[go: up one dir, main page]

JPH083445B2 - Optical spectrum detector - Google Patents

Optical spectrum detector

Info

Publication number
JPH083445B2
JPH083445B2 JP349387A JP349387A JPH083445B2 JP H083445 B2 JPH083445 B2 JP H083445B2 JP 349387 A JP349387 A JP 349387A JP 349387 A JP349387 A JP 349387A JP H083445 B2 JPH083445 B2 JP H083445B2
Authority
JP
Japan
Prior art keywords
diffraction grating
light
optical spectrum
grating
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP349387A
Other languages
Japanese (ja)
Other versions
JPS63171329A (en
Inventor
幸一郎 宮城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP349387A priority Critical patent/JPH083445B2/en
Publication of JPS63171329A publication Critical patent/JPS63171329A/en
Publication of JPH083445B2 publication Critical patent/JPH083445B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/1256Generating the spectrum; Monochromators using acousto-optic tunable filter

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、2つの回折格子を用いて光を変向,分散
し、その分散した光の波長成分を、高速で検出すること
を可能とした光スペクトル検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention makes it possible to redirect and disperse light using two diffraction gratings and detect the wavelength components of the dispersed light at high speed. Optical spectrum detection device.

〔従来の技術〕[Conventional technology]

光の波長成分をスペクトルとして検出する方法には、
分散分光法と干渉分光法とがある。
To detect the wavelength component of light as a spectrum,
There are dispersion spectroscopy and interferometry.

本発明は、このうち分散分光法に係るもので、その従
来例としては、回折格子を回転させて光スペクトルを検
出する方法が数多く見られる。
The present invention relates to the dispersion spectroscopy among these methods, and as its conventional example, many methods of rotating the diffraction grating to detect the optical spectrum are found.

この分散分光法は、高密度な刻線を持った回折格子の
開発により良好な波長分解能を得ることが可能であり,
また,機構的にも容易に実現可能であるため、現在の光
スペクトル検出装置の主流をなしている。
This dispersive spectroscopy can obtain good wavelength resolution by developing a diffraction grating with high-density engraved lines.
Moreover, since it can be easily realized mechanically, it is the mainstream of the present optical spectrum detection apparatus.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、この分散分光法による回折格子を回転
させて光スペクトルを検出する方法では、回折格子の形
状や重量,また,回転機構の構成要素により回折格子の
回転速度に限界を生じ、1回のスペクトル検出に要する
回転動作の時間が数10ms〜数msに制限されてしまう欠点
がある。
However, in the method of rotating the diffraction grating by the dispersion spectroscopy to detect the optical spectrum, there is a limit in the rotation speed of the diffraction grating due to the shape and weight of the diffraction grating and the constituent elements of the rotating mechanism, and the spectrum of one There is a drawback in that the rotation time required for detection is limited to several 10 ms to several ms.

このため、時間と共に高速(数ms〜数μs)に変動す
る光スペクトルを検出するには適さないという問題点が
あった。
For this reason, there is a problem that it is not suitable for detecting an optical spectrum that changes rapidly with time (several ms to several μs).

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明は、かかる問題点を解決するためにな
されたもので、従来の回折格子を使用した光スペクトル
検出装置の測定光路の途中に,新たに第2の回折格子を
配置し,この第2の回折格子には,例えば,同一出願人
・同一発明者による発明「表面弾性波(SAW:urface
coustic ave)を利用した光の回折装置(特願昭60
−234812号)」など(以下,音響光学的光変調素子とい
う。)を用いて回折格子間隔の可変制御が可能であるよ
うな機能を持たせた。この機能により、第2の回折格子
は従来より有る第1の回折格子に入射する被測定光の向
きを変える変向素子として働き、その結果、相対的に第
1の回折格子が回転した状態と類似の状態を作り出すこ
とができる。
Therefore, the present invention has been made to solve such a problem, and a second diffraction grating is newly disposed in the middle of the measurement optical path of the optical spectrum detection device using the conventional diffraction grating. the second diffraction grating, for example, the invention according to the same applicant and the same inventors' surface acoustic wave (SAW: S urface
Diffractometer of light utilizing the A coustic W ave) (Japanese Patent Application No. Sho 60
-234812) "etc. (hereinafter referred to as acousto-optic light modulator), it is provided with a function that allows variable control of the diffraction grating interval. With this function, the second diffraction grating functions as a redirecting element that changes the direction of the light under measurement incident on the first diffraction grating, which has been conventionally used, and as a result, the first diffraction grating is relatively rotated. A similar situation can be created.

また、前記音響光学的光変調素子は電気信号で高速に
回折格子間隔を可変制御することが可能であるため、一
時的に前記第1の回折格子を高速回転させたと同じ状態
となるので、光スペクトルを高速に短時間で検出するこ
とが可能となる。
Further, since the acousto-optical light modulator can variably control the diffraction grating interval at high speed with an electric signal, it is in the same state as when the first diffraction grating is temporarily rotated at high speed. It becomes possible to detect the spectrum at high speed in a short time.

〔実施例〕〔Example〕

以下、本発明について図示した実施例に基づき詳細に
説明する。
Hereinafter, the present invention will be described in detail based on illustrated embodiments.

第1図は本発明に係る光スペクトル検出装置の一実施
例についての構成を示した図、第2図は本発明の構成要
素である回折格子間隔が可変制御可能な回折格子の1つ
である音響光学的光変調素子の構成を示した図、第3図
は第2図の音響光学的光変調素子によって被測定光が変
向した状態を示した図、第4図は本発明の一実施例にお
ける測定光学系を透過形に置き換えた光学系を示した
図、第5図は本発明の構成要素である第1及び第2の回
折格子の格子方向の傾き角と出力される光スペクトルの
発生位置の関連を示した図、第6図は従来の装置に係る
もので,1枚の回折格子を使用した光スペクトル検出装置
の光学系の構成例を示した図である。
FIG. 1 is a diagram showing a configuration of an embodiment of an optical spectrum detecting device according to the present invention, and FIG. 2 is one of the diffraction gratings which is a constituent element of the present invention and whose diffraction grating interval can be variably controlled. FIG. 3 is a diagram showing the structure of an acousto-optic light modulator, FIG. 3 is a diagram showing a state in which the light to be measured is deflected by the acousto-optic light modulator of FIG. 2, and FIG. 4 is an embodiment of the present invention. FIG. 5 is a diagram showing an optical system in which the measurement optical system in the example is replaced with a transmission type, and FIG. 5 shows the tilt angles in the grating direction of the first and second diffraction gratings, which are constituent elements of the present invention, and the output optical spectrum. FIG. 6 is a diagram showing the relation of generation positions, and FIG. 6 is a diagram relating to a conventional device and showing an example of the configuration of an optical system of an optical spectrum detecting device using one diffraction grating.

以下、第6図で従来技術について説明する。 The conventional technique will be described below with reference to FIG.

図において、被測定光1はレンズ2に入射して収束さ
れ、該レンズ2の焦点位置に配置された入力側スリット
3の開口部分を通過する。
In the figure, the light to be measured 1 is incident on the lens 2 and converged, and passes through the opening portion of the input side slit 3 arranged at the focal position of the lens 2.

入力側スリット3を通過した光は扇形に拡がりながら
第1の凹面反射鏡4に入射し、平行光束となって反射さ
れ,回折格子5に導かれる。この回折格子5には、1mm
の間に数百から数千の等間隔な刻線を有し,一辺の長さ
が約2〜4cm程度の方形をした光学回折格子が多く用い
られている。これら高密度な刻線によって回折格子に入
射した被測定光1は、その波長に応じた分散を受けなが
ら反射し,第2の凹面反射鏡6に向かって進行してい
く。そして、前記第2の凹面反射鏡6により出力側スリ
ット7に向かって反射された分散した被測定光1は、前
記出力側スリット7の面上で各々の光波長に応じた位置
に収束し、スリットの開口部を通過して光検出器8によ
ってその光強度が測定される。この測定では、測定され
た光強度を被測定光に含まれている波長の順、すなわち
光スペクトルに応じて並べる必要があるため、前記出力
側スリット7の位置を固定し,前記回折格子5を回転さ
せ,連続的に分散光の強度分布を光検出器8で測定す
る。また、狭い範囲の分散光を測定する場合には、回折
格子を固定して前記出力側スリット7及び光検出器8を
移動させる場合もある。
The light that has passed through the input side slit 3 is incident on the first concave reflecting mirror 4 while spreading in a fan shape, is reflected as a parallel light flux, and is guided to the diffraction grating 5. This diffraction grating 5 has 1mm
Square-shaped optical diffraction gratings with hundreds to thousands of equally-spaced engraving lines between sides and a side length of about 2 to 4 cm are often used. The light to be measured 1 that has entered the diffraction grating by these high-density marking lines is reflected while undergoing dispersion according to its wavelength, and travels toward the second concave reflecting mirror 6. Then, the dispersed measured light 1 reflected by the second concave reflecting mirror 6 toward the output side slit 7 is converged on the surface of the output side slit 7 at a position corresponding to each light wavelength, The light intensity is measured by the photodetector 8 after passing through the opening of the slit. In this measurement, it is necessary to arrange the measured light intensities in the order of the wavelengths contained in the light to be measured, that is, according to the optical spectrum. Therefore, the position of the output side slit 7 is fixed and the diffraction grating 5 is fixed. It is rotated and the intensity distribution of dispersed light is continuously measured by the photodetector 8. When measuring dispersed light in a narrow range, the diffraction grating may be fixed and the output side slit 7 and the photodetector 8 may be moved.

どちらの場合でも、前記回折格子5が回転中あるいは
前記出力側スリット7及び光検出器8が移動中の間は、
被測定光のスペクトルが一定でなくては正確な光スペク
トルを検出することはできない。しかしながら、実際の
光において,大半のスペクトルは時間的変化を常に生じ
ており,その間隔も短い。よって、回折格子を高速回転
するなどして、測定時間の短縮が計られてきた。
In either case, while the diffraction grating 5 is rotating or the output side slit 7 and the photodetector 8 are moving,
An accurate optical spectrum cannot be detected unless the spectrum of the measured light is constant. However, in actual light, most of the spectra constantly change with time and their intervals are short. Therefore, the measurement time has been shortened by rotating the diffraction grating at high speed.

本発明は、回折格子を高速回転させる代わりに、該回
折格子に入射する被測定光の光路を音響光学的光変調素
子で変向させ、該回折格子が回転したのと同じ効果を生
じさせようとしたものである。
According to the present invention, instead of rotating the diffraction grating at a high speed, the optical path of the measured light incident on the diffraction grating is deflected by an acousto-optic light modulator, and the same effect as if the diffraction grating is rotated is produced. It is what

ここに、回折格子は本発明では,第1の回折格子とな
る。
Here, the diffraction grating is the first diffraction grating in the present invention.

前記音響光学的光変調素子は電気的に高速に光を変向
できるものであるため、光スペクトルの検出時間が大幅
に短縮され,変動しているスペクトルの測定に適した光
スペクトル検出装置としての構成が可能である。
Since the acousto-optic light modulator is capable of electrically redirecting light at a high speed, the detection time of the optical spectrum is significantly shortened, and the acousto-optical modulator is suitable as an optical spectrum detector suitable for measuring a fluctuating spectrum. Configurable.

第1図に示すように、基本的には,本発明における光
学系は従来装置と同様に見えるが、入力側スリット3の
後段に新たに音響光学的光変調素子で構成される第2の
回折格子9を設けて被測定光を回折,変向し、その変向
した光を第1の回折格子5で従来例と同様に分散する。
そして、分散した光は第2の凹面反射鏡6により反射,
収束され出力側スリット7の面上に光スペクトルを生ず
る。
As shown in FIG. 1, basically, the optical system of the present invention looks similar to that of the conventional device, but a second diffractive element newly formed by an acousto-optical modulator is provided after the input side slit 3. A grating 9 is provided to diffract and change the light to be measured, and the changed light is dispersed by the first diffraction grating 5 as in the conventional example.
Then, the dispersed light is reflected by the second concave reflecting mirror 6,
It is converged and an optical spectrum is generated on the surface of the output side slit 7.

この光スペクトルは、前記第2の回折格子によって変
向された被測定光の各変向光,すなわち、前記第2の回
折格子9がSAWなどを使用した正弦波状位相格子の場
合、回折によって生じた±1次光及び回折を受けない0
次光の3本の光束に変向・分離されるのであるが、この
各々の変向された光束について光スペクトルが生ずるた
め、前記出力側スリット面上には3つの光スペクトルが
同時発生する。これらの光スペクトルは、光量的に異な
るがスペクトルの分布形状は実質的に同一であることが
知られている。本発明では、これら3つの光スペクトル
を空間的に分離して独立に測定する必要があるため、前
記出力側スリット7には前記3つの光スペクトルの発生
場所に合わせて開口が設けられており、各々の開口を通
過した光を測定するための複数の光検出器8が備えられ
た構成となっている。
This optical spectrum is generated by diffraction when each redirected light of the measured light deflected by the second diffraction grating, that is, when the second diffraction grating 9 is a sinusoidal phase grating using SAW or the like. ± 1st order light and no diffraction 0
The light beams are redirected / separated into three light beams of the next light, but since an optical spectrum is generated for each of the redirected light beams, three optical spectra are simultaneously generated on the output side slit surface. It is known that these optical spectra differ in light quantity, but the distribution shape of the spectra is substantially the same. In the present invention, since it is necessary to spatially separate and independently measure these three optical spectra, the output side slit 7 is provided with an opening in accordance with the generation position of the three optical spectra, It is configured to include a plurality of photodetectors 8 for measuring the light passing through each opening.

次に、第2の回折格子による被測定光の変向と複数の
光スペクトルの発生について第2図で説明する。第2図
は,格子間隔の可変制御可能な回折格子として使用でき
るSAWチューナブルグレイティングの構成例を示したも
ので、同図に示すグレィティングは基板11、電気絶縁性
台座12、圧電性基板13の三層構造である。前記基板11及
び電気絶縁性台座12にはその中央部にそれぞれ光透過窓
が整合するように設けられ、この窓を光が通過する。通
過した光は前記圧電性基板13のほぼ中央を透過し、その
際に該基板11上に伝搬しているSAWにより位相変化を受
ける。圧電性基板13の表面にはSAWを発生させるための
二つの櫛の歯が互に入り組んだ構造をもつ第1の交差指
形電極14aと、この電極14aより発生し、前記圧電性基板
13上を伝搬して来たSAWをモニタするための第2の交差
指形電極14bとが一対となって設けられている。
Next, the deflection of the measured light and the generation of a plurality of optical spectra by the second diffraction grating will be described with reference to FIG. FIG. 2 shows an example of the structure of a SAW tunable grating that can be used as a diffraction grating whose grating spacing can be variably controlled. The grating shown in FIG. 2 has a substrate 11, an electrically insulating pedestal 12, and a piezoelectric substrate 13. It is a three-layer structure. A light transmitting window is provided in the central portion of the substrate 11 and the electrically insulating pedestal 12 so as to be aligned with each other, and light passes through the windows. The light that has passed through passes through substantially the center of the piezoelectric substrate 13 and undergoes a phase change by the SAW propagating on the substrate 11 at that time. On the surface of the piezoelectric substrate 13, a first interdigital electrode 14a having a structure in which two comb teeth for generating SAW are intertwined with each other, and generated from this electrode 14a, the piezoelectric substrate
A pair of second interdigital electrodes 14b for monitoring the SAW propagating on 13 are provided.

第3図は、SAWを位相格子として使用した場合におけ
る光の変向が行われる様子を示しているもので、周波数
f0の正弦波の電気信号によって圧電性基板13の表面に発
生したSAWは、格子定数にあたる空間周期dを有し、速
度vで矢印の方向に進行する。前記圧電性基板13は光に
対し透過性を有し、同図左の方向から入射した光がこの
圧電性基板13を透過すると、該入射光はSAWによる圧電
性基板13の表面の正弦波状の凹凸と圧電性基板13の表面
直下の密度の変化、すなわち、屈折率の変化によって位
相変調を受ける。
Figure 3 shows how light is diverted when SAW is used as a phase grating.
The SAW generated on the surface of the piezoelectric substrate 13 by the electric signal of the sine wave of f 0 has a spatial period d corresponding to the lattice constant and progresses at the velocity v in the direction of the arrow. The piezoelectric substrate 13 has a light-transmitting property, and when light incident from the left side of the figure passes through this piezoelectric substrate 13, the incident light is a sinusoidal wave on the surface of the piezoelectric substrate 13 due to SAW. The unevenness and the change in the density just below the surface of the piezoelectric substrate 13, that is, the change in the refractive index cause phase modulation.

この位相変調は、空間周期dの繰返しによる周期的な
ものであるから、これらの光は通常の位相格子を透過し
たものと同じく、レンズ15でレンズの焦点面16に結像さ
せると回折像を生じる。ここで入射光が波長λの単色光
であれば、回折像には、格子定数dによって定まる±1
次の回折輝点が生ずる。この回折輝点の発生位置は、焦
点面16の光軸より距離αだけ離れた位置となり、その方
向はSAWの伝搬方向に等しい。
Since this phase modulation is periodic due to the repetition of the spatial period d, when these lights are imaged on the focal plane 16 of the lens by the lens 15, similar to those transmitted through a normal phase grating, a diffracted image is formed. Occurs. Here, if the incident light is a monochromatic light of wavelength λ, the diffraction image has ± 1 determined by the lattice constant d.
The next diffraction bright spot occurs. The position where the diffracted bright spot occurs is a position separated from the optical axis of the focal plane 16 by a distance α, and the direction thereof is equal to the SAW propagation direction.

距離αの値は前記レンズ15の焦点距離をFとすれば、 で表される。ここで、正弦波電気信号の周波数がf0を中
心に±Δf/2変化するものとすれば、焦点面16上におけ
る±1次の回折輝点の変位量Δαは、 となる。(2)式で明らかなように、SAWの伝搬速度が
遅く、前記レンズ15の焦点距離が長く、光の波長λが長
いほど、変位量Δαは大きな値を取ることとなる。
If the focal length of the lens 15 is F, the value of the distance α is It is represented by. Here, assuming that the frequency of the sine wave electric signal changes ± Δf / 2 around f 0 , the displacement amount Δα of the ± 1st-order diffracted bright spot on the focal plane 16 is Becomes As is clear from the equation (2), the displacement amount Δα becomes larger as the SAW propagation speed is slower, the lens 15 has a longer focal length, and the light wavelength λ is longer.

このようなSAWチューナブルグレイティングを光スペ
クトル検出器の測定光路の途中に配置すると、前述の±
1次の回折輝点及び回折を受けない0次光の3つの輝点
を中心とした3つの光スペクトルが同時に発生すること
となるが、第4図は前記第1図の本発明による光学系を
透過形に、すなわち、第1図における第1、第2の凹面
反射鏡4、6の代わりに凸レンズ17、18を考え、また、
反射形の第1の回折格子5を透過形回折格子19に置き換
えた光学系により前記SAWチューナブルグレイティング
によって変向された回折光が角度を変えて第1の回折格
子5に入射し、再び3つの輝点を結ぶことを示してい
る。第4図に示した点線がSAWにより変向された光束の
光軸を示しており、第1図において、第1の回折格子を
光が透過する時、第4図の実線で示した0次回折実際に
は、第1の回折格子は反射形であるから、入射光線の入
射角が変化すればそのことは、回折格子自身が回転した
のと同様の効果を生ずる。前述のSAWチューナブルグレ
イティングによって変向された回折光は、SAWの周波数
を変えることで変向の方向、すなわち回折格子への入射
角が変化するので、±1次回折光と−1次回折光とでは
回折格子の回転方向は互いに逆向きとはなるものの、両
回折光からみれば回折格子自身が回転したのと同じこと
になる。
If such a SAW tunable grating is placed in the measurement optical path of the optical spectrum detector,
Three optical spectra centering on the first-order diffracted bright spot and the zero-order light that is not diffracted will be generated simultaneously. FIG. 4 shows the optical system according to the present invention shown in FIG. Is a transmissive type, that is, the convex lenses 17 and 18 are considered instead of the first and second concave reflecting mirrors 4 and 6 in FIG.
The diffracted light deflected by the SAW tunable grating is changed in angle by the optical system in which the reflection type first diffraction grating 5 is replaced with the transmission type diffraction grating 19 and is incident on the first diffraction grating 5 again, and again 3 It shows that two bright spots are connected. The dotted line shown in FIG. 4 indicates the optical axis of the light beam deflected by the SAW. In FIG. 1, when the light passes through the first diffraction grating, the 0th time shown by the solid line in FIG. In fact, in practice, the first diffraction grating is of the reflective type, so that if the incident angle of the incident light beam changes, this has the same effect as if the diffraction grating itself were rotated. As for the diffracted light deflected by the SAW tunable grating described above, the direction of deflection, that is, the angle of incidence on the diffraction grating changes by changing the SAW frequency. Although the directions of rotation of the diffraction grating are opposite to each other, it is the same as the rotation of the diffraction grating itself when viewed from both diffracted lights.

さて、前記した3つの同時に発生したスペクトルは、
第1、第2の回折格子5、9の格子方向が同一である
と、ほぼ一直線上に並び、各スペクトルの分離が困難で
ある。また、格子方向が直角を成す場合には、各スペク
トルは上下関係に並び分離は容易であるが、SAW周波数
を掃引し、第2の回折格子の格子間隔を変化させて±1
次回折光を中心とする光スペクトルを空間的に走査して
も、光スペクトルの並び方向には移動しないので、効果
はない。よって、第1及び第2の回折格子の格子方向は
斜めにする必要がある。
Now, the three simultaneously generated spectra are
If the grating directions of the first and second diffraction gratings 5 and 9 are the same, they are arranged in a substantially straight line, and it is difficult to separate each spectrum. Also, when the grating directions are perpendicular to each other, the spectra are arranged in a vertical relationship and are easy to separate, but the SAW frequency is swept and the grating spacing of the second diffraction grating is changed to ± 1.
Even if the light spectrum centering on the second-order diffracted light is spatially scanned, it does not move in the arrangement direction of the light spectrum, so that there is no effect. Therefore, the grating directions of the first and second diffraction gratings need to be inclined.

第5図はこの様子を示しており、第1の回折格子の格
子方向をy軸方向、また、格子方向に垂直な方向をx方
向として、第2の回折格子(SAWチューナブルグレイテ
ィング)の配置状態を同図(a)に、第1の回折格子及
びその入射光束の状態を同図(b)に、また、これらの
配置による光スペクトルの出力分布状態を同図(c)に
示してある。角度θは第2の回折格子の傾き角である
が、本発明では、第2の回折格子を形成するSAWの周波
数を掃引して、出力側スリット7面上の±1次回折光に
よる光スペクトルをスペクトルの並び方向に移動させ、
前記スリットの固定された開口によって高速走査測光を
行うものであるため、SAWの周波数変化に対してより効
果的な光スペクトルの移動を必要とし、このため、前記
角度θは前記スリット上で3つの光スペクトルが空間的
に分離可能な範囲で最少にする必要がある。前記第5図
(c)の点線で囲んだ部分が±1次回折光による高速走
査測光可能な光スペクトル20、及び第1の回折格子を回
転して測定する通常測光用の光スペクトル21を示してい
る。本発明では、この点線内の適当な部分に開口を持つ
出力側スリット7を使用し、必要に応じて、光検出器8
を複数個用いて光スペクトルの検出を行う。また、光ス
ペクトルの表示に関しては、従来よりの、第1の回折格
子の回転角により波長軸を表示する方法に加え、第2の
回折格子に加えたSAW発生用電気信号周波数によって波
長軸を表示する方法を併用する。併用の方法は被測定光
の種類あるいは性質によって種々考えられるが、最も一
般的で簡便な方法は、広帯域走査を低速の第1の回折格
子の回転で行い、特定部分の狭帯域高速走査を第2の回
折格子で適時行う方法であろうと思われる。
FIG. 5 shows this state. The arrangement of the second diffraction grating (SAW tunable grating) is such that the grating direction of the first diffraction grating is the y-axis direction and the direction perpendicular to the grating direction is the x direction. The state is shown in (a) of the figure, the state of the first diffraction grating and its incident light beam is shown in (b) of the figure, and the output distribution state of the optical spectrum by these arrangements is shown in (c). . The angle θ is the tilt angle of the second diffraction grating, but in the present invention, the frequency of the SAW forming the second diffraction grating is swept to obtain the optical spectrum of the ± 1st-order diffracted light on the output side slit 7 surface. Move it in the direction of the spectrum,
Since the high-speed scanning photometry is performed by the fixed aperture of the slit, it is necessary to move the optical spectrum more effectively with respect to the frequency change of SAW. Therefore, the angle θ is set to three values on the slit. It is necessary to minimize the light spectrum within a spatially separable range. The portion surrounded by the dotted line in FIG. 5 (c) shows an optical spectrum 20 capable of high-speed scanning photometry by ± first-order diffracted light, and an optical spectrum 21 for normal photometry which is measured by rotating the first diffraction grating. There is. In the present invention, the output side slit 7 having an opening at an appropriate portion within the dotted line is used, and the photodetector 8 is used as necessary.
The optical spectrum is detected using a plurality of. Regarding the optical spectrum display, in addition to the conventional method of displaying the wavelength axis by the rotation angle of the first diffraction grating, the wavelength axis is displayed by the SAW generation electric signal frequency added to the second diffraction grating. Method. Various combined methods can be considered depending on the type or property of the light to be measured, but the most general and simplest method is to perform wideband scanning by rotating the first diffraction grating at a low speed and perform narrowband high speed scanning at a specific portion. It seems that the method of timely using the diffraction grating of No. 2 will be used.

また、当然に第1の回折格子,第2の回折格子の順序
は,入れ換えても原理的には同じ動作ができる。
Also, of course, even if the order of the first diffraction grating and the second diffraction grating is interchanged, the same operation can be performed in principle.

〔効果〕〔effect〕

以上述べたように、本発明によれば、格子間隔が可変
制御可能な回折格子を用いて光を高速変向し、従来装置
に使用されていたと同様の分散用に用いられる回折格子
への被測定光の入射角度を変化させ、その結果、相対的
に分散用の回折格子を急速回転したと同様の効果を得、
光スペクトル検出に要する測定時間を大幅に短縮するこ
とが可能となった。これにより、変動周期の短い光のス
ペクトルも検出可能となり、光スペクトルの変化してい
く状態の観察も可能であるといった効果が生まれた。
As described above, according to the present invention, the diffraction grating whose distance between the gratings can be variably controlled is used to redirect light at a high speed, and the diffraction grating used for dispersion similar to that used in the conventional device is applied to the diffraction grating. The incident angle of the measurement light is changed, and as a result, the same effect as when the diffraction grating for dispersion is rapidly rotated is obtained.
It has become possible to greatly reduce the measurement time required for optical spectrum detection. As a result, it is possible to detect the spectrum of light with a short fluctuation period, and it is possible to observe the changing state of the light spectrum.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の第2の回折格子を使用した光スペク
トル検出装置の一実施例における測定光学系の構成を示
す。 第2図は、本発明の構成要素である格子間隔が可変制御
可能な回折格子の一つである音響光学的光変調素子(SA
Wチューナブルグレイティング)の構成を示す。 第3図は、前記第2図のSAWチューナブルグレイティン
グによる光の変向状態を示す。 第4図は、本発明の一実施例における測定光学系を透過
形に書き換えた光学系図を示す。 第5図は、本発明の構成要素である第1及び第2の回折
格子の格子方向の傾きθと出力される光スペクトルの発
生位置の関連を示す。 第6図は、従来装置における光スペクトル検出装置の測
定光学系の一実施例を示す。 図において、1は被測定光,2はレンズ,3は入力側スリッ
ト,4は第1の凹面反射鏡,5は第1の回折格子,6は第2の
凹面反射鏡,7は出力側スリット,8は光検出器、9は第2
の回折格子,11は基板,12は電気絶縁性台座,13は圧電性
基板,14aは第1の交差指形電極,14bは第2の交差指形電
極,15はレンズ,16は焦点面,17と18は凸レンズ,19は透過
形回折格子,20は高速走査測光可能な光スペクトル,21は
通常測光用の光スペクトルをそれぞれ示す。
FIG. 1 shows the configuration of a measurement optical system in an embodiment of an optical spectrum detecting apparatus using the second diffraction grating of the present invention. FIG. 2 shows an acousto-optic light modulator (SA) which is one of the diffraction gratings whose grating spacing is variably controllable, which is a constituent element of the present invention.
W tunable rating). FIG. 3 shows a light deflection state by the SAW tunable grating shown in FIG. FIG. 4 shows an optical system diagram in which the measurement optical system in one embodiment of the present invention is rewritten into a transmission type. FIG. 5 shows the relationship between the inclination θ of the first and second diffraction gratings, which are the constituent elements of the present invention, in the grating direction and the generation position of the output optical spectrum. FIG. 6 shows an embodiment of the measuring optical system of the optical spectrum detecting device in the conventional device. In the figure, 1 is the light to be measured, 2 is the lens, 3 is the input side slit, 4 is the first concave reflecting mirror, 5 is the first diffraction grating, 6 is the second concave reflecting mirror, and 7 is the output side slit. , 8 is a photodetector, 9 is a second
Diffraction grating, 11 is a substrate, 12 is an electrically insulating pedestal, 13 is a piezoelectric substrate, 14a is a first interdigital electrode, 14b is a second interdigital electrode, 15 is a lens, 16 is a focal plane, 17 and 18 are convex lenses, 19 is a transmission type diffraction grating, 20 is an optical spectrum capable of high-speed scanning photometry, and 21 is an optical spectrum for normal photometry.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】入射光を、第1の回折格子及び第2の回折
格子を経由させて分散し、その光スペクトルを検出する
光スペクトル検出装置であって、 前記第1の回折格子及び第2の回折格子のうち、いずれ
か一方の回折格子は、入射された光を分散して光スペク
トルを得るための、回折格子間隔が固定の回折格子であ
り、他方の回折格子は、入射された光の光路を空間的に
変向させるための、回折格子間隔が制御可能に可変な回
折格子であり、 前記回折格子間隔が制御可能に可変な回折格子によって
変向されかつ前記回折格子間隔が固定の回折格子によっ
て分散された光スペクトルの一部を通過させるための空
間フィルタを備えていることを特徴とする光スペクトル
検出装置。
1. An optical spectrum detecting device for dispersing incident light via a first diffraction grating and a second diffraction grating and detecting the optical spectrum thereof, wherein the first diffraction grating and the second diffraction grating are provided. One of the diffraction gratings is a diffraction grating with a fixed diffraction grating interval for dispersing the incident light to obtain an optical spectrum, and the other diffraction grating is used for the incident light. Is a diffraction grating with a controllable variable diffraction grating spacing for spatially diverting the optical path of, and the diffraction grating spacing is deflected by a controllable variable diffraction grating and the diffraction grating spacing is fixed. An optical spectrum detecting device comprising a spatial filter for passing a part of an optical spectrum dispersed by a diffraction grating.
JP349387A 1987-01-09 1987-01-09 Optical spectrum detector Expired - Lifetime JPH083445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP349387A JPH083445B2 (en) 1987-01-09 1987-01-09 Optical spectrum detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP349387A JPH083445B2 (en) 1987-01-09 1987-01-09 Optical spectrum detector

Publications (2)

Publication Number Publication Date
JPS63171329A JPS63171329A (en) 1988-07-15
JPH083445B2 true JPH083445B2 (en) 1996-01-17

Family

ID=11558861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP349387A Expired - Lifetime JPH083445B2 (en) 1987-01-09 1987-01-09 Optical spectrum detector

Country Status (1)

Country Link
JP (1) JPH083445B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09122128A (en) 1995-10-31 1997-05-13 Kdk Corp Measurement condition reproducing tool, measurement condition reproducing method and biological information utilizing the same
JP3654458B2 (en) * 1995-10-31 2005-06-02 アークレイ株式会社 Light source device
JPH09133629A (en) 1995-11-08 1997-05-20 Kdk Corp Treatment method for spectrum in spectral measurement and determination method using it
US6687001B2 (en) 2001-03-16 2004-02-03 Fujitsu Limited Optical spectrum analyzer and optical spectrum detecting method

Also Published As

Publication number Publication date
JPS63171329A (en) 1988-07-15

Similar Documents

Publication Publication Date Title
US7170610B2 (en) Low-coherence inferometric device for light-optical scanning of an object
US4575243A (en) Monochromator
JPH06207853A (en) Spectrophotometer and analysis of light
US3930732A (en) Device and process for testing a lens system
CA2070330C (en) High resolution spectroscopy system
US6204926B1 (en) Methods and system for optically correlating ultrashort optical waveforms
KR19990076349A (en) Reflective holographic optical element characterization system
US6646739B2 (en) Four-stage type monochromator
JP2780409B2 (en) Angle detector
JPH083445B2 (en) Optical spectrum detector
JPS6038644B2 (en) spectrophotometer
US4345838A (en) Apparatus for spectrometer alignment
US3217591A (en) Angled plate scanning interferometer
Kawata Instrumentation for near-infrared spectroscopy
JPS60222815A (en) Variable optical filter
US3639062A (en) Spectrometric instrument with transposition of ray paths
US20040145744A1 (en) Measuring array
JPS58727A (en) Fourier transform spectrum device
JPH06186086A (en) Wavelength detecting device
JPH0399238A (en) High resolution spectroscope
JPS63218827A (en) Light spectrum detector
JPH08211425A (en) Optical scanner
JPH078736U (en) Spectroscopic device
JPH01126519A (en) High speed scanning spectroscope
JPH0317507A (en) Measuring apparatus for three-dimensional shape