JPH0833333B2 - Pressure sensor - Google Patents
Pressure sensorInfo
- Publication number
- JPH0833333B2 JPH0833333B2 JP63269900A JP26990088A JPH0833333B2 JP H0833333 B2 JPH0833333 B2 JP H0833333B2 JP 63269900 A JP63269900 A JP 63269900A JP 26990088 A JP26990088 A JP 26990088A JP H0833333 B2 JPH0833333 B2 JP H0833333B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- pressure sensor
- magnetic alloy
- amorphous magnetic
- deformed portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/16—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in the magnetic properties of material resulting from the application of stress
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Fluid Pressure (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は非晶質磁性合金の磁歪効果を用いた圧力セン
サに関するものである。TECHNICAL FIELD The present invention relates to a pressure sensor using the magnetostriction effect of an amorphous magnetic alloy.
従来の技術 近年、非晶質磁性合金の磁歪効果を用いた圧力センサ
が提案されている(例えば特開昭59−111033号公報)。
第9図はこのような圧力センサの一例の概略を示す断面
図である。51は軟磁性体であり、円環状の溝51aが設け
られた円柱形で、その上部に磁歪を有する非晶質磁性合
金円板52及び非晶質磁性合金からなるスペーサー53を配
している。54はOリング55及び透孔56を持つ蓋部であ
り、圧力導入口54aを形成している。溝51aにはコイル58
が配され、これら全体は容器57収納される。59は検出回
路である。2. Description of the Related Art Recently, a pressure sensor using the magnetostrictive effect of an amorphous magnetic alloy has been proposed (for example, Japanese Patent Laid-Open No. 59-111033).
FIG. 9 is a sectional view showing the outline of an example of such a pressure sensor. Reference numeral 51 denotes a soft magnetic material, which is a columnar shape provided with an annular groove 51a, on which an amorphous magnetic alloy disk 52 having magnetostriction and a spacer 53 made of an amorphous magnetic alloy are arranged. . Reference numeral 54 is a lid portion having an O-ring 55 and a through hole 56, and forms a pressure introducing port 54a. Coil 58 in groove 51a
Are arranged, and all of them are accommodated in the container 57. Reference numeral 59 is a detection circuit.
圧力は圧力導入口54aから透孔56に伝わり、非晶質磁
性合金円板52を押し下げ、非晶質磁性合金円板52に応力
がかかる。この応力発生により磁歪効果で非晶質磁性合
金の透磁率が変化する。この変化をコイル58にてインダ
クタンスの形で検出し、検出回路59で圧力を測定する。The pressure is transmitted from the pressure introducing port 54a to the through hole 56, and pushes down the amorphous magnetic alloy disc 52, so that the amorphous magnetic alloy disc 52 is stressed. The generation of this stress changes the magnetic permeability of the amorphous magnetic alloy due to the magnetostriction effect. This change is detected by the coil 58 in the form of inductance, and the pressure is measured by the detection circuit 59.
発明が解決しようとする課題 上述にような圧力センサで使用される非晶質磁性合金
は厚みが不均一で平坦度が悪かった。そのため、非晶質
磁性合金薄帯を用いた圧力センサは、圧力印加時の変形
がスペーサーとの摩擦により阻止される。このような圧
力センサの出力特性図を第10図に示す。圧力を加えてゆ
く時の特性と、加圧した状態から圧力を減じてゆく時の
特性にヒステリシスが見られることがわかる。Problems to be Solved by the Invention The amorphous magnetic alloy used in the pressure sensor as described above has a non-uniform thickness and poor flatness. Therefore, in the pressure sensor using the amorphous magnetic alloy ribbon, the deformation when the pressure is applied is prevented by the friction with the spacer. An output characteristic diagram of such a pressure sensor is shown in FIG. It can be seen that there is a hysteresis in the characteristic when the pressure is applied and the characteristic when the pressure is reduced from the pressurized state.
また、第11図に定圧時の前記圧力センサの温度特性を
示す。温度が高くなると出力電圧が変動することがわか
る。Further, FIG. 11 shows temperature characteristics of the pressure sensor at a constant pressure. It can be seen that the output voltage fluctuates as the temperature rises.
以上のように、前記圧力センサの構成では、非晶質磁
性合金の厚さ不均一性のため出力ヒステリシス及び温度
変動が起こるという課題があった。As described above, the structure of the pressure sensor has a problem that output hysteresis and temperature fluctuation occur due to the nonuniform thickness of the amorphous magnetic alloy.
課題を解決するための手段 圧力導入口と、前記圧力導入口から導入される圧力に
よって歪みが生じる変形部分と、圧力によって歪みが生
じない非変形部分とを有し、前記変形部分及び非変形部
分に磁歪を有する非晶質磁性合金を固着し、前記非晶質
磁性合金と磁気回路をなすよう変形部分と非変形部分に
各々透磁率を検出する素子を設け、圧力印加にともなう
前記2個の素子の透磁率の変化及びその差を電気的手段
によって検出する構成とする。Means for Solving the Problems A pressure introduction port, a deformed portion in which strain is generated by pressure introduced from the pressure introduction port, and a non-deformed portion in which strain is not generated by pressure, the deformation portion and the non-deformation portion An amorphous magnetic alloy having magnetostriction is fixed to the element, and an element for detecting magnetic permeability is provided in each of the deformed portion and the non-deformed portion so as to form a magnetic circuit with the amorphous magnetic alloy. The change in the magnetic permeability of the element and the difference between the elements are detected by electrical means.
作用 上述の構成によれば、非晶質磁性合金が変形部分と完
全に密着するため、圧力変化とそれにともなう非晶質磁
性合金の応力変化のずれをなくすることが可能となる。
また、変形部分と非変形部分との出力の差動をとること
により温度変動に対して安定となる。Action According to the above-described configuration, the amorphous magnetic alloy completely comes into close contact with the deformed portion, so that it is possible to eliminate the deviation between the pressure change and the accompanying stress change of the amorphous magnetic alloy.
Further, by taking the differential output between the deformed portion and the non-deformed portion, it becomes stable against temperature fluctuations.
実施例 実施例1 第1図は、本発明の一実施例による圧力センサの概略
を示し、aはその側面断面図、bはその平面断面図であ
る。1はSUS304鋼よりなる直径5cm、高さ1cmの円柱状の
本体、2は直径1cm、高さ1cmの圧力導入口、3は圧力を
伝える透孔である。4は圧力による変形部分で、本体1
の一部分を0.1cmの肉厚に加工して形成してある。8は
非変形部分で、圧力による歪みが生じないようにしてあ
る。5は本体1の上平面上の変形部分4及び非変形部分
8の上に固着形成したFe−Si−B系非晶質合金である。
6はU字型フェライトコアにコイルを40回巻いて形成し
た圧力検出ヘッドで、変形部分4の平面上に固着した非
晶質合金5の上部に配される。7は圧力検出ヘッド6と
同じ構成を持つ差動用ヘッドで、非変形部分8の平面上
に固着した非晶質合金5の上部に配される。圧力検出ヘ
ッド6及び差動用ヘッド7の計測磁界は約100eである。
10は検出回路で、蓋9に取り付けられ、さらに蓋9は本
体1とねじにより固定される。Embodiment 1 Embodiment 1 FIG. 1 schematically shows a pressure sensor according to an embodiment of the present invention, a is a side sectional view thereof, and b is a plan sectional view thereof. Reference numeral 1 is a cylindrical main body made of SUS304 steel and having a diameter of 5 cm and a height of 1 cm, 2 is a pressure inlet having a diameter of 1 cm and a height of 1 cm, and 3 is a through hole for transmitting pressure. Reference numeral 4 denotes a deformed portion due to pressure, which is the main body 1
Is formed by processing a part of the to a thickness of 0.1 cm. Reference numeral 8 is a non-deformable portion so that distortion due to pressure does not occur. Reference numeral 5 is an Fe-Si-B based amorphous alloy fixedly formed on the deformed portion 4 and the non-deformed portion 8 on the upper plane of the main body 1.
Reference numeral 6 denotes a pressure detection head formed by winding a coil around a U-shaped ferrite core 40 times, and is arranged above the amorphous alloy 5 fixed on the plane of the deformed portion 4. Reference numeral 7 is a differential head having the same configuration as the pressure detection head 6, and is arranged on the amorphous alloy 5 fixed on the plane of the non-deformed portion 8. The measurement magnetic fields of the pressure detection head 6 and the differential head 7 are about 100e.
A detection circuit 10 is attached to the lid 9, and the lid 9 is fixed to the main body 1 with a screw.
圧力検出ヘッド6及び差動用ヘッド7は検出回路10の
基板底部にシリコンゴムにより接着固定してある。ま
た、圧力検出ヘッド6の両端は変形部分4にかからない
よう配する。The pressure detection head 6 and the differential head 7 are bonded and fixed to the bottom of the substrate of the detection circuit 10 with silicone rubber. Further, both ends of the pressure detection head 6 are arranged so as not to reach the deformed portion 4.
以下に上述の圧力センサの動作を説明する。 The operation of the above pressure sensor will be described below.
圧力は圧力導入口2から透孔3を通り変形部分4を押
す。その結果、変形部分4の表面に固着した非晶質磁性
合金5が変形する。この変形により、逆磁歪効果で非晶
質磁性合金5の透磁率が変化し、この変化を圧力検出ヘ
ッド6によりインダクタンスの変化として検出する。The pressure pushes the deformed portion 4 from the pressure introduction port 2 through the through hole 3. As a result, the amorphous magnetic alloy 5 fixed to the surface of the deformed portion 4 is deformed. Due to this deformation, the magnetic permeability of the amorphous magnetic alloy 5 changes due to the inverse magnetostrictive effect, and this change is detected by the pressure detection head 6 as a change in inductance.
一方、変形部分4の周辺の非変形部分5での出力が差
動用ヘッド7により得られるので、両者の差をとって圧
力の変化を得る。On the other hand, since the output of the non-deformable portion 5 around the deformed portion 4 is obtained by the differential head 7, the pressure difference is obtained by taking the difference between the two.
本構成による圧力センサの出力例を第2図に示す。第
2図において圧力の増加にともない出力電圧が比例して
大きくなり、また、ヒステリシスのない良好な出力が得
られていることがわかる。従来の構成の圧力センサでは
第10図に示すようにヒステリシスにより出力に約10%の
誤差が生じていたが、本構成により約1%まで低減でき
た。FIG. 2 shows an output example of the pressure sensor according to this configuration. It can be seen from FIG. 2 that the output voltage increases in proportion to the increase in pressure and that a good output without hysteresis is obtained. In the conventional pressure sensor, as shown in Fig. 10, there was an error of about 10% in the output due to hysteresis, but with this structure it was possible to reduce it to about 1%.
また、本構成による圧力センサの一定圧力下での温度
特性を第3図に示す。第3図において温度が変化しても
出力電圧がほとんど変化しないことがわかる。Further, FIG. 3 shows the temperature characteristics of the pressure sensor according to this configuration under a constant pressure. It can be seen from FIG. 3 that the output voltage hardly changes even if the temperature changes.
以上の構成、動作によりヒステリシス誤差を生じず、
かつ温度変動に対し安定した出力が得られる圧力センサ
を構成することができた。Hysteresis error does not occur due to the above configuration and operation,
Moreover, it was possible to construct a pressure sensor that can obtain a stable output against temperature fluctuations.
実施例2 第4図は本発明の第2の実施例における圧力センサを
示し、aはその正面図、bは断面図である。11は直径2c
m高さ3cmのチタン製円柱状の本体、12は圧力導入口、13
は圧力を伝える圧力室である。14は変形部分で、本体11
の一部を肉厚0.3cmに加工してある。18は非変形部分
で、圧力による歪みが生じないようにしてある。15は本
体11の外周上の変形部分14及び変形部分18の上にエポキ
シ系樹脂で250℃2時間で接着したFe−Si−B−Cr系の
正の磁歪を有する非晶質磁性合金である。この非晶質磁
性合金15の熱膨張率は約7.8×10-6であり、本体11のチ
タンの熱膨張率9×10-6に比べ小さく、この差により25
0℃の接着温度からの冷却時に非晶質磁性合金15に圧縮
応力が加わり、自発磁化の方向を非晶質磁性合金15の厚
み方向に揃えることができる。16はU時上フェライトコ
アにコイルを40回巻いて形成した圧力検出ヘッドで、変
形部分14の外周上に接着した非晶質磁性合金15の上部に
外周に沿って配される。17は圧力検出ヘッド16と同じ構
成を持つ差動用ヘッドで、非変形部分18の外周上に接着
した非晶質磁性合金15の上部に外周に沿って配される。
19は本体11の固定用ネジ部分、20は検出回路である。Second Embodiment FIG. 4 shows a pressure sensor according to a second embodiment of the present invention, in which a is a front view and b is a sectional view. 11 is diameter 2c
m 3 cm high titanium columnar body, 12 pressure inlet, 13
Is a pressure chamber for transmitting pressure. 14 is a deformed part, the main body 11
Part of is processed to a wall thickness of 0.3 cm. Reference numeral 18 is a non-deformable portion so that distortion due to pressure does not occur. Reference numeral 15 is an Fe-Si-B-Cr-based amorphous magnetic alloy having a positive magnetostriction, which is adhered onto the deformed portion 14 and the deformed portion 18 on the outer periphery of the main body 11 with an epoxy resin at 250 ° C for 2 hours. . The coefficient of thermal expansion of this amorphous magnetic alloy 15 is about 7.8 × 10 -6, which is smaller than the coefficient of thermal expansion of titanium 9 of the main body 11 which is 9 × 10 -6.
Compressive stress is applied to the amorphous magnetic alloy 15 during cooling from the bonding temperature of 0 ° C., and the direction of spontaneous magnetization can be aligned with the thickness direction of the amorphous magnetic alloy 15. Reference numeral 16 is a pressure detecting head formed by winding a coil around an upper ferrite core 40 times at U, and is arranged along the outer periphery of the amorphous magnetic alloy 15 adhered on the outer periphery of the deformed portion 14. Reference numeral 17 is a differential head having the same configuration as the pressure detection head 16, and is arranged along the outer periphery of the amorphous magnetic alloy 15 bonded on the outer periphery of the non-deformed portion 18.
Reference numeral 19 is a fixing screw portion of the main body 11, and 20 is a detection circuit.
以下に上述の圧力センサの動作を説明する。 The operation of the above pressure sensor will be described below.
圧力は圧力導入口12から圧力室13に伝わり圧力室13を
膨らませる方向に応力をかける。その結果、変形部分14
が変動し、その表面に接着された非晶質磁性合金15の透
磁率が変化する。この透磁率変化を圧力検出ヘッド16で
検出し、差動用ヘッド17との差動出力より圧力を得てい
る。The pressure is transmitted from the pressure introducing port 12 to the pressure chamber 13, and stress is applied in the direction in which the pressure chamber 13 is expanded. As a result, the deformed portion 14
Fluctuates, and the magnetic permeability of the amorphous magnetic alloy 15 bonded to the surface changes. This change in magnetic permeability is detected by the pressure detection head 16, and the pressure is obtained from the differential output from the differential head 17.
本構成による圧力センサにおいても、第2図及び第3
図と同様の出力特性、温度特性を得ることができた。ま
た、本構成では自発磁化の方向を揃えたことにより約10
eの計測磁界で実施例1と同様の特性が得られ、検出回
路20の消費電力を低減することができた。Also in the pressure sensor according to this configuration, FIG.
The output characteristics and temperature characteristics similar to those in the figure were obtained. Moreover, in this configuration, the direction of the spontaneous magnetization is aligned to about 10
With the measurement magnetic field of e, the same characteristics as in Example 1 were obtained, and the power consumption of the detection circuit 20 could be reduced.
実施例3 第5図は本発明の第3の実施例における圧力センサの
断面図である。21は炭素鋼(S45C)製の直径1cm、高さ7
cmの円柱状の本体、22は直径0.7cmの圧力導入口、23は
圧力を伝える圧力室である。24は圧力による変形部分
で、本体21の一部分を肉厚0.15cmに加工してある。25は
圧力による歪みが生じないようにした非変形部分であ
る。26は本体21の外周上で、変形部分24及び非変形部分
25の上にそれぞれエポキシ系樹脂で250℃、2時間で接
着したFe−Si−B−Cr系の正の磁歪を有する非晶質磁性
合金である。この非晶質磁性合金26は実施例2で述べた
ものと成分比が異なっており、この際の熱膨張率は約9.
9×10-6である。一方、炭素鋼の熱膨張率は11.2×10-6
であるので、この場合も実施例2と同様に非晶質磁性合
金26の自発磁化の方向を非晶質磁性合金26の厚み方向に
揃えることができる。27は63回コイルを持いて形成した
圧力検出コイルで、変形部分24の外周上に接着した非晶
質磁性合金26の外側に配される。28は圧力検出コイル27
と同構成の差動用コイルで、非変形部分25の外周上に接
着した非晶質磁性合金26の外側に配される。29は本体21
の固定用ネジ部分で、PF3/8のピッチに加工してある。3
0は検出回路である。Third Embodiment FIG. 5 is a sectional view of a pressure sensor according to a third embodiment of the present invention. 21 is made of carbon steel (S45C) with a diameter of 1 cm and a height of 7
A cylindrical main body of cm, 22 is a pressure inlet having a diameter of 0.7 cm, and 23 is a pressure chamber for transmitting pressure. Reference numeral 24 is a deformed portion by pressure, and a part of the main body 21 is processed to have a wall thickness of 0.15 cm. Reference numeral 25 is a non-deformable portion that prevents distortion due to pressure. 26 is a deformed portion 24 and a non-deformed portion on the outer periphery of the main body 21.
Fe-Si-B-Cr-based amorphous magnetic alloys having a positive magnetostriction adhered on 25 with epoxy resin at 250 ° C for 2 hours. The composition ratio of this amorphous magnetic alloy 26 is different from that described in Example 2, and the coefficient of thermal expansion at this time is about 9.
It is 9 × 10 -6 . On the other hand, the coefficient of thermal expansion of carbon steel is 11.2 × 10 -6
Therefore, also in this case, the direction of spontaneous magnetization of the amorphous magnetic alloy 26 can be aligned with the thickness direction of the amorphous magnetic alloy 26 as in the second embodiment. Reference numeral 27 is a pressure detection coil formed by having a coil 63 times, and is arranged outside the amorphous magnetic alloy 26 adhered on the outer periphery of the deformed portion 24. 28 is a pressure detection coil 27
A differential coil having the same structure as the above, and is arranged outside the amorphous magnetic alloy 26 adhered on the outer periphery of the non-deformed portion 25. 29 is the main body 21
The fixing screw part of is processed to the pitch of PF3 / 8. 3
0 is a detection circuit.
以下に上述の圧力センサの動作を説明する。 The operation of the above pressure sensor will be described below.
圧力は圧力導入口22から圧力室23に伝わり、圧力室23
を膨らませる方向に応力をかける。その結果、変形部分
24が変動し、その表面に接着された非晶質磁性合金26が
変形する。この変形により、逆磁歪効果で非晶質磁性合
金26の透磁率が変化する。この変化を圧力検出コイル27
でインダクタンスの変化として検出し、差動用コイル28
との差動を検出回路30で取ることによって圧力の変化を
得ている。The pressure is transmitted from the pressure inlet 22 to the pressure chamber 23, and the pressure chamber 23
Apply stress in the direction to inflate. As a result, the deformed part
24 fluctuates, and the amorphous magnetic alloy 26 adhered to the surface deforms. Due to this deformation, the magnetic permeability of the amorphous magnetic alloy 26 changes due to the inverse magnetostriction effect. This change is detected by the pressure detection coil 27
It is detected as a change in inductance with
The change in pressure is obtained by taking the differential with the detection circuit 30.
本構成による圧力センサの出力特性図を第6図に示
す。第6図において、圧力の増加にともないインダクタ
ンスが直線的に増大していることがわかる。また、従来
例の第10図と比較して、約10%あったヒステリシスがほ
ぼ消失し、また、直線性がよくなっていることがわか
る。なお、温度特性についても第3図と同様の特性が得
られた。FIG. 6 shows an output characteristic diagram of the pressure sensor according to this configuration. In FIG. 6, it can be seen that the inductance increases linearly with increasing pressure. Further, it can be seen that, compared with FIG. 10 of the conventional example, about 10% of the hysteresis was almost eliminated, and the linearity was improved. As for the temperature characteristic, the same characteristic as in FIG. 3 was obtained.
本構成において透磁率を検出する素子としてコイルを
用いたが、この計測磁界は約10eであり、実施例2と同
様の低消費電力化が図れた。さらに、コイルを使用する
ことにより圧力センサの構造が単純となり、製造コスト
が低減できた。Although a coil was used as an element for detecting magnetic permeability in this configuration, the measured magnetic field was about 10e, and the same low power consumption as in Example 2 was achieved. Further, the use of the coil simplifies the structure of the pressure sensor and reduces the manufacturing cost.
以上の構成、動作によりコイルを検出手段として用い
た圧力センサにおいても、ヒステリシスが少なく、温度
特性、直線性がよい圧力センサが得られた。With the above configuration and operation, also in the pressure sensor using the coil as the detection means, a pressure sensor with less hysteresis, good temperature characteristics, and good linearity was obtained.
実施例4 第7図は、本発明の第4の実施例における圧力センサ
の概略を示す断面図である。31はチタン製の直径1cm、
高さ7cmの円柱状の本体、32は直径0.6cmの圧力導入口、
33は圧力を伝える圧力室である。34は圧力による変形部
分で、本体31の一部分を肉厚0.2cmに加工してある。35
は非変形部分で圧力による歪みが生じないようにしてあ
る。36は本体31の変形部分34及び非変形部分35をおおう
ようにエポキシ系樹脂で250℃、2時間で接着したFe−S
i−B−Cr系の正の磁歪を有する非晶質磁性合金であ
る。この際の接着条件及び本体31と非晶質磁性合金36の
熱膨張率は実施例2と同じであるので、実施例2と同様
に非晶質磁性合金36の自発磁化の方向を非晶質磁性合金
36の厚み方向に揃えることができる。37はテフロン製ボ
ビン39のまわりに63回コイルを巻いて形成した圧力検出
コイル、38は圧力検出コイルと同構成の差動用コイルで
ある。これらのコイルを持つボビン39は非晶質磁性合金
36の外周に装着される。40は45%Ni−Fe合金よりなるヨ
ークで、ボビン39の外周に装着される。41は本体固定用
のネジ部分で、PF3/8のピッチに加工してある。42は検
出回路である。Fourth Embodiment FIG. 7 is a sectional view showing the outline of a pressure sensor according to a fourth embodiment of the present invention. 31 is made of titanium with a diameter of 1 cm,
A columnar body with a height of 7 cm, 32 is a pressure inlet with a diameter of 0.6 cm,
33 is a pressure chamber for transmitting pressure. Reference numeral 34 is a deformed portion due to pressure, and a part of the main body 31 is processed to have a wall thickness of 0.2 cm. 35
Is designed so that distortion due to pressure does not occur in the non-deformed portion. 36 is Fe-S which is bonded with epoxy resin at 250 ° C. for 2 hours so as to cover the deformed portion 34 and the non-deformed portion 35 of the main body 31.
It is an i-B-Cr type amorphous magnetic alloy having a positive magnetostriction. Since the bonding conditions and the coefficient of thermal expansion of the main body 31 and the amorphous magnetic alloy 36 at this time are the same as those in the second embodiment, the direction of the spontaneous magnetization of the amorphous magnetic alloy 36 is changed to the amorphous state as in the second embodiment. Magnetic alloy
Can be aligned in the thickness direction of 36. 37 is a pressure detecting coil formed by winding a coil around a Teflon bobbin 39 63 times, and 38 is a differential coil having the same structure as the pressure detecting coil. Bobbin 39 with these coils is an amorphous magnetic alloy
It is attached to the outer circumference of 36. Reference numeral 40 denotes a yoke made of 45% Ni-Fe alloy, which is mounted on the outer circumference of the bobbin 39. 41 is a screw part for fixing the main body, which is processed to a pitch of PF3 / 8. 42 is a detection circuit.
以下に上述の圧力センサの動作を説明する。 The operation of the above pressure sensor will be described below.
圧力は圧力導入口32から圧力室33に伝わり、圧力室33
を膨らませる方向に応力をかける。その結果、変形部分
34が変動し、その表面に接着された非晶質磁性合金36が
変形する。この変形により逆磁歪効果で非晶質磁性合金
36の透磁率が変化する。この変化をインダクタンスの変
化として圧力検出コイル37で検出し、差動用コイル38と
の差動を検出回路42で取ることによって圧力を得る。The pressure is transmitted from the pressure inlet 32 to the pressure chamber 33, and the pressure chamber 33
Apply stress in the direction to inflate. As a result, the deformed part
34 fluctuates, and the amorphous magnetic alloy 36 adhered to the surface deforms. Due to this deformation, the inverse magnetostriction effect causes an amorphous magnetic alloy.
The permeability of 36 changes. This change is detected by the pressure detection coil 37 as a change in the inductance, and the pressure with respect to the differential coil 38 is obtained by the detection circuit 42.
本構成による圧力センサの出力特性図を第8図に示
す。第8図において、圧力の増加にともないインダクタ
ンスが直線的に増大していることがわかる。従来例の第
10図と比較すると、ヒステリシスがほぼ消失し、また、
直線性がよくなっていることがわかる。また、第6図と
比較すると、この時のインダクタンス変化は実施例3に
比べ約40%増大しており、感度が増加していることがわ
かる。これは、非晶質磁性合金36を1枚化することに
より接着圧力や位置が同一になり接着むらが低減される
ため、及びコイルの外側に高透磁率のヨークを設けた
ことにより地磁気等の外部磁気の影響を排することがで
きるためである。本構成では自発磁化の方向を非晶質磁
性合金の厚み方向に揃え、非晶質磁性合金を1枚にし、
同時にヨークをとりつけたが、これらを別々に行って、
自発磁化の方向を揃えずヨークを用いない圧力センサに
おいて非晶質磁性合金を1枚にした構成や、自発磁化の
方向を揃えたヨークを用いない圧力センサにおいて非晶
質磁性合金を1枚にした構成や、自発磁化の方向を揃え
ず非晶質磁性合金を2枚にした圧力センサにおいてヨー
クを用いた構成や、自発磁化の方向を揃えて非晶質磁化
合金を2枚にした圧力センサにおいてヨークを用いた構
成や、非晶質磁性合金を1枚にしヨークを用いた圧力セ
ンサにおいて自発磁化の方向を揃えない構成にしても、
いずれも感度が増加した。FIG. 8 shows an output characteristic diagram of the pressure sensor according to this configuration. It can be seen in FIG. 8 that the inductance increases linearly with increasing pressure. Conventional example
Compared to Fig. 10, the hysteresis almost disappeared, and
It can be seen that the linearity has improved. Further, comparing with FIG. 6, it can be seen that the inductance change at this time is increased by about 40% as compared with the third embodiment, and the sensitivity is increased. This is because a single amorphous magnetic alloy 36 has the same adhesive pressure and position to reduce uneven adhesiveness, and by providing a high magnetic permeability yoke on the outside of the coil, it is possible to reduce geomagnetic effects. This is because the influence of external magnetism can be eliminated. In this configuration, the direction of spontaneous magnetization is aligned with the thickness direction of the amorphous magnetic alloy, and the amorphous magnetic alloy is made one sheet,
I attached the yoke at the same time, but I did these separately and
A pressure sensor that does not use a yoke that does not align the direction of spontaneous magnetization with a single amorphous magnetic alloy, or a pressure sensor that does not use a yoke that has the same direction of spontaneous magnetization uses a single amorphous magnetic alloy. And a pressure sensor in which a yoke is used in a pressure sensor having two amorphous magnetic alloys in which the directions of spontaneous magnetization are not aligned, and a pressure sensor in which two amorphous magnetic alloys are aligned in the direction of spontaneous magnetization In the configuration using a yoke or a configuration in which a single amorphous magnetic alloy is used and a pressure sensor using a yoke does not align the directions of spontaneous magnetization,
Both increased the sensitivity.
なお、温度特性については上述の全ての圧力センサの
構成において第3図と同様の特性が得られた。Regarding the temperature characteristics, the same characteristics as those in FIG. 3 were obtained in the configurations of all the pressure sensors described above.
以上の構成、動作により従来例に比べ、ヒステリシス
が少なく、温度特性、直線性のよい圧力センサが得られ
た。また、実施例3に比べ感度の大きな圧力センサを得
ることができた。With the above configuration and operation, a pressure sensor with less hysteresis, better temperature characteristics, and better linearity than the conventional example was obtained. Further, a pressure sensor having a higher sensitivity than that of the third embodiment could be obtained.
なお、上述の構成では透磁率検出素子としてコイルを
用いたが、これは磁気ヘッドとしても同様の感度の増加
が得られた。Although a coil was used as the magnetic permeability detecting element in the above-mentioned configuration, the same increase in sensitivity was obtained even in the magnetic head.
また、上述の構成では正の磁歪をもち、本体より熱膨
張率の小さい非晶質磁性合金を用いたが、これは負の磁
歪をもち、本体より熱膨張率の大きい非晶質磁性合金を
用いても同様の特性が得られた。Further, in the above configuration, an amorphous magnetic alloy having a positive magnetostriction and a smaller thermal expansion coefficient than the main body is used, but this has a negative magnetostriction and an amorphous magnetic alloy having a larger thermal expansion coefficient than the main body. Similar characteristics were obtained when used.
発明の効果 本発明によれば、透磁率を検出する素子を変形部分、
非変形部分それぞれに設け、両者の差動を取ることによ
り温度安定性を得ることができ、また、非晶質磁性合金
を変形部分に固着形成することによりヒステリシス誤差
のない圧力を検出することが可能である。According to the present invention, the element for detecting the magnetic permeability is a deformed portion,
Temperature stability can be obtained by providing a differential for each of the non-deformed parts, and a pressure without hysteresis error can be detected by fixing and forming an amorphous magnetic alloy on the deformed parts. It is possible.
第1図aおよびbは各々、本発明の一実施例における圧
力センサの側面および平面の断面図であり、第1図aは
第1図bのB−B線における断面を、第1図bは第1図
aのA−A線における断面を各々示し、第2図は同圧力
センサの出力特性図、第3図は同圧力センサの温度特性
図、第4図a,bは各々、本発明の第2の実施例の圧力セ
ンサの正面図及び断面図、第5図は本発明の第3の実施
例の圧力センサの断面図、第6図は同圧力センサの出力
特性図、第7図は本発明の第4の実施例の圧力センサの
断面図、第8図は同圧力センサの出力特性図、第9図は
従来例の圧力センサの断面図、第10図は同圧力センサの
出力特性図、第11図は同圧力センサの温度特性図であ
る。 1、11、21、31……本体、2、12、22、32……圧力導入
口、3……透孔、13、23、33……圧力室、4、14、24、
34……変形部分、5、15、26、36……非晶質磁性合金、
6、16……圧力検出ヘッド、7、17……差動用ヘッド、
8、18、25、35……非変形部分、9……蓋、10、20、3
0、42……検出回路、19、29、41……固定用ネジ部分、2
7、37……圧力検出コイル、28、38……差動用コイル、3
9……ボビン、40……ヨーク。1A and 1B are side and plan sectional views of a pressure sensor according to an embodiment of the present invention. FIG. 1A is a sectional view taken along line BB in FIG. 1B. Shows a cross section taken along the line AA of FIG. 1a, FIG. 2 is an output characteristic diagram of the pressure sensor, FIG. 3 is a temperature characteristic diagram of the pressure sensor, and FIGS. A front view and a sectional view of a pressure sensor of a second embodiment of the invention, FIG. 5 is a sectional view of a pressure sensor of a third embodiment of the present invention, FIG. 6 is an output characteristic diagram of the pressure sensor, and a seventh embodiment. FIG. 8 is a sectional view of a pressure sensor according to a fourth embodiment of the present invention, FIG. 8 is an output characteristic diagram of the same pressure sensor, FIG. 9 is a sectional view of a conventional pressure sensor, and FIG. The output characteristic diagram, FIG. 11 is a temperature characteristic diagram of the pressure sensor. 1, 11, 21, 31 ... Main body, 2, 12, 22, 32 ... Pressure inlet, 3 ... Through hole, 13, 23, 33 ... Pressure chamber, 4, 14, 24,
34 …… Deformed part 5, 15, 26, 36 …… Amorphous magnetic alloy,
6, 16 ... Pressure detection head, 7, 17 ... Differential head,
8, 18, 25, 35 …… Non-deformed part, 9 …… Lid, 10, 20, 3
0,42 …… Detection circuit, 19,29,41 …… Fixing screw part, 2
7, 37 …… Pressure detection coil, 28, 38 …… Differential coil, 3
9 ... Bobbin, 40 ... York.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−228927(JP,A) 特開 昭55−158890(JP,A) 実開 昭52−91088(JP,U) ─────────────────────────────────────────────────── --Continued from the front page (56) References JP 62-228927 (JP, A) JP 55-158890 (JP, A) JP 52-91088 (JP, U)
Claims (1)
れる圧力によって歪みが生じる変形部分と、圧力によっ
て歪みが生じない非変形部分とを有する圧力センサ本体
と、前記圧力センサ本体より熱膨張係数が小さく、か
つ、正の磁歪を有する非晶質磁性合金を前記変形部分及
び前記非変形部分に圧力センサ使用温度範囲以上の高温
で固着し、前記非晶質磁性合金と磁気回路をなすように
前記変形部分と前記非変形部分に各々透磁率を検出する
素子とを設ける構成を有し、圧力印加にともなう前記2
個の素子の透磁率の変化及びその差を電気的手段によっ
て検出することを特徴とする圧力センサ。1. A pressure sensor main body having a pressure introducing port, a deformed portion in which distortion is caused by pressure introduced from the pressure introducing port, and a non-deformable portion in which distortion is not caused by pressure, and heat from the pressure sensor main body. An amorphous magnetic alloy having a small expansion coefficient and positive magnetostriction is fixed to the deformed portion and the non-deformed portion at a temperature higher than the pressure sensor operating temperature range to form a magnetic circuit with the amorphous magnetic alloy. As described above, the deformed portion and the non-deformed portion are provided with the elements for detecting the magnetic permeability, respectively.
A pressure sensor characterized by detecting a change in magnetic permeability of each element and a difference thereof by electrical means.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63269900A JPH0833333B2 (en) | 1988-02-04 | 1988-10-26 | Pressure sensor |
US07/421,154 US4938069A (en) | 1988-10-26 | 1989-10-13 | Pressure sensor |
DE68912093T DE68912093T2 (en) | 1988-10-26 | 1989-10-18 | Magnetostrictive pressure transducer. |
EP89119343A EP0371244B1 (en) | 1988-02-04 | 1989-10-18 | Magnetostrictive pressure sensor |
KR1019890015472A KR930007320B1 (en) | 1988-10-26 | 1989-10-26 | Pressure sensor |
US07/908,169 USRE34510E (en) | 1988-10-26 | 1992-07-02 | Pressure sensor |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2422788 | 1988-02-04 | ||
JP63-103024 | 1988-04-26 | ||
JP63-24227 | 1988-04-26 | ||
JP63269900A JPH0833333B2 (en) | 1988-02-04 | 1988-10-26 | Pressure sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02138842A JPH02138842A (en) | 1990-05-28 |
JPH0833333B2 true JPH0833333B2 (en) | 1996-03-29 |
Family
ID=26361715
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63269900A Expired - Lifetime JPH0833333B2 (en) | 1988-02-04 | 1988-10-26 | Pressure sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0833333B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016152867A1 (en) * | 2015-03-23 | 2016-09-29 | ナブテスコ株式会社 | Pressure sensor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100848447B1 (en) * | 2003-03-31 | 2008-07-28 | 티디케이가부시기가이샤 | Pressure sensor |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5291088U (en) * | 1975-12-29 | 1977-07-07 | ||
JPS55158890A (en) * | 1979-05-28 | 1980-12-10 | Daihen Corp | Electric-charged particle beam processing device |
JPS62228927A (en) * | 1986-03-31 | 1987-10-07 | Nippon Kuatsu Syst Kk | Pressure sensor |
-
1988
- 1988-10-26 JP JP63269900A patent/JPH0833333B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016152867A1 (en) * | 2015-03-23 | 2016-09-29 | ナブテスコ株式会社 | Pressure sensor |
JPWO2016152867A1 (en) * | 2015-03-23 | 2017-12-07 | ナブテスコ株式会社 | Pressure sensor |
Also Published As
Publication number | Publication date |
---|---|
JPH02138842A (en) | 1990-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4412454A (en) | Pressure sensing unit for a pressure sensor | |
Garshelis | A torque transducer utilizing a circularly polarized ring | |
KR930007320B1 (en) | Pressure sensor | |
JPH0326339B2 (en) | ||
JPH0833333B2 (en) | Pressure sensor | |
JP3645553B2 (en) | Strain sensor | |
JP2641741B2 (en) | Mechanical quantity sensor | |
EP0371244B1 (en) | Magnetostrictive pressure sensor | |
JPS5827038A (en) | Electronic transmitter for transmitting pressure value of industrial process fluid | |
JP2000266621A (en) | Pressure sensor using magnetostrictive element | |
JPH0261530A (en) | Dynamic quantity sensor | |
JP2000292295A (en) | Inner pressure sensor for enclosed container | |
JPH06241920A (en) | Load detection method and load sensor | |
JPH05118932A (en) | Load sensor | |
JPH02248833A (en) | Pressure sensor | |
JPH02128131A (en) | Pressure sensor | |
JPH08178950A (en) | Acceleration sensor | |
JPH07174645A (en) | Strain detector | |
JPH055660A (en) | Torque sensor and manufacturing method thereof | |
JPH0221233A (en) | Pressure sensor | |
JPH04369446A (en) | pressure sensor | |
JPH06265429A (en) | Pressure sensor | |
JPH0754282B2 (en) | Pressure sensor | |
JP2003302293A (en) | Load sensor | |
JPH0797059B2 (en) | Pressure sensor |