、上記
エアバッグ基布用ポリエステル繊維の有する欠点を解消
し、耐衝撃性及び通気阻止性が良好で且つ耐久性及び格
納性にも優れたエアバッグ基布を得ることのできるポリ
エステル繊維を提供することにある。
SUMMARY OF THE INVENTION The object of the present invention is to solve the above-mentioned drawbacks of the polyester fiber for air bag base fabric, to provide good impact resistance and air flow blocking property, and to have excellent durability and storability. An object of the present invention is to provide a polyester fiber from which an airbag base fabric can be obtained.

【0006】[0006]

【課題を解決するための手段】上記目的は、繰返し単位
の90モル%以上がエチレンテレフタレートであるエア
バッグ基布用ポリエステル繊維であって、該繊維が下記
(a)〜(e)の要件を同時に満足することを特徴とす
るエアバック基布用ポリエステル繊維により達成され
る。 (a) 固有粘度IVが0.8以上 (b) 単繊維繊度Dが0.3〜4.0デニール (c) 引張強度Tが8.0g/de以上 (d) 引張伸度Eが14%以上 (e) 断面圧縮応力Fが20kg/mm2 以下 本発明のポリエステル繊維を構成するポリマーは、ポリ
エステルの繰り返し単位の90%以上がエチレンテレフ
タレートであることが必要であり、好ましくは95%以
上である。共重合し得る成分としては、従来公知の酸成
分、グリコール成分いずれをもあげることができるが、
なかでも2官能性リン化合物を共重合していることが、
得られるエアバッグの難燃性が向上するので好ましい。
この場合共重合量としては、リン元素量として0.3〜
1.5重量%の範囲が適当で、好ましくは0.6〜1.
1重量%である。リン元素量が0.3重量%未満の場合
には難燃性が不充分となり、一方1.5重量%を越える
場合には繊維の強度が低下する。
The above object is a polyester fiber for an airbag base fabric, wherein 90 mol% or more of repeating units are ethylene terephthalate, and the fiber has the following requirements (a) to (e). At the same time, it is achieved by a polyester fiber for an airbag base fabric, which is characterized by satisfying at the same time. (A) Intrinsic viscosity IV is 0.8 or more (b) Single fiber fineness D is 0.3 to 4.0 denier (c) Tensile strength T is 8.0 g / de or more (d) Tensile elongation E is 14% Above (e) The cross-sectional compressive stress F is 20 kg / mm 2 or less In the polymer constituting the polyester fiber of the present invention, 90% or more of the repeating units of the polyester must be ethylene terephthalate, and preferably 95% or more. is there. The copolymerizable component may be any conventionally known acid component or glycol component,
Among them, copolymerization of bifunctional phosphorus compounds,
It is preferable because the flame retardancy of the obtained airbag is improved.
In this case, as a copolymerization amount, a phosphorus element amount of 0.3 to
A suitable range is 1.5% by weight, preferably 0.6-1.
It is 1% by weight. If the amount of elemental phosphorus is less than 0.3% by weight, the flame retardancy becomes insufficient, while if it exceeds 1.5% by weight, the strength of the fiber decreases.

【0007】好ましく用いられる2官能性リン化合物と
しては、例えば下記(I)又は(II)式で表わされるホ
スホン酸誘導体又はホスフィン酸誘導体を例示すること
ができる。
Examples of preferably used bifunctional phosphorus compounds include phosphonic acid derivatives or phosphinic acid derivatives represented by the following formula (I) or (II).

【0008】[0008]

【化1】 Embedded image

【0009】式中、R1 は炭素数1〜18の炭化水素基
を表わし、R2 、R3 はそれぞれ同じか又は異なる基で
あって水素原子又は炭化水素基を表わし、R4 は2価の
有機基を表わし、Xはカルボキシル基又はそのエステル
を表わす。具体的にはフェニルホスホン酸ジメチル、
(2―カルボキシルエチル)メチルホスフィン酸などが
好ましく用いられる。
In the formula, R 1 represents a hydrocarbon group having 1 to 18 carbon atoms, R 2 and R 3 are the same or different groups and represent a hydrogen atom or a hydrocarbon group, and R 4 is a divalent group. Represents an organic group, and X represents a carboxyl group or an ester thereof. Specifically, dimethyl phenylphosphonate,
(2-Carboxylethyl) methylphosphinic acid and the like are preferably used.

【0010】次に本発明のポリエステル繊維の固有粘度
は0.80以上、好ましくは0.8〜1.0とすること
によって、エアバッグの強度、耐久性が向上し、またエ
アバッグが瞬間的に膨脹した時の衝撃吸収性を向上する
ことができる。固有粘度が0.80未満の場合には、強
度と√(伸度)で表わされるタフネスを大きくすること
ができず、耐衝撃性は不充分となる。なお、固有粘度は
高くなりすぎると紡糸性が低下する傾向があるので、
1.0以下であることが好ましい。
Next, by setting the intrinsic viscosity of the polyester fiber of the present invention to 0.80 or more, preferably 0.8 to 1.0, the strength and durability of the airbag are improved, and the airbag is instantaneously It is possible to improve the shock absorbing property when expanded. When the intrinsic viscosity is less than 0.80, the strength and the toughness represented by √ (elongation) cannot be increased, and the impact resistance becomes insufficient. If the intrinsic viscosity is too high, the spinnability tends to decrease, so
It is preferably 1.0 or less.

【0011】単繊維繊度Dは、エアバッグの格納性(柔
軟性)、通気性の点から0.5〜4.0デニール、好ま
しくは1.0〜2.0デニールの範囲とすることが大切
である。4.0デニールを越える場合には、基布の柔軟
性が低下して格納性が低下するだけでなく、通気阻止性
も低下するため好ましくない。一方0.5デニール未満
の場合には、エアバッグ基布用として高密度織物に製織
する際、毛羽が発生し易くなって安定に製織することが
できなくなる。
It is important that the monofilament fineness D is in the range of 0.5 to 4.0 denier, preferably 1.0 to 2.0 denier from the viewpoint of air bag storability (flexibility) and air permeability. Is. When it exceeds 4.0 denier, it is not preferable because not only the flexibility of the base fabric is lowered and the storability is lowered, but also the air blocking property is lowered. On the other hand, when it is less than 0.5 denier, when weaving into a high-density fabric for use as an air bag base fabric, fluff is likely to occur and stable weaving becomes impossible.

【0012】また引張強度Tは、8.0g/de以上で
あり、引張伸度Eが14%以上であることが必要であ
る。引張強度が8.0g/d未満の場合には、エアバッ
グの強度を大きくするためには基布目付を大きくするこ
とが必須となり、エアバッグの格納性が低下する。一方
引張強度が充分大きくても引張伸度が14%未満の場合
には、衝撃時の高いエネルギーを吸収することが困難と
なり、エアバッグ用繊維としては不充分となる。なお、
引張強度は大きくなりすぎると引張伸度が不充分とな
り、逆に引張伸度が大きくなりすぎると引張強度が不充
分となる傾向があるので、夫々10g/d以下、20%
以下とすることが望ましい。
Further, the tensile strength T must be 8.0 g / de or more and the tensile elongation E must be 14% or more. When the tensile strength is less than 8.0 g / d, it is essential to increase the basis weight of the base cloth in order to increase the strength of the airbag, and the storability of the airbag is deteriorated. On the other hand, even if the tensile strength is sufficiently high, if the tensile elongation is less than 14%, it becomes difficult to absorb high energy at the time of impact, resulting in insufficient fiber for airbag. In addition,
If the tensile strength is too high, the tensile elongation tends to be insufficient. Conversely, if the tensile elongation is too high, the tensile strength tends to be insufficient. Therefore, the tensile strength is 10 g / d or less and 20%, respectively.
It is desirable to make the following.

【0013】本発明のポリエステル繊維は、上記の特性
に加えて、エアバッグ作動時に基布に負荷される引張方
向への衝撃力を低減させるため、断面圧縮応力Fが20
kg/mm2 以下、好ましくは20〜15kg/mm2
であることが肝要である。かくすることにより、基布を
構成している繊維の織り交点で、繊維横断面方向の変形
が発生して衝撃エネルギーが吸収されるため、耐衝撃性
を向上させることが可能となる。
In addition to the above characteristics, the polyester fiber of the present invention has a compressive stress F of 20 in cross section in order to reduce the impact force in the tensile direction applied to the base fabric when the airbag is operated.
kg / mm 2 or less, preferably 20 to 15 kg / mm 2
Is essential. By doing so, deformation is generated in the cross-sectional direction of the fibers at the woven intersection points of the fibers forming the base fabric, and the impact energy is absorbed, so that the impact resistance can be improved.

【0014】なおここでいう断面圧縮応力Fとは、微小
圧縮試験機(島津製、MCTM―500)を用い、平面
圧子(50μm径)で単繊維横断面方向に圧縮し、単繊
維径の40%圧縮した時に発生した荷重を測定し、F=
(発生荷重/平面圧子との接触面積)で算出したもので
ある。
The cross-section compressive stress F referred to here is 40 of the single fiber diameter, which is obtained by compressing in the cross-sectional direction of the single fiber with a plane indenter (diameter of 50 μm) using a micro compression tester (MCTM-500 manufactured by Shimadzu). The load generated at the time of% compression is measured, and F =
It is calculated by (generated load / contact area with plane indenter).

【0015】以上に説明した本発明のポリエステル繊維
は、例えば以下の方法で得られる。すなわち、固有粘度
を固相重合等により高めたポリエステル、通常は0.8
5以上のポリマーを、約300℃で溶融吐出し300℃
以上の加熱域を通過させた後冷却固化させ、油剤を付与
した後500〜1000m/分の引取速度で巻とる。次
いで得られた未延伸糸は、断面方向の圧縮応力Fを低下
させるために、まず50℃〜ガラス転移点温度の加熱ロ
ーラーに少なくとも1秒間接触させて予熱後、ガラス転
移点以上150℃以下の加熱雰囲気中を非接触で少なく
とも1秒間通過させながら延伸倍率2.5〜4.0で第
1段延伸し、次いで200〜230℃の加熱雰囲気中を
非接触で少なくとも1秒間通過させながら全延伸倍率が
4.0〜6.0となるように第2段延伸し、さらに加熱
ローラーに接触させることなく200〜230℃の加熱
雰囲気中を非接触で少なくとも1秒間通過させながら5
〜15%弛緩収縮熱処理することにより得られる。いい
かえるならば、加熱延伸及び弛緩熱処理を行なう熱源と
して非接触式のものを用いることにより、繊維表面の結
晶化を抑制することが大切であり、伝熱方式である加熱
ローラー等を用いると繊維表面部の結晶化が進むためと
推定され、断面圧縮応力の低い繊維を得ることはできな
い。
The polyester fiber of the present invention described above can be obtained, for example, by the following method. That is, a polyester whose intrinsic viscosity is increased by solid-state polymerization or the like, usually 0.8
Melt and discharge 5 or more polymers at about 300 ℃
After passing through the above heating zone, it is cooled and solidified, and after applying an oil agent, it is wound at a take-up speed of 500 to 1000 m / min. Next, in order to reduce the compressive stress F in the cross-sectional direction, the obtained undrawn yarn is first contacted with a heating roller having a temperature of 50 ° C. to a glass transition point for at least 1 second and preheated, and then the glass transition point or more and 150 ° C. or less. First stage drawing at a draw ratio of 2.5 to 4.0 while passing in a heating atmosphere in a non-contact manner for at least 1 second, and then full stretching while passing in a heating atmosphere at 200 to 230 ° C in a non-contact manner for at least 1 second. The second stage drawing is performed so that the magnification is 4.0 to 6.0, and the film is passed through a heating atmosphere at 200 to 230 ° C. for at least 1 second in a non-contact manner without contacting with a heating roller, and then 5
Obtained by heat treatment of relaxation contraction of -15%. In other words, it is important to suppress the crystallization of the fiber surface by using a non-contact type heat source for heat stretching and relaxation heat treatment. It is presumed that the crystallization of the part proceeds, and it is not possible to obtain fibers with a low cross-section compressive stress.

【0016】延伸糸の総繊度は210〜840デニール
の範囲が適当である。得られた延伸糸は、無撚又は有撚
状態で整経され製織されるが、無撚状態で製織する場合
には、製織性及び得られる基布の気密性をさらに向上さ
せるために、該繊維には20〜50個/m程度の交絡が
付与されていることが好ましい。
The total fineness of the drawn yarn is suitably in the range of 210 to 840 denier. The obtained drawn yarn is warped in a non-twisted or twisted state and woven, but in the case of weaving in a non-twisted state, in order to further improve the weavability and the airtightness of the obtained base fabric, It is preferable that 20 to 50 fibers / m of entanglement be imparted to the fibers.

【0017】製織方法は特に限定されないが、エアバッ
グ基布用には通常織密度(本/インチ)×√(糸条繊
度)の値が920〜1025の範囲となるよう製織し、
精練、熱セット後130〜200℃に加熱されたローラ
を用いてカレンダー加工を行い更に高密度の織物に仕上
げる。その際、織物にシワ等が発生しないようにピンテ
ンター等により張力をかけておくことが好ましい。
The weaving method is not particularly limited, but for air bag base cloth, weaving is usually performed so that the value of weave density (books / inch) × √ (thread fineness) is in the range of 920 to 1025,
After scouring and heat setting, calendering is carried out using a roller heated to 130 to 200 ° C. to further fabricate a high density fabric. At that time, it is preferable to apply tension by a pin tenter or the like so that the fabric is not wrinkled.

【0018】[0018]

【発明の作用効果】本発明のポリエステル繊維は、単繊
維繊度が小さいので気密性の高い高密度織物を容易に得
ることができる。また、強度及び伸度が大きいことに加
えて、単繊維断面方向の圧縮応力が小さいので断面方向
の繊維変形によっても衝撃エネルギーを吸収することが
できる結果、基布目付を小さくしても充分な耐衝撃性を
達成することができ、格納性が向上する。
Since the polyester fiber of the present invention has a small single fiber fineness, a high density woven fabric having a high airtightness can be easily obtained. Further, in addition to high strength and elongation, the compressive stress in the cross section direction of the single fiber is small, so that it is possible to absorb impact energy even when the fiber is deformed in the cross section direction. Impact resistance can be achieved and storability is improved.

【0019】[0019]

【実施例】以下実施例により本発明をさらに詳細に説明
する。なお、各測定項目は下記に従った。 固有粘度(IV) オルソクロルフェノールを溶媒とし35℃で測定した溶
液粘度より求めた。 引張強伸度(T.E) 引張荷重測定器(島津製、オートグラフ)を用い、JI
S L―1074―64に従って測定した。 断面圧縮応力F 微小圧縮試験機(島津製、MCTM―500)を用い、
平面圧子(50μm径)で単繊維を断面緯方向に圧縮
し、単繊維径の40%圧縮したときの発生応力を測定
し、下記の式よりFを算出した。 F=40%圧縮時の発生応力/平面圧子と繊維の接触面
積 基布の引張強伸度 JIS L―1096のストリップ法で測定した。 通気度 JIS L―1096のフラジール法で測定した。 インフレーション内圧 ドライバー席用60リットルのエアバックを収納したモ
ジュールに、Morton International社製、タイプ4型イ
ンフレーションを装着して、これを95℃で6時間加熱
して直ちにインフレーションを実施した。このときの内
圧をストレインゲージ(共和電業(株)製)で測定し
た。このインフレーション内圧が0.3kg/cm2
上あれば、耐衝撃性は良好である。
The present invention will be described in more detail with reference to the following examples. Each measurement item was as follows. Intrinsic viscosity (IV) Obtained from the solution viscosity measured at 35 ° C. with orthochlorophenol as a solvent. Tensile strength and elongation (TE) Using a tensile load measuring instrument (manufactured by Shimadzu, Autograph), JI
It was measured according to SL-1074-64. Cross-section compression stress F Using a micro compression testing machine (Shimadzu, MCTM-500),
A single fiber was compressed in a cross-sectional weft direction with a plane indenter (diameter of 50 μm), and the stress generated when 40% of the single fiber diameter was compressed was measured, and F was calculated from the following formula. F = stress generated at 40% compression / contact area between plane indenter and fiber Tensile strength / elongation of base fabric Measured by the strip method of JIS L-1096. Air permeability Measured by the Frazier method of JIS L-1096. Inflation internal pressure A module containing a 60-liter airbag for driver's seat was equipped with Morton International type 4 type inflation, which was heated at 95 ° C for 6 hours to perform inflation immediately. The internal pressure at this time was measured with a strain gauge (manufactured by Kyowa Denki Co., Ltd.). When the inflation internal pressure is 0.3 kg / cm 2 or more, the impact resistance is good.

【0020】[実施例1]固有粘度が1.00のポリエ
チレンテレフタレートチップを300℃の温度で溶融
後、200g/分の吐出量で孔径0.35mmの吐出孔
を249ホール有する紡糸口金から吐出し、長さ200
mm温度350℃に加熱保持された帯域を通した後、温
度25℃風速0.3m/秒の冷却風を330mmの吹き
出し長さに亘って吹付けて冷却固化させ、オイリングロ
ーラーで油剤を付与して900m/分の速度で引取り一
旦巻取った。
Example 1 Polyethylene terephthalate chips having an intrinsic viscosity of 1.00 were melted at a temperature of 300 ° C., and then discharged at a discharge rate of 200 g / minute from a spinneret having 249 discharge holes having a diameter of 0.35 mm. , Length 200
mm After passing through a zone heated and held at a temperature of 350 ° C., cooling air having a temperature of 25 ° C. and an air speed of 0.3 m / sec is sprayed over a blowing length of 330 mm to cool and solidify, and an oiling agent is applied by an oiling roller. It was taken up at a speed of 900 m / min and wound once.

【0021】得られた未延伸糸を60℃の加熱ローラー
で1秒間予熱後150℃の乾熱浴中で加熱しながら3.
3倍に第一段延伸し、次いで220℃の乾熱浴中で1秒
間加熱しながら1.6倍に延伸した後、さらに220℃
の乾熱浴中で7%弛緩処理し、引き続いて圧力2.5k
g/cm2 の圧空を用いて交絡処理して300m/分の
速度で巻き取った。
2. The obtained undrawn yarn is preheated with a heating roller at 60 ° C. for 1 second and then heated in a dry heat bath at 150 ° C.
Stretched 3 times in the first stage, then stretched 1.6 times while heating in a dry heat bath at 220 ° C for 1 second, and then further stretched at 220 ° C.
7% relaxation treatment in the dry heat bath, followed by a pressure of 2.5k
It was entangled with compressed air of g / cm 2 and wound at a speed of 300 m / min.

【0022】次いで得られたマルチフィラメントをウォ
ータージェットルーム織機で、織密度が経53本/イン
チ、緯53本/インチの平織物に製織した後、精練加
工、熱セットを施した。次に金属ロールの温度が180
℃の一対の金属ロール/弾性ロールカレンダーを用い、
線圧が200kg/cm、速度6m/分で熱加工を施し
た。結果を表1に示す。
Then, the obtained multifilament was woven with a water jet loom into a plain weave having a weaving density of 53 warps / inch and weft 53 threads / inch, and then subjected to scouring and heat setting. Next, the temperature of the metal roll is 180
Using a pair of metal roll / elastic roll calender at
Thermal processing was performed at a linear pressure of 200 kg / cm and a speed of 6 m / min. The results are shown in Table 1.

【0023】[実施例2〜4、比較例1〜7]ポリエチ
レンテレフタレートの固有粘度、及び延伸条件を表1に
記載の如く変更する以外は実施例1と同様に行なった。
なお吐出量は得られる延伸糸の単繊維繊度が表1記載と
なるよう変更し、比較例2は吐出孔数96の紡糸口金を
用い、また比較例6、7は加熱ローラーを使用して加熱
延伸を行なった。結果は表1にまとめて示す。
[Examples 2 to 4, Comparative Examples 1 to 7] The same procedure as in Example 1 was carried out except that the intrinsic viscosity of polyethylene terephthalate and the stretching conditions were changed as shown in Table 1.
The discharge amount was changed so that the single fiber fineness of the obtained drawn yarn was as shown in Table 1. In Comparative Example 2, a spinneret having 96 discharge holes was used, and in Comparative Examples 6 and 7, heating was performed using a heating roller. Stretching was performed. The results are summarized in Table 1.

【0024】[0024]

【表1】 [Table 1]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 繰返し単位の90モル%以上がエチレン
テレフタレートであるエアバッグ基布用ポリエステル繊
維であって、該繊維が下記(a)〜(e)の要件を同時
に満足することを特徴とするエアバック基布用ポリエス
テル繊維。 (a) 固有粘度IVが0.8以上 (b) 単繊維繊度Dが0.3〜4.0デニール (c) 引張強度Tが8.0g/de以上 (d) 引張伸度Eが14%以上 (e) 断面圧縮応力Fが20kg/mm2 以下
1. A polyester fiber for an airbag base fabric, wherein 90 mol% or more of the repeating unit is ethylene terephthalate, and the fiber simultaneously satisfies the following requirements (a) to (e). Polyester fiber for airbag base fabric. (A) Intrinsic viscosity IV is 0.8 or more (b) Single fiber fineness D is 0.3 to 4.0 denier (c) Tensile strength T is 8.0 g / de or more (d) Tensile elongation E is 14% Above (e) Cross-sectional compressive stress F is 20 kg / mm 2 or less
JP6166925A 1994-07-19 1994-07-19 Polyester fiber for airbag base fabric Expired - Fee Related JP2944891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6166925A JP2944891B2 (en) 1994-07-19 1994-07-19 Polyester fiber for airbag base fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6166925A JP2944891B2 (en) 1994-07-19 1994-07-19 Polyester fiber for airbag base fabric

Publications (2)

Publication Number Publication Date
JPH0835116A true JPH0835116A (en) 1996-02-06
JP2944891B2 JP2944891B2 (en) 1999-09-06

Family

ID=15840208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6166925A Expired - Fee Related JP2944891B2 (en) 1994-07-19 1994-07-19 Polyester fiber for airbag base fabric

Country Status (1)

Country Link
JP (1) JP2944891B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256860A (en) * 2008-03-21 2009-11-05 Toray Ind Inc Woven fabric for air bag and method for producing woven fabric for air bag
KR101025597B1 (en) * 2009-06-15 2011-03-30 코오롱인더스트리 주식회사 Polyester yarn for air bag and manufacturing method thereof
KR101025598B1 (en) * 2009-04-23 2011-03-30 주식회사 코오롱 Polyester yarn for air bag and manufacturing method thereof
WO2010120107A3 (en) * 2009-04-14 2011-03-31 주식회사 코오롱 Polyester yarn for an airbag and method manufacturing for manufacturing same
WO2010147373A3 (en) * 2009-06-15 2011-04-28 주식회사 코오롱 Polyester thread for an air bag and preparation method thereof
KR20110070396A (en) * 2009-12-18 2011-06-24 코오롱인더스트리 주식회사 Polyester yarn for air bag and manufacturing method thereof
JP2012041654A (en) * 2010-08-19 2012-03-01 Teijin Fibers Ltd Fine-denier high strength polyester yarn and method for manufacturing the same
EP2518195A2 (en) * 2009-12-24 2012-10-31 Hyosung Corporation Polyethylene terephthalate fiber for air-bags and textiles made from same
EP2554722A2 (en) * 2010-03-29 2013-02-06 Kolon Industries, Inc. Polyester yarn and method for manufacturing same
WO2013137263A1 (en) * 2012-03-13 2013-09-19 旭化成せんい株式会社 Superfine polyester fiber and tubular seamless fabric
JP2013540906A (en) * 2010-09-17 2013-11-07 コーロン インダストリーズ インク Polyester yarn and method for producing the same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256860A (en) * 2008-03-21 2009-11-05 Toray Ind Inc Woven fabric for air bag and method for producing woven fabric for air bag
WO2010120107A3 (en) * 2009-04-14 2011-03-31 주식회사 코오롱 Polyester yarn for an airbag and method manufacturing for manufacturing same
US9758903B2 (en) 2009-04-14 2017-09-12 Kolon Industries, Inc. Polyester fiber for airbag and preparation method thereof
KR101025598B1 (en) * 2009-04-23 2011-03-30 주식회사 코오롱 Polyester yarn for air bag and manufacturing method thereof
KR101025597B1 (en) * 2009-06-15 2011-03-30 코오롱인더스트리 주식회사 Polyester yarn for air bag and manufacturing method thereof
WO2010147373A3 (en) * 2009-06-15 2011-04-28 주식회사 코오롱 Polyester thread for an air bag and preparation method thereof
US9617664B2 (en) 2009-12-18 2017-04-11 Kolon Industries, Inc. Polyester fiber for airbag and preparation method thereof
KR20110070396A (en) * 2009-12-18 2011-06-24 코오롱인더스트리 주식회사 Polyester yarn for air bag and manufacturing method thereof
WO2011074920A3 (en) * 2009-12-18 2011-11-24 Kolon Industries, Inc. Polyester fiber for airbag and preparation method thereof
CN102656299A (en) * 2009-12-18 2012-09-05 可隆工业株式会社 Polyester fiber for airbag and preparation method thereof
EP2518195A2 (en) * 2009-12-24 2012-10-31 Hyosung Corporation Polyethylene terephthalate fiber for air-bags and textiles made from same
EP2518195A4 (en) * 2009-12-24 2013-08-07 Hyosung Corp POLYETHYLENE TEREPHTHALATE FIBER FOR INFLATABLE AND TEXTILE SAFETY CUSHIONS MANUFACTURED WITH THIS FIBER
EP2554722A2 (en) * 2010-03-29 2013-02-06 Kolon Industries, Inc. Polyester yarn and method for manufacturing same
US9499928B2 (en) 2010-03-29 2016-11-22 Kolon Industries, Inc. Polyester fiber suitable for air bag and method for producing the polyester fiber
EP2554722A4 (en) * 2010-03-29 2013-08-07 Kolon Inc Polyester yarn and method for manufacturing same
JP2012041654A (en) * 2010-08-19 2012-03-01 Teijin Fibers Ltd Fine-denier high strength polyester yarn and method for manufacturing the same
JP2013540906A (en) * 2010-09-17 2013-11-07 コーロン インダストリーズ インク Polyester yarn and method for producing the same
US9951176B2 (en) 2010-09-17 2018-04-24 Kolon Industries, Inc. Polyester fiber and method for preparing the same
WO2013137263A1 (en) * 2012-03-13 2013-09-19 旭化成せんい株式会社 Superfine polyester fiber and tubular seamless fabric
AU2013233205B2 (en) * 2012-03-13 2015-08-20 Asahi Kasei Fibers Corporation Superfine polyester fiber and tubular seamless fabric
TWI502106B (en) * 2012-03-13 2015-10-01 Asahi Kasei Fibers Corp Very fine polyester fiber and cylindrical seamless fabric
US10363153B2 (en) 2012-03-13 2019-07-30 Asahi Kasei Fibers Corporation Superfine polyester fiber and tubular seamless fabric

Also Published As

Publication number Publication date
JP2944891B2 (en) 1999-09-06

Similar Documents

Publication Publication Date Title
KR101575837B1 (en) Polyester fiber for airbag and preparation method thereof
EP1548180B1 (en) Coated base fabric for air bags and air bags
CN102459723B (en) Polyester yarn for an airbag and method manufacturing for manufacturing same
CN102918187B (en) Polyester fiber and preparation method thereof
KR101802476B1 (en) Polyester fabrics and preparation method thereof
JP2007182646A (en) Flame-retardant ultrafine polyester fiber, method for producing the same and high-density woven fabric
CN103649393A (en) Polyester fabric and method for manufacturing same
JP2944891B2 (en) Polyester fiber for airbag base fabric
CN100567619C (en) Fabric for restraint device and manufacture method thereof
JPH0748717A (en) Polyester fiber for base fabric for air bag
CN101033569B (en) Non-coat fabric for safety gasbag and producing method thereof
JP3850234B2 (en) Airbag base fabric and airbag
JPH0790747A (en) Base fabric for non-coat air bag
JPH0754238A (en) Uncoated fabric for air bag
JP3284842B2 (en) High density fabric for airbag
KR101451192B1 (en) Polyethylene terephthalate filament for using air-bag
JP4306392B2 (en) Non-coated airbag base fabric and its manufacturing method
JPH08199449A (en) Fabric base for non-coated air bag and air bag
JPH08158153A (en) Polyester filament yarn for air bag base fabric
JP4306391B2 (en) Airbag base fabric and manufacturing method thereof
JP3459478B2 (en) Thread for airbag
JP3319589B2 (en) Textile for non-coated airbags
JPH1178747A (en) Foundation cloth for airbag and airbag
JPH04176750A (en) Base cloth for air bag
JP4830210B2 (en) High density fabric

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees