JPH08338818A - Sample mounting fixture for X-ray analysis - Google Patents
Sample mounting fixture for X-ray analysisInfo
- Publication number
- JPH08338818A JPH08338818A JP7146450A JP14645095A JPH08338818A JP H08338818 A JPH08338818 A JP H08338818A JP 7146450 A JP7146450 A JP 7146450A JP 14645095 A JP14645095 A JP 14645095A JP H08338818 A JPH08338818 A JP H08338818A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- crystal
- cylindrical member
- ray
- mounting tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002441 X-ray diffraction Methods 0.000 title claims abstract description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000005350 fused silica glass Substances 0.000 claims abstract description 11
- 239000000463 material Substances 0.000 claims abstract description 9
- 239000013078 crystal Substances 0.000 abstract description 86
- 102000004169 proteins and genes Human genes 0.000 abstract description 38
- 108090000623 proteins and genes Proteins 0.000 abstract description 38
- 230000000694 effects Effects 0.000 abstract description 2
- 238000002474 experimental method Methods 0.000 description 13
- 238000001816 cooling Methods 0.000 description 12
- 239000012452 mother liquor Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 239000010453 quartz Substances 0.000 description 10
- 239000007788 liquid Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 230000005855 radiation Effects 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 239000002577 cryoprotective agent Substances 0.000 description 5
- 238000007710 freezing Methods 0.000 description 5
- 230000008014 freezing Effects 0.000 description 5
- 229910001111 Fine metal Inorganic materials 0.000 description 4
- 102000004142 Trypsin Human genes 0.000 description 4
- 108090000631 Trypsin Proteins 0.000 description 4
- 238000007664 blowing Methods 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000012588 trypsin Substances 0.000 description 4
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 229920003002 synthetic resin Polymers 0.000 description 3
- 239000000057 synthetic resin Substances 0.000 description 3
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229920001222 biopolymer Polymers 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000002447 crystallographic data Methods 0.000 description 2
- 235000013681 dietary sucrose Nutrition 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000012916 structural analysis Methods 0.000 description 2
- 229960004793 sucrose Drugs 0.000 description 2
- 230000005469 synchrotron radiation Effects 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 229910001006 Constantan Inorganic materials 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- PXXJHWLDUBFPOL-UHFFFAOYSA-N benzamidine Chemical compound NC(=N)C1=CC=CC=C1 PXXJHWLDUBFPOL-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000012926 crystallographic analysis Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 230000006916 protein interaction Effects 0.000 description 1
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 1
- 238000001073 sample cooling Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- IHQKEDIOMGYHEB-UHFFFAOYSA-M sodium dimethylarsinate Chemical compound [Na+].C[As](C)([O-])=O IHQKEDIOMGYHEB-UHFFFAOYSA-M 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 230000036346 tooth eruption Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000012982 x-ray structure analysis Methods 0.000 description 1
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
(57)【要約】
【目的】 蛋白質結晶等の試料に応力をかけることなく
軸立てしてマウントすることができ、また、マウント具
自体から強い回折線を発生させることがなく、ブライン
ド領域も生じないX線分析用試料マウント具を提供す
る。
【構成】 溶融石英等の非晶質材料からなるロッド31
の先端に溶融石英等の非晶質材料からなる筒状部材30
を、筒状部材30の軸がロッド31の軸と略直交するよ
うに固定してなるマウント具。
【効果】 試料マウント部は筒状であって試料が露出し
ているため、寒剤を試料に直接接触させて急速冷凍する
ことができる。試料は筒状部材の比較的広い平坦な壁面
に付着するため、結晶を歪ませずに軸立てしてマウント
することができる。また、非晶質材料できているため、
マウント具自体から強い回折線が生じることもない。
(57) [Abstract] [Purpose] A sample such as a protein crystal can be axially mounted without applying stress, and no strong diffraction lines are generated from the mounting tool itself, and a blind area is generated. To provide a sample mount for X-ray analysis. [Structure] Rod 31 made of an amorphous material such as fused quartz
Cylindrical member 30 made of an amorphous material such as fused quartz
Is mounted so that the axis of the cylindrical member 30 is substantially perpendicular to the axis of the rod 31. [Effect] Since the sample mount portion is cylindrical and the sample is exposed, the cryogen can be brought into direct contact with the sample and rapidly frozen. Since the sample adheres to the relatively wide flat wall surface of the cylindrical member, the crystal can be axially mounted without being distorted. Also, because it is made of an amorphous material,
No strong diffraction line is generated from the mounting tool itself.
Description
【0001】[0001]
【産業上の利用分野】本発明は、X線分析用試料マウン
ト具に関し、特に液体窒素温度程度の低温下において生
体高分子結晶の結晶学的構造解析を行うのに好適なX線
分析用試料マウント具に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sample mount for X-ray analysis, and more particularly to a sample for X-ray analysis suitable for crystallographic analysis of a biopolymer crystal at a low temperature such as liquid nitrogen. Regarding mounting equipment.
【0002】[0002]
【従来の技術】蛋白質X線結晶構造解析法は、生体内で
生命維持の化学反応を担う蛋白質分子の立体構造、構築
原理、反応機構解明に様々な貢献をし、またその重要性
は今後ますます増大して行くものと考えられる。しか
し、蛋白質結晶のX線回折実験を行うものにとって常に
煩わしい問題として、蛋白質結晶の放射線損傷による結
晶性劣化がある。蛋白質結晶の放射線損傷メカニズムの
詳細は十分に解明されているわけではないが、その放射
線損傷の程度は、蛋白質結晶に照射される全X線量や単
位時間当たりの照射量と強い相関を示すことが知られて
いる。蛋白質結晶に吸収されたX線は、ラジカルの生成
エネルギーや熱に転換され、それらが結晶内の蛋白質分
子間相互作用を消失させ、結果として、結晶性劣化や溶
解をもたらすものと考えられている。例えば、12ke
VのエネルギーをもつX線が1010個/秒の割合で0.
19mm-1の線吸収係数を有した結晶に入射する場合、
吸収されたX線が全て熱に転換されたとすると、結晶の
温度上昇は約1mK/秒と見積もられる。[Prior Art] Protein X-ray crystal structure analysis has made various contributions to the elucidation of the three-dimensional structure, principle of construction, and reaction mechanism of protein molecules that are responsible for chemical reactions that support life in vivo, and its importance will be increasing in the future. It is thought that it will increase more and more. However, a problem that is always troublesome for those performing X-ray diffraction experiments on protein crystals is deterioration of crystallinity due to radiation damage of protein crystals. Although the details of the radiation damage mechanism of protein crystals have not been fully elucidated, the degree of radiation damage is strongly correlated with the total X-ray dose irradiated to protein crystals and the dose per unit time. Are known. X-rays absorbed by protein crystals are converted into energy and heat of radical generation, which eliminates the interaction between protein molecules in the crystals, which is thought to result in crystallinity degradation and dissolution. . For example, 12ke
X-rays having V energy of 0.1 at a rate of 10 10 / sec.
When incident on a crystal having a linear absorption coefficient of 19 mm -1 ,
Assuming that all absorbed X-rays are converted to heat, the temperature rise of the crystal is estimated to be about 1 mK / sec.
【0003】放射線損傷を抑制する方法としては、蛋白
質結晶が吸収を起こしにくい短い波長のX線(0.03
nm程度)を使用する方法、あるいは低温下で回折実験
を行い、発生する熱を迅速に除去するとともにラジカル
発生を抑制する方法の2つの方法が考えられる。前者は
大型放射光実験施設の利用が前提であるため、実験室レ
ベルでの測定を考えるならば、低温下での回折実験が望
まれ、実際に試みられてきた。[0003] As a method of suppressing radiation damage, a short-wavelength X-ray (0.03
2) or a method in which a diffraction experiment is performed at a low temperature to quickly remove generated heat and suppress radical generation. The former is premised on the use of a large synchrotron radiation experimental facility, so diffraction experiments at low temperatures have been desired and tried in practice, considering laboratory-level measurements.
【0004】低温下で回折実験を行おうとする場合の最
大の難点は、蛋白質結晶に多量に含まれている水が六方
晶の氷として析出することである。氷の析出は蛋白質結
晶を内部から破壊する。冷却過程での氷析出防止には、
蛋白質結晶の結晶母液を抗凍結剤を含むものに置換し、
さらにその冷却にあたっては、蛋白質結晶を直接寒剤に
曝して迅速かつ効率的な冷却を行うことが不可欠であ
る。このような要求を考えた場合、従来から蛋白質X線
結晶構造解析実験において伝統的に用いられてきたキャ
ピラリーチューブは、その中にマウントされた蛋白質を
直接寒剤に曝すことができないため、低温下でX線回折
実験を行う際の結晶マウント具としては不向きである。[0004] The biggest difficulty in conducting a diffraction experiment at low temperatures is that water contained in a large amount in protein crystals precipitates as hexagonal ice. Ice precipitation destroys protein crystals from within. To prevent ice precipitation during the cooling process,
Replacing the crystal mother liquor of the protein crystal with one containing a cryoprotectant,
Further, upon cooling, it is essential to rapidly and efficiently cool the protein crystals by directly exposing them to a cryogen. In view of such demands, the capillary tubes conventionally used in protein X-ray crystal structure analysis experiments cannot expose proteins mounted therein directly to a cryogen, so that they can be used at low temperatures. It is not suitable as a crystal mounting tool for performing X-ray diffraction experiments.
【0005】蛋白質結晶を急速冷却するのに適したマウ
ント具として、図2(a)に示すような薄板石英板を用
いたマウント具が知られている〔Acta Cryst. B45, 190
-199(1989)〕。このマウント具は、石英ロッド21の先
端に厚さ約100μm、表面積約500×500μm2
の薄板石英板22を接着剤23で固定して組み立てられ
たものであり、結晶母液中の蛋白質結晶を薄板石英板2
2の表面に付着させてマウントする。また、図2(b)
に示すように、直径約80μmの白金、タングステン、
コンスタンタン等からなる極細金属ワイヤ25をループ
状に湾曲させて石英ロッド24の先端に接着剤26で固
定したマウント具も知られている〔J. Appl. Cryst. 2
3, 387-391(1990)〕。このマウント具は、結晶母液の表
面張力を利用して結晶を極細金属ワイヤ25の部分にマ
ウントするものである。図2に示したマウント具はいず
れも、ロッド21,24の下端をX線回折装置中のゴニ
オメータに固定して使用される。As a mounting tool suitable for rapidly cooling protein crystals, a mounting tool using a thin quartz plate as shown in FIG. 2A is known [Acta Cryst. B45 , 190].
-199 (1989)]. This mounting tool has a thickness of about 100 μm and a surface area of about 500 × 500 μm 2 at the tip of the quartz rod 21.
Is assembled by fixing the thin quartz plate 22 of FIG. 1 with an adhesive 23, and the protein crystals in the crystal mother liquor are
2 and attached to the surface. FIG. 2 (b)
As shown in the figure, platinum, tungsten having a diameter of about 80 μm,
Microfine metal wire 25 made of constantan or the like by bending the loop and secured with an adhesive 26 to the distal end of the quartz rod 24 mounted device are also known [J. Appl. Cryst. 2
3 , 387-391 (1990)]. This mounting tool mounts the crystal on the ultrafine metal wire 25 using the surface tension of the crystal mother liquor. Each of the mounting tools shown in FIG. 2 is used with the lower ends of the rods 21 and 24 fixed to a goniometer in an X-ray diffractometer.
【0006】[0006]
【発明が解決しようとする課題】ところで、前記薄板石
英板を用いたマウント具は、薄板石英板22の表面のわ
ずかな凹凸が蛋白質結晶に力学的微小変形を引き起こ
し、得られるX線回折データの信頼性を損なわせる可能
性がある。また、結晶母液中の結晶をすくって薄板石英
板上に載せる操作と、そののち結晶母液を除去する操作
が必要であり、取り扱いの点で迅速性に欠ける欠点があ
る。However, in the mounting device using the thin quartz plate, slight irregularities on the surface of the thin quartz plate 22 cause small mechanical deformation of the protein crystal, and the obtained X-ray diffraction data is obtained. It may impair reliability. In addition, an operation of scooping the crystal in the crystal mother liquor and placing it on a thin quartz plate and an operation of subsequently removing the crystal mother liquor are required, and there is a drawback that the handling is lacking in speed.
【0007】極細金属ワイヤを用いたマウント具におい
ても、図3の断面模式図に示すように、ワイヤ25と蛋
白質結晶27の隙間に存在する結晶母液28の表面張力
によって結晶27に矢印で示すような力が作用し、結晶
格子が歪んで正しい回折データが得られない場合があ
る。また、更に大きな問題は、金属ワイヤを用いるため
に、いわゆるブラインド領域が生じ、X線が金属ワイヤ
でできたループにあたった場合、それから発生する強度
の強い回折散乱パターンが検出器に入り込み、そのよう
な配置に存在する逆空間領域の強度測定が事実上できな
くなることである。また、ループワイヤの断面が円であ
るため蛋白質結晶が十分に強固な場合であっても結晶の
軸立てが困難であるという問題がある。[0007] In a mounting tool using an ultrafine metal wire, as shown in the schematic cross-sectional view of FIG. 3, the crystal 27 is indicated by an arrow due to the surface tension of a crystal mother liquor 28 existing in a gap between the wire 25 and the protein crystal 27. Strong force acts on the crystal lattice, and correct diffraction data may not be obtained. Further, the more serious problem is that a so-called blind region is generated due to the use of a metal wire, and when an X-ray hits a loop made of a metal wire, a strong diffraction scattering pattern generated from the loop enters the detector, and This makes it impossible to measure the intensity of the inverse space existing in such an arrangement. In addition, since the loop wire has a circular cross section, there is a problem that it is difficult to orient the crystal even when the protein crystal is sufficiently strong.
【0008】本発明は、前記従来技術の問題点を解消し
た低温X線回折用の新しい結晶マウント具を提供するこ
とを目的とする。It is an object of the present invention to provide a new crystal mount for low-temperature X-ray diffraction which has solved the above-mentioned problems of the prior art.
【0009】[0009]
【課題を解決するための手段】蛋白質結晶等を低温X線
構造解析するのに使用される試料マウント具は、(1)
高い試料冷却効率が得られること、(2)マウントした
試料結晶に力学的なダメージを与えないこと、(3)簡
便な操作で試料をマウントできること、(4)マウント
具自体から強い回折線を生じないこと、(5)結晶の軸
立てが可能なこと、(6)熱膨張率が小さく急速冷却で
破壊されないこと、(7)X線透過が可能であること等
の条件を満たすことが望まれる。SUMMARY OF THE INVENTION A sample mounting tool used for low-temperature X-ray structure analysis of protein crystals and the like is described in (1).
High sample cooling efficiency, (2) no mechanical damage to the mounted sample crystal, (3) simple mounting of the sample, (4) strong diffraction lines from the mounting tool itself It is desirable to satisfy the following conditions: (5) the crystal can be oriented, (6) the thermal expansion coefficient is small, the crystal is not broken by rapid cooling, and (7) the X-ray can be transmitted. .
【0010】前記条件を満足するため、本発明によるX
線分析用試料マウント具は、非晶質材料からなるロッド
の先端に非晶質材料からなる筒状部材を該筒状部材の軸
が前記ロッドの軸と略直交するように固定したことを特
徴とする。ロッドや筒状部材は溶融石英製あるいはソー
ダガラス製とすることができる。筒状部材は、例えば溶
融石英製のキャピラリーチューブを輪切りにすることに
よって作製することができる。また、筒状部材は、その
軸に垂直な断面が円形である円筒体であってもよいし、
その軸に垂直な断面が三角形や四角形である他の形状の
筒状体であってもよい。In order to satisfy the above conditions, X according to the present invention is used.
The sample holder for line analysis is characterized in that a cylindrical member made of an amorphous material is fixed to the tip of a rod made of an amorphous material such that the axis of the cylindrical member is substantially perpendicular to the axis of the rod. And The rod and the cylindrical member can be made of fused quartz or soda glass. The cylindrical member can be manufactured by cutting a capillary tube made of, for example, fused quartz into a ring. Further, the cylindrical member may be a cylindrical body whose cross section perpendicular to its axis is circular,
A cylindrical body of another shape whose cross section perpendicular to the axis is a triangle or a square may be used.
【0011】[0011]
【作用】蛋白質結晶等の試料をマウントする部分は筒状
であって試料が露出するため、寒剤を試料に直接接触さ
せて急速冷凍することができる。試料は筒状部材の比較
的広い平坦な壁面に付着するため、結晶を歪ませずにマ
ウントすることができる。試料は、マウント具の先端を
試料液に浸けて結晶母液中の結晶試料をすくい取るとい
う簡便な操作で筒状部材壁面に軸立てしてマウントする
ことができ、そののち液を除去する等の特別な操作を必
要としない。すなわち筒状部材の内部空間に結晶母液中
の結晶試料をすくい上げるため、結晶の結晶面が筒状部
材に対して結晶母液の表面張力が作る面と一致し易く、
すくい上げ操作を何回か試行することによって結晶軸を
所定の方向に合わせたマウントが容易に可能である。例
えば、蛋白質結晶に多く見られる両錐形の結晶の場合に
は図8(a)に示すように2つの頂点を筒状部材内に位
置させた状態でマウントされ易く、直方体形の結晶の場
合は図8(b)に示すように結晶面の一つを筒状部材の
壁面に密着させた状態でマウントされ易い。The sample mounting portion, such as a protein crystal, is cylindrical and the sample is exposed, so that the cryogen can be brought into direct contact with the sample and rapidly frozen. Since the sample adheres to the relatively wide flat wall surface of the cylindrical member, it can be mounted without distorting the crystal. The sample can be mounted on the wall of the cylindrical member by a simple operation of immersing the tip of the mounting tool in the sample liquid and scooping out the crystal sample in the crystal mother liquor, and then removing the liquid. No special operation is required. That is, in order to scoop up the crystal sample in the crystal mother liquor into the internal space of the cylindrical member, the crystal surface of the crystal is likely to coincide with the surface created by the surface tension of the crystal mother liquor with respect to the cylindrical member,
By repeatedly performing the scooping operation, mounting with the crystal axis aligned in a predetermined direction can be easily performed. For example, in the case of bipyramidal crystals which are often found in protein crystals, as shown in FIG. 8 (a), it is easy to mount with two vertices positioned inside the cylindrical member, and in the case of a rectangular parallelepiped crystal, As shown in FIG. 8B, it is easy to mount with one of the crystal faces in close contact with the wall surface of the cylindrical member.
【0012】試料をマウントする筒状部材は溶融石英や
ソーダガラス等の非晶質材料でできているため、マウン
ト具自体から強い回折線が生じることはない。また、溶
融石英やソーダガラスは、寒剤に接触させて急速冷却し
ても破壊することはなく、十分なX線透過率を有する。
下記の表1は、本発明による試料マウント具と従来の薄
板石英板あるいは極細金属細線を用いた試料マウント具
の性能を比較して示したものである。 表 1 試料マウント具 本発明 薄板石英板 極細金属ワイヤ ──────────────────────────────────── 素材 溶融石英 溶融石英 金属細線 冷却効率 良 良 良 結晶への力学的負荷 無 有 有 ブラインド 無 無 有 軸立て 可 可 不可 このように、本発明によるX線分析用試料マウント具
は、蛋白質結晶等の試料を低温X線構造解析するのに必
要とされる条件を全て満足しており、この試料マウント
具を用いることにより信頼性の高いX線回折データを簡
便に得ることが可能である。Since the cylindrical member for mounting the sample is made of an amorphous material such as fused quartz or soda glass, no strong diffraction lines are generated from the mounting tool itself. In addition, fused quartz and soda glass do not break even when they are rapidly cooled by contact with a cryogen, and have a sufficient X-ray transmittance.
Table 1 below shows a comparison between the performance of the sample mounting tool according to the present invention and the performance of a sample mounting tool using a conventional thin quartz plate or a fine metal wire. Table 1 Sample mounting tool The present invention Thin quartz plate Ultra-fine metal wire ワ イ ヤ Material Fused quartz Fused quartz Fine metal wire Cooling efficiency Good Good Good Mechanical load on the crystal No Yes Yes Blind No No Yes Shafting Yes Yes No As described above, the sample mounting fixture for X-ray analysis according to the present invention can be used for samples such as protein crystals. Satisfies all the conditions necessary for low-temperature X-ray structural analysis of the sample, and by using this sample mount, highly reliable X-ray diffraction data can be easily obtained.
【0013】また、本発明によるX線分析用試料マウン
ト具を用いた蛋白質X線結晶構造解析によると、低温下
で蛋白質の反応中間状態の構造解析を行うことができ、
蛋白質自身の熱振動とそれをとりまく水分子のダイナミ
クスが蛋白質の機能とどのような相関を持つかといった
問題の解明にも貢献できる。According to the protein X-ray crystal structure analysis using the sample mounting device for X-ray analysis according to the present invention, it is possible to carry out the structural analysis of the intermediate state of the protein at low temperature,
It can also contribute to the elucidation of how the thermal oscillations of the protein itself and the dynamics of the water molecules surrounding it have a correlation with the function of the protein.
【0014】[0014]
【実施例】以下、実施例により本発明を詳細に説明す
る。まず、試料マウント具の製造方法について説明す
る。図1(a)に断面を示すように、合成樹脂板11の
表面に溝12を形成し、その溝に外径200〜1000
μm、肉厚10μmの溶融石英製キャピラリー管13を
挿入し固定した。その後、図1(b)に示すように、半
導体部品の製造分野でウエハからチップを切り出すのに
用いられているのと同様の切断歯15を送りスピード
0.5mm/secで送って合成樹脂板11表面に切り
込みを入れ、キャピラリー管13を複数箇所で切断し
た。こうして、図4に示すように、外径約700μm、
高さ100〜200μm、肉厚約10μmの溶融石英製
円筒部材30を作製した。The present invention will be described below in detail with reference to examples. First, a method for manufacturing a sample mounting device will be described. As shown in the cross section in FIG. 1A, a groove 12 is formed on the surface of a synthetic resin plate 11, and an outer diameter of 200 to 1000 is formed in the groove.
A fused silica capillary tube 13 having a thickness of 10 μm and a thickness of 10 μm was inserted and fixed. Then, as shown in FIG. 1 (b), the same cutting teeth 15 as those used for cutting chips from a wafer in the field of manufacturing semiconductor parts are fed at a feed speed of 0.5 mm / sec, and the synthetic resin plate is fed. A cut was made in the surface of 11 and the capillary tube 13 was cut at a plurality of locations. Thus, as shown in FIG.
A fused quartz cylindrical member 30 having a height of 100 to 200 μm and a thickness of about 10 μm was produced.
【0015】図5に示すように、作製した円筒部材30
は、ガラスファイバー31の先端にエポキシ樹脂32を
用いて接着した。このエポキシ樹脂は、液体エタンを用
いた急速凍結においてもその接着性能を保持しており、
円筒部材30自体も1m/secのスピードで液体エタ
ンに浸漬しても、その衝撃と温度変化によって破壊され
ることはなかった。ガラスファイバー31の長さは、円
筒部材30の位置を照射X線が通過するようにX線回折
装置の試料マウント部の寸法に合わせて適当に決められ
る。このようにして作製したマウント具40は、さらに
真鍮等の金属製のピン34に接着して使用する。金属製
のピン34は、低温窒素ガスによる急速冷却において位
置決めが容易なように、直径5mm、厚さ2mmのサマ
リウムコバルト磁石35に接着してある。[0015] As shown in FIG.
Was bonded to the tip of a glass fiber 31 using an epoxy resin 32. This epoxy resin retains its adhesive performance even in quick freezing using liquid ethane,
Even when the cylindrical member 30 itself was immersed in liquid ethane at a speed of 1 m / sec, it was not destroyed by the impact and temperature change. The length of the glass fiber 31 is appropriately determined according to the size of the sample mount of the X-ray diffraction apparatus so that the irradiation X-ray passes through the position of the cylindrical member 30. The mounting tool 40 thus manufactured is further used by bonding it to a metal pin 34 such as brass. The metal pin 34 is adhered to a samarium-cobalt magnet 35 having a diameter of 5 mm and a thickness of 2 mm so that positioning is easy in rapid cooling with low-temperature nitrogen gas.
【0016】図6に、本発明の試料マウント具を用いる
X線回折装置の概略を示す。先端の筒状部材に結晶試料
をマウントしたマウント具40は、磁石35によってゴ
ニオメータ50に取り付けられる。試料は、低温ガス吹
き付け装置51から流下する低温窒素ガスによって測定
の間常に冷却されている。回転対陰極型X線発生装置等
のX線発生装置52から発生されたX線はニッケルフィ
ルターを用いて単色化され、X線集光ミラー53によっ
て収束されてマウント40に保持された試料に照射され
る。試料から発生した回折X線パターンは、イメージン
グプレート等の感光体54で検出される。FIG. 6 schematically shows an X-ray diffraction apparatus using the sample mounting device of the present invention. The mounting tool 40 having the crystal sample mounted on the cylindrical member at the tip is attached to the goniometer 50 by the magnet 35. The sample is constantly cooled during the measurement by the low-temperature nitrogen gas flowing down from the low-temperature gas blowing device 51. X-rays generated from an X-ray generator 52 such as a rotating anti-cathode type X-ray generator are monochromated using a nickel filter, converged by an X-ray focusing mirror 53, and irradiated to a sample held on a mount 40. Is done. The diffraction X-ray pattern generated from the sample is detected by a photoconductor 54 such as an imaging plate.
【0017】以下に、図6のX線回折装置を用いた測定
方法について説明する。低温下で蛋白質結晶のデータ収
集を行う場合の困難は、蛋白質結晶の溶媒領域の大部分
を占有する水が冷却に伴って六方晶の氷として凍結され
てしまうことである。初期冷却で六方晶氷の生成を阻害
し、水をガラス状に凍結するには、抗凍結剤を結晶母液
に浸透させ、かつ、結晶の冷却速度を高める必要があ
る。抗凍結剤と急速冷凍の併用によって蛋白質内の水分
子はガラス状に凍結される。抗凍結剤は、水の相転移に
対して平衡氷点の低下、氷の均質な成長の抑制、及び過
冷却現象の増大といった効果をもたらす。蛋白質結晶に
浸透させる抗凍結剤としては、メタノール、グリセロー
ル、2−メチル−2,4−ペンタンジオール、サッカロ
ース、ポリエチレングリコール等を用いることができ
る。その場合、濃度は15%(w/v)以上とするのが
有効である。Hereinafter, a measuring method using the X-ray diffractometer of FIG. 6 will be described. A difficulty in collecting protein crystal data at low temperatures is that the water occupying most of the solvent region of the protein crystal is frozen as hexagonal ice with cooling. In order to inhibit the formation of hexagonal ice during the initial cooling and freeze water into a glassy state, it is necessary to infiltrate the cryoprotectant into the crystal mother liquor and increase the cooling rate of the crystals. Water molecules in the protein are frozen into a glass by the combination of cryoprotectant and quick freezing. The cryoprotectant has an effect on the phase transition of water, such as lowering the equilibrium freezing point, suppressing the uniform growth of ice, and increasing the supercooling phenomenon. As a cryoprotectant to be penetrated into protein crystals, methanol, glycerol, 2-methyl-2,4-pentanediol, saccharose, polyethylene glycol and the like can be used. In that case, it is effective to set the concentration to 15% (w / v) or more.
【0018】次に、測定例について説明する。Bart
unikらの方法〔J. Mol. Biol.210, pp.813-829(198
9)〕にしたがって、低密度充填型牛トリプシン斜方晶系
結晶を調製した。結晶母液は、2.1Mの硫酸アンモニ
ウム、1%(w/v)のベンズアミジン、1mMの塩化
カルシウム、20mMのカコジル酸ナトリウム(pH
6.0)である。これに抗凍結剤として25%(w/
v)のサッカロースを加え、透析による溶媒置換を12
時間行った。その後、トリプシン結晶試料を図5に示し
たマウント具40にマウントし、98Kの低温窒素ガス
にてフラッシュ凍結した。Next, a measurement example will be described. Bart
Unik et al. [J. Mol. Biol. 210 , pp. 813-829 (198
9)], low-density-filled bovine trypsin orthorhombic crystals were prepared. The crystal mother liquor was 2.1 M ammonium sulfate, 1% (w / v) benzamidine, 1 mM calcium chloride, 20 mM sodium cacodylate (pH
6.0). In addition, 25% (w /
v) Saccharose was added, and the solvent was replaced by dialysis with 12
Time went. Thereafter, the trypsin crystal sample was mounted on the mounting tool 40 shown in FIG.
【0019】トリプシン結晶試料は250×150×4
00μm3 の大きさを有し、図7に略示するように結晶
軸を上下方向に向けた状態で、マウント具の筒状部材3
0に凍結されてマウントされていた。この結晶試料がマ
ウントされたマウント具を、図6に示すようにX線回折
装置のゴニオメータ50にマウントし、低温ガス吹き付
け装置51から低温窒素ガスを吹き付けて100Kに維
持した。50kV、80mAで運転されるX線発生装置
52からのCuKα線(波長0.15418nm)をX
線集光ミラー53で集光し、マウント具の筒状部材30
にマウントされたトリプシン結晶試料に照射し、振動結
晶法によって測定した。測定結果を表2に示す。 表 2 格子定数 a=6.33 b=6.26 c=6.80nm 分解能 4.6〜0.18nm Rmerge I 0.049 振動角 2度/プレート 露光時間 45分/プレート 全測定角度 90度 表2中、Rmerge Iは次式(1)で定義され、測定がどの
程度の精度で行われたかを示す指標となる量である。Trypsin crystal sample is 250 × 150 × 4
The cylindrical member 3 of the mounting tool has a size of 00 μm 3 and the crystal axis is oriented vertically as schematically shown in FIG.
It was frozen at 0 and mounted. The mounting tool on which the crystal sample was mounted was mounted on a goniometer 50 of an X-ray diffractometer as shown in FIG. 6, and the temperature was maintained at 100 K by blowing a low-temperature nitrogen gas from a low-temperature gas blowing device 51. CuKα radiation (wavelength 0.141818) from the X-ray generator 52 operated at 50 kV and 80 mA
The light is condensed by the line condensing mirror 53, and the cylindrical member 30 of the mounting tool is condensed.
The trypsin crystal sample mounted on the sample was irradiated and measured by the vibration crystal method. Table 2 shows the measurement results. Table 2 Lattice constant a = 6.33 b = 6.26 c = 6.80 nm Resolution 4.6 to 0.18 nm R merge I 0.049 Vibration angle 2 degrees / plate Exposure time 45 minutes / plate Total measurement angle 90 degrees In Table 2, R merge I is defined by the following equation (1), and is a quantity serving as an index indicating how accurate the measurement was.
【0020】 Rmerge I=ΣhΣi|Ii(h)−<I(h)>|/ΣhΣiIi(h) (1) ここで、hは逆格子点の指数(3次元ベクトル)であ
り、I(h)は指数hの反射強度(積分強度)である。測
定では希望するhの組(通常1万個程度)の強度を測定
するが、振動結晶法では希望するI(h)の組を複数個測
定することができる。いまn個のI(h)を測定できたと
して、それを次のように表記し、その平均を<I(h)>
とする。[0020] R merge I = Σ h Σ i | I i (h) - <I (h)> | / Σ h Σ i I i in (h) (1) where, h is the exponent of the reciprocal lattice points (3 Dimensional vector), and I (h) is the reflection intensity (integrated intensity) of the index h. In the measurement, the intensity of a desired set of h (usually about 10,000) is measured, but in the vibration crystal method, a plurality of desired sets of I (h) can be measured. Now, assuming that n I (h) can be measured, they are represented as follows, and the average is represented as <I (h)>
And
【0021】I1(h),I2(h),…,In(h) 従って、Rmerge Iの分子は全ての測定点について各反射
強度の平均値からのずれを加算したものであり、分母は
全ての測定点についての反射強度の和である。上記定義
から分かるように、Rmerge Iは、その値が小さいほど統
計精度が高いことを示し、理想的な実験ではゼロになる
が、実験室での室温下における通常の実験では0.06
ないし0.07%の値を示す。上記結晶のサイズは、実
験室でデータ収集する点を考えると比較的小さい部類に
入るが、本実施例のマウント具を用いた低温実験により
露光時間を十分にとることができ、かつ放射線損傷がな
いことからRmerge Iは0.049と良好な値を示してい
る。I 1 (h), I 2 (h),..., I n (h) Accordingly, the numerator of R merge I is the sum of deviations from the average value of each reflection intensity at all measurement points. , The denominator is the sum of the reflection intensities for all measurement points. As can be seen from the above definition, the smaller the value of R merge I , the higher the statistical accuracy, which is zero in an ideal experiment, but is 0.06 in a normal experiment at room temperature in a laboratory.
From 0.07% to 0.07%. The size of the above crystal is relatively small in consideration of data collection in a laboratory, but the exposure time can be sufficiently obtained by the low-temperature experiment using the mounting tool of the present embodiment, and radiation damage is reduced. R merge I shows 0.049, which is a good value.
【0022】また、本発明者らの他の実験によると、室
温下での測定では放射線損傷により分解能0.6nmで
しかデータ収集できない結晶を、本発明の結晶マウント
具を用いた低温実験により、分解能を0.25nmまで
大きく拡張することができた。急速凍結は、液体エタ
ン、液体プロパン等のスラッシュによるフラッシュ凍結
によって行ってもよい。液体窒素は発泡性があるために
冷却速度が遅く、好ましくない。また、一旦冷却が完了
すると、低温窒素ガス吹き付け装置を用いて定常的に冷
却しながら測定を行うことにより、液体窒素温度から2
20K程度までの任意の温度にて回折強度データの収集
が可能となる。According to another experiment of the present inventors, a crystal which can only collect data at a resolution of 0.6 nm due to radiation damage in a measurement at room temperature was subjected to a low-temperature experiment using the crystal mounting device of the present invention. The resolution could be greatly extended to 0.25 nm. Rapid freezing may be performed by flash freezing with a slush of liquid ethane, liquid propane, or the like. Liquid nitrogen is not preferable because it has a low cooling rate due to its foaming property. Further, once the cooling is completed, the temperature is measured while constantly cooling using a low-temperature nitrogen gas spraying device, so that the temperature is lowered from the liquid nitrogen temperature by 2%.
Diffraction intensity data can be collected at any temperature up to about 20K.
【0023】通常室温下での実験に使用されているキャ
ピラリーチューブを薄いリング状に切断して作製した前
述のマウント具は、X線をあらゆる方向に透過させるこ
とができ、また、その壁面を利用することで、結晶の結
晶軸を入射X線ビームに対して軸立てできるという利点
をもつ。低温下で蛋白質X線結晶構造解析のための回折
強度データを収集する技術は、実験室においても、また
シンクロトロン放射光X線を利用した実験においても、
蛋白質結晶のX線による放射線損傷を低減させる上で重
要である。この技術は、生体高分子結晶を長時間X線に
曝すことを可能にし、その結果、統計的に信頼性の高い
回折強度データをもたらすこととなる。更にこの技術の
適用によって、蛋白質内部振動の温度依存性や蛋白質に
結合した水分子の役割といったような蛋白質の物理的な
性質を調べることができるようになる。The above-mentioned mounting device, which is usually made by cutting a capillary tube used in an experiment at room temperature into a thin ring, can transmit X-rays in all directions, and uses the wall surface. By doing so, there is an advantage that the crystal axis of the crystal can be aligned with respect to the incident X-ray beam. Techniques for collecting diffraction intensity data for protein X-ray crystal structure analysis at low temperatures have been used in both laboratories and experiments using synchrotron radiation X-rays.
It is important in reducing radiation damage of protein crystals due to X-rays. This technique allows biopolymer crystals to be exposed to X-rays for extended periods of time, resulting in statistically reliable diffraction intensity data. Furthermore, by applying this technique, it becomes possible to investigate physical properties of proteins, such as the temperature dependence of internal vibrations of proteins and the role of water molecules bound to proteins.
【0024】[0024]
【発明の効果】本発明のX線試料マウント具によると、
蛋白質結晶等の試料に応力をかけることなく軸立てして
マウントすることができる。また、マウント具自体から
強い回折線を発生させることがなく、ブラインド領域も
生じないため、鮮明な回折データを得ることができるAccording to the X-ray sample mounting device of the present invention,
A sample such as a protein crystal can be axially mounted without applying stress to the sample. In addition, clear diffraction data can be obtained because no strong diffraction line is generated from the mounting tool itself and no blind area is generated.
【図1】マウント具の筒状部材の製造方法の説明図。FIG. 1 is an explanatory view of a method for manufacturing a cylindrical member of a mounting tool.
【図2】従来のマウント具の説明図。FIG. 2 is an explanatory view of a conventional mounting tool.
【図3】極細金属ワイヤを用いたマウント具で試料に作
用する表面張力の説明図。FIG. 3 is an explanatory diagram of surface tension acting on a sample with a mounting tool using an ultrafine metal wire.
【図4】円筒部材の斜視図。FIG. 4 is a perspective view of a cylindrical member.
【図5】マウント具の全体図。FIG. 5 is an overall view of a mounting tool.
【図6】本発明の試料マウント具を用いるX線回折装置
の概略図。FIG. 6 is a schematic diagram of an X-ray diffractometer using the sample mount of the present invention.
【図7】本発明の実施例における結晶試料のマウント状
態を示す図。FIG. 7 is a view showing a mounted state of a crystal sample according to the embodiment of the present invention.
【図8】(a)両錐形結晶、及び(b)直方体形結晶の
マウント状態の一例を説明する図。8A and 8B are diagrams illustrating an example of a mounted state of (a) a bipyramidal crystal and (b) a rectangular parallelepiped crystal.
11…合成樹脂板、12…溝、13…キャピラリー管、
15…切断歯、21…ロッド、22…薄板石英板、23
…接着剤、24…ロッド、25…極細金属ワイヤ、26
…接着剤、27…蛋白質結晶、28…結晶母液、30…
円筒部材、31…ガラスファイバー、32…エポキシ樹
脂、34…ピン、35…磁石、40…マウント具、50
…ゴニオメータ、51…低温ガス吹き付け装置、52…
X線発生装置、53…X線集光ミラー、54…感光体、
60…結晶試料11: synthetic resin plate, 12: groove, 13: capillary tube,
15: Cutting tooth, 21: Rod, 22: Thin quartz plate, 23
... adhesive, 24 ... rod, 25 ... extra fine metal wire, 26
... adhesive, 27 ... protein crystal, 28 ... crystal mother liquor, 30 ...
Cylindrical member, 31: glass fiber, 32: epoxy resin, 34: pin, 35: magnet, 40: mounting tool, 50
... goniometer, 51 ... low-temperature gas blowing device, 52 ...
X-ray generator, 53: X-ray focusing mirror, 54: photoconductor,
60: Crystal sample
Claims (2)
質材料からなる筒状部材を該筒状部材の軸が前記ロッド
の軸と略直交するように固定したことを特徴とするX線
分析用試料マウント具。1. A cylindrical member made of an amorphous material is fixed to the tip of a rod made of an amorphous material such that the axis of the cylindrical member is substantially perpendicular to the axis of the rod. Sample mount for X-ray analysis.
なることを特徴とする請求項1記載のX線分析用試料マ
ウント具。2. The sample mounting device for X-ray analysis according to claim 1, wherein the rod and the cylindrical member are made of fused quartz.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14645095A JP3439571B2 (en) | 1995-06-13 | 1995-06-13 | Sample mount for X-ray analysis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14645095A JP3439571B2 (en) | 1995-06-13 | 1995-06-13 | Sample mount for X-ray analysis |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08338818A true JPH08338818A (en) | 1996-12-24 |
JP3439571B2 JP3439571B2 (en) | 2003-08-25 |
Family
ID=15407920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14645095A Expired - Fee Related JP3439571B2 (en) | 1995-06-13 | 1995-06-13 | Sample mount for X-ray analysis |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3439571B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006053085A (en) * | 2004-08-13 | 2006-02-23 | Hokkaido Univ | Capillary with annular projection |
JP2007171000A (en) * | 2005-12-22 | 2007-07-05 | Rigaku Corp | X-ray crystal structure analyzer |
DE102014207208A1 (en) | 2013-04-17 | 2014-10-23 | Rigaku Corporation | X-ray diffraction device, X-ray diffraction measurement method and control program |
CN104708555A (en) * | 2015-02-14 | 2015-06-17 | 合肥誉联信息科技有限公司 | Clamp for glass capillary |
CN106932419A (en) * | 2017-04-19 | 2017-07-07 | 南京大学 | X-ray diffractometer capillary sample tube rack and its application method |
CN111948238A (en) * | 2020-09-08 | 2020-11-17 | 天津大学 | A kind of sealing tube for protecting air-sensitive samples, preparation method and application thereof |
-
1995
- 1995-06-13 JP JP14645095A patent/JP3439571B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006053085A (en) * | 2004-08-13 | 2006-02-23 | Hokkaido Univ | Capillary with annular projection |
JP2007171000A (en) * | 2005-12-22 | 2007-07-05 | Rigaku Corp | X-ray crystal structure analyzer |
DE102014207208A1 (en) | 2013-04-17 | 2014-10-23 | Rigaku Corporation | X-ray diffraction device, X-ray diffraction measurement method and control program |
US9347895B2 (en) | 2013-04-17 | 2016-05-24 | Rigaku Corporation | X-RAY diffraction apparatus, X-RAY diffraction measuring method, and control program |
CN104708555A (en) * | 2015-02-14 | 2015-06-17 | 合肥誉联信息科技有限公司 | Clamp for glass capillary |
CN106932419A (en) * | 2017-04-19 | 2017-07-07 | 南京大学 | X-ray diffractometer capillary sample tube rack and its application method |
CN111948238A (en) * | 2020-09-08 | 2020-11-17 | 天津大学 | A kind of sealing tube for protecting air-sensitive samples, preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3439571B2 (en) | 2003-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dougherty et al. | Steady-state dendritic growth of NH 4 Br from solution | |
Waldstein et al. | Nuclear magnetic resonance of single crystals of D2O ice | |
CN109142406B (en) | A metal phase transition research device | |
Choy et al. | Thermal diffusivity of polymer films by the flash radiometry method | |
US5848122A (en) | Apparatus for rapid in-situ X-ray stress measurement during thermal cycling of semiconductor wafers | |
CN110361404B (en) | Acquisition device and acquisition method of crystal microtexture orientation | |
Kanorsky et al. | Optical spectroscopy of atoms trapped in solid helium | |
JP3439571B2 (en) | Sample mount for X-ray analysis | |
Thiel et al. | Production of intense micrometer‐sized x‐ray beams with tapered glass monocapillaries | |
US20240027373A1 (en) | Single-crystal x-ray structure analysis apparatus and method, and sample holder unit therefor | |
Webb et al. | Dislocations and plastic deformation of ice | |
Güttinger et al. | Dynamic light scattering at the ice water interface during freezing | |
Berman et al. | Adaptive crystal optics for undulator beamlines | |
Prieske et al. | A vidicon camera for real time X-ray diffraction studies on polymers using synchrotron radiation | |
Foit et al. | A high temperature furnace for a single crystal x-ray diffractometer | |
EP3885749A1 (en) | Single-crystal x-ray structural analysis device and sample holder mounting device | |
Suvorov | X-Ray topography: yesterday, today, and prospects for the future | |
Poulsen et al. | A synchrotron x-ray diffraction study of the local residual strains around a single inclusion in an AI/W metal-matrix composite | |
Garman | Modern methods for rapid X-ray diffraction data collection from crystals of macromolecules | |
JP2758939B2 (en) | Local temperature measurement method for electron microscope samples | |
Weissmann et al. | Applications of the divergent beam x-ray technique | |
Marek et al. | Correlation of thermal‐wave imaging to other analysis methods | |
Oh et al. | In-situ HRTEM studies of alumina-aluminum solid-liquid interfaces | |
AIR et al. | AR LANG | |
Thompson et al. | A simple high performance beamline for small molecule chemical crystallography |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |