[go: up one dir, main page]

JPH08331860A - Power converting apparatus - Google Patents

Power converting apparatus

Info

Publication number
JPH08331860A
JPH08331860A JP7133881A JP13388195A JPH08331860A JP H08331860 A JPH08331860 A JP H08331860A JP 7133881 A JP7133881 A JP 7133881A JP 13388195 A JP13388195 A JP 13388195A JP H08331860 A JPH08331860 A JP H08331860A
Authority
JP
Japan
Prior art keywords
voltage
signal
phase
command
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7133881A
Other languages
Japanese (ja)
Other versions
JP3261010B2 (en
Inventor
Motosumi Yura
元澄 由良
Junji Furusawa
準次 古澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP13388195A priority Critical patent/JP3261010B2/en
Publication of JPH08331860A publication Critical patent/JPH08331860A/en
Application granted granted Critical
Publication of JP3261010B2 publication Critical patent/JP3261010B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE: To provide a power converting apparatus which can generate a recovery current with less distortion even if the power source voltage is distorted. CONSTITUTION: An oscillator 18 generates three AC signals s1, s2, s3 having the phases with difference of 120 deg.. An isolator 8 detects line-to-line voltages ers, est, etr of the 3-phase AC power supply 1. In a multiplier 14 and an adder 15, a phase error difference signal A is generated from the AC signal and line- to-line voltage. Moreover, the phase error signal A is proportionally integrated with pi arithmetic unit 16 to obtain a frequency instruction. The oscillator 18 feedback-controls the frequencies of three AC signals so that the phase error signal A becomes zero, based on this frequency instruction. Thereby, since pi arithmetic unit 16 eliminates harmonic components, if the AC power source is distorted, the AC signal and the QC current instruction based on this AC signal can be freed from the influence of the power source distortion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、交流電源を直流に変換
するとともに直流電力を交流電源へ回生することのでき
るコンバータを備えた電力変換装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power converter equipped with a converter capable of converting an AC power supply into a DC power and regenerating DC power into an AC power supply.

【0002】[0002]

【従来の技術】工作機械の駆動源に使用されるモータを
可変速運転するインバータの直流電源として、モータ減
速時にモータの運転エネルギーを交流電源に回生するた
め、複数のトランジスタ及びこの複数のトランジスタに
各々逆並列に接続された複数のダイオードによって構成
され、このトランジスタを用いて可逆変換のできるコン
バータを備えた電力変換装置が実用化されている。しか
しながら、近年歪の多い回生電流を交流電源へ回生する
ことで、他の機械が誤動作するなど、悪影響を及ぼすこ
とが問題となってきている。
2. Description of the Related Art As a direct current power source for an inverter that drives a motor used as a drive source for a machine tool at a variable speed, a plurality of transistors and a plurality of transistors are used to regenerate the operating energy of the motor to an alternating current power source when the motor is decelerated. A power conversion device including a plurality of diodes each connected in antiparallel and having a converter capable of reversible conversion using this transistor has been put into practical use. However, in recent years, it has become a problem that adverse effects such as malfunction of other machines are caused by regenerating a regenerative current having a large amount of distortion to an AC power supply.

【0003】この問題を解決するため、従来は図4に示
す電力変換装置を用いて歪の少ない正弦波電流を電源へ
回生することが実現されている。この従来例の電力変換
装置においては、3相交流電源1がチョークコイル7を
介してコンバータ4に接続される。このチョークコイル
7にはコンバータ4へ入出力される交流電流のコンバー
タ4のスイッチングによる電流リップルを平滑化する役
割がある。コンバータ4では、3相交流電圧を変換し、
直流電圧Vdcが生成される。なお、直流電圧Vdcに
は通常コンバータ4の直流出力電圧を平滑する平滑コン
デンサ5が接続される。前記直流電圧Vdcは、インバ
ータ回路2によって交流に変換され、交流モータ3の可
変速運転が行われる。コンバータ4に入出力される交流
電流は電流検出器6を介して絶縁して検出され、この検
出値に基づいて入出力される交流電流が正弦波になる様
にフィードバック制御されている。なお、電流を検出す
る別の手段としては、電流検出抵抗が使用される。
In order to solve this problem, conventionally, it has been realized to regenerate a sinusoidal current with little distortion to a power source using the power converter shown in FIG. In this conventional power converter, the three-phase AC power supply 1 is connected to the converter 4 via the choke coil 7. The choke coil 7 has a role of smoothing a current ripple due to switching of the converter 4 of the alternating current input to and output from the converter 4. The converter 4 converts the three-phase AC voltage,
DC voltage Vdc is generated. A smoothing capacitor 5 that normally smoothes the DC output voltage of the converter 4 is connected to the DC voltage Vdc. The DC voltage Vdc is converted into AC by the inverter circuit 2, and the AC motor 3 is operated at a variable speed. The alternating current input / output to / from the converter 4 is insulated and detected via the current detector 6, and feedback control is performed so that the alternating current input / output becomes a sine wave based on the detected value. A current detection resistor is used as another means for detecting the current.

【0004】ここで、図4中の点線内の制御回路Cの動
作を説明する。図中の基準電源11は、直流電圧Vdc
の目標電圧を設定し、減算器12においてこの目標電圧
と直流電圧Vdcの検出値とが引き算され、電圧偏差信
号が得られる。この電圧偏差信号は、誤差増幅器13に
よって増幅され、直流電流指令を作成する。また、アイ
ソレータ8を介して検出された3相交流電圧の線間電圧
波形を変換器21によって相電圧波形に変換し、3相交
流電源電圧と同位相,同周波数の交流信号を発生する。
この交流信号と直流電流指令を乗算器19によって乗算
して交流電流指令iR* ,iS* ,iT* を作成する。
この交流電流指令は、減算器20によって電流検出器6
で検出した電流検出値と引き算され、さらに誤差増幅器
10で増幅して交流電圧指令を作成し、PWM制御回路
9に入力される。この交流電圧指令を基にPWM制御回
路9では、入力された信号をキャリヤ信号によってパル
ス幅変調し、トランジスタTr 1〜Tr6のON/OF
F制御信号が作成される。このPWM制御回路9の動作
はインバータの制御回路に一般的に用いられるものであ
り、詳細な説明は省略する。これらの回路の働きによっ
て、コンバータ4に流れる電流は、電源電圧と直流電圧
検出値から作られた正弦波の電流指令の通りにフィード
バック制御される。よって、交流モータ3の加速時(力
行時)及び減速時(回生時)において、コンバータ4の
各相に流れる電流iR,iS,iTは、図3の様な電源
電圧波形と同位相,同周波数の正弦波となる。
Now, the operation of the control circuit C within the dotted line in FIG. 4 will be described. The reference power supply 11 in the figure is a DC voltage Vdc.
The target voltage is set and the subtracter 12 subtracts the target voltage from the detected value of the DC voltage Vdc to obtain a voltage deviation signal. This voltage deviation signal is amplified by the error amplifier 13 to create a direct current command. Further, the line voltage waveform of the three-phase AC voltage detected via the isolator 8 is converted into a phase voltage waveform by the converter 21, and an AC signal having the same phase and frequency as the three-phase AC power supply voltage is generated.
The AC signal and the DC current command are multiplied by the multiplier 19 to create AC current commands iR *, iS *, and iT *.
This AC current command is sent to the current detector 6 by the subtractor 20.
It is subtracted from the detected current value detected in step A1, further amplified by the error amplifier 10 to create an AC voltage command, and input to the PWM control circuit 9. Based on this AC voltage command, the PWM control circuit 9 pulse-width modulates the input signal with a carrier signal to turn ON / OFF the transistors Tr1 to Tr6.
An F control signal is created. The operation of the PWM control circuit 9 is generally used in the control circuit of the inverter, and detailed description thereof will be omitted. By the operation of these circuits, the current flowing through the converter 4 is feedback-controlled according to a sine wave current command generated from the power supply voltage and the DC voltage detection value. Therefore, during acceleration (powering) and deceleration (regeneration) of the AC motor 3, the currents iR, iS, and iT flowing in the respective phases of the converter 4 have the same phase and frequency as the power supply voltage waveform as shown in FIG. Becomes a sine wave of.

【0005】[0005]

【発明が解決しようとする課題】上述した従来の電力変
換装置においては、3相交流電源電圧の線間電圧を相電
圧に変換して電流指令を生成するため、電源電圧が歪む
と電流指令も歪んでしまう。結果として歪んだ電流指令
をフィードバック制御してしまい、電源へ歪んだ電流を
回生してしまうという問題があった。本発明は、上記課
題を解決するためになされたものであり、電源電圧歪み
に影響なく、歪みの少ない回生電流を実現できる電力変
換装置の提供を目的とする。
In the above-mentioned conventional power converter, the line voltage of the three-phase AC power supply voltage is converted into the phase voltage to generate the current command. Therefore, when the power supply voltage is distorted, the current command is also generated. It will be distorted. As a result, there is a problem that the distorted current command is feedback-controlled and the distorted current is regenerated to the power supply. The present invention has been made to solve the above problems, and an object of the present invention is to provide a power conversion device that can realize a regenerative current with little distortion without affecting the distortion of the power supply voltage.

【0006】[0006]

【課題を解決するための手段】前述のような課題を解決
するために、複数のトランジスタ及びこの複数のトラン
ジスタに逆並列に接続された複数のダイオードによって
構成され、入力された交流電圧指令に応じてこれら複数
のトランジスタをPWM制御するコンバータによって3
相交流電圧を直流電圧に可逆変換する電力変換装置は、
前記コンバータの入出力する交流電流を検出して交流電
流検出値を出力する手段と、前記コンバータの出力する
直流電圧に基づいた直流電流指令を発生する手段と、前
記コンバータの3相交流電源の線間電圧ers,est,e
trを検出して線間電圧検出値を出力する手段と、位相が
120°ずつ異なる3つの交流信号s1 ,s2 ,s3 を
発生する発振手段と、前記線間電圧検出値と前記交流信
号とをA=ers×s1 +est×s2 +etr×s3 なる積
和演算を行ない位相誤差信号Aを出力する手段と、前記
位相誤差信号Aを比例・積分演算した演算値を周波数指
令として前記発振手段に出力する手段と、前記交流信号
と前記直流電流指令とを乗算して交流電流指令を発生す
る手段と、前記交流電流検出値と前記交流電流指令との
誤差に基づき前記交流電流をフィードバック制御する手
段とを備え、前記前記発振手段は、交流信号s1 ,s2
,s3 の周波数を前記周波数指令に基づいた周波数と
するものである。
In order to solve the above-mentioned problems, a plurality of transistors and a plurality of diodes connected in anti-parallel to the plurality of transistors are used to respond to an input AC voltage command. 3 by a converter that controls these multiple transistors by PWM
A power conversion device for reversibly converting a phase AC voltage into a DC voltage is
Means for detecting an AC current input to and output from the converter and outputting an AC current detection value; means for generating a DC current command based on a DC voltage output by the converter; and a line of a three-phase AC power supply for the converter. Inter-voltage ers, est, e
The means for detecting tr and outputting the detected value of the line voltage, the oscillating means for generating three AC signals s1, s2, s3 whose phases are different by 120 °, the detected value of the line voltage and the AC signal A = ers.times.s1 + est.times.s2 + etr.times.3 for performing a sum-of-products operation and outputting a phase error signal A; and a calculated value obtained by performing a proportional / integral operation on the phase error signal A as a frequency command and outputting it to the oscillation means Means, means for multiplying the alternating current signal and the direct current command to generate an alternating current command, and means for feedback controlling the alternating current based on an error between the detected alternating current value and the alternating current command. The oscillating means is provided with AC signals s1 and s2.
, S3 are frequencies based on the frequency command.

【0007】[0007]

【作用】コンバータに入出力される電流をフィードバッ
ク制御する交流電流指令は、それぞれ位相が120°異
なる3つの交流信号とコンバータの直流電圧に応じた直
流電流指令とを乗算して作成される。また、交流信号
は、3相交流電源の線間電圧検出値と交流信号とを積和
演算した結果である位相誤差信号をpi(比例・積分)
演算した周波数指令を基に発振器から出力される。つま
り、位相誤差信号がゼロとなり、周波数指令が安定する
ように補正される。このため、交流信号は常に3相交流
電源の各相電圧と同位相,同周波数となる。また、pi
演算器16は、位相誤差信号をpi演算する際ローパス
フィルタの役割を果たす。このため、pi演算結果であ
る周波数指令は、高周波数の電源歪みに影響が少ない。
よって、周波数指令に比例した交流信号と直流電流指令
とを乗算した交流電流指令は、電源電圧が歪んでも影響
を受けない正弦波となる。従って、電源電圧の歪みに影
響ない交流電流指令に基づいてコンバータの入出力する
交流電流をフィードバック制御するので、コンバータに
流れる電流は、常に歪みのない正弦波の交流電流にな
る。
The AC current command for feedback controlling the current input / output to / from the converter is created by multiplying three AC signals each having a phase difference of 120 ° and the DC current command corresponding to the DC voltage of the converter. The AC signal is a phase error signal pi (proportional / integral), which is the result of multiply-accumulate operation of the line voltage detection value of the three-phase AC power source and the AC signal
It is output from the oscillator based on the calculated frequency command. That is, the phase error signal becomes zero, and the frequency command is corrected to be stable. Therefore, the AC signal always has the same phase and frequency as each phase voltage of the three-phase AC power supply. Also, pi
The calculator 16 plays a role of a low-pass filter when pi-calculating the phase error signal. Therefore, the frequency command that is the pi calculation result has little influence on the high-frequency power source distortion.
Therefore, the AC current command obtained by multiplying the AC signal proportional to the frequency command by the DC current command becomes a sine wave that is not affected even when the power supply voltage is distorted. Therefore, since the AC current input to and output from the converter is feedback-controlled based on the AC current command that does not affect the distortion of the power supply voltage, the current flowing through the converter is always a sinusoidal AC current without distortion.

【0008】[0008]

【実施例】図1は本発明に係る電力変換装置の一例を図
4に対応させて示した図であり同一構成箇所は同符号を
付けその説明を省略する。以下に点線内の制御回路Dの
動作を説明する。この回路はマイクロプロセッサ等を利
用して実現され、その動作はソフトウエアによって実現
される。まず、図中の基準電源11は、直流電圧Vdc
の目標電圧を設定し、減算器12においてこの目標電圧
と直流電圧Vdcの検出値とが引き算され、電圧偏差信
号が得られる。この電圧偏差信号は、誤差増幅器13に
よって増幅し、反転器17によって正負反転した直流電
流指令を作成する。次に、3相交流電源の線間電圧をア
イソレータ8を介して検出する。また、発振器18で
は、それぞれ120°ずつ位相の異なる交流信号を指令
周期毎に発生する。交流信号は、3相線間電圧と積和演
算され、この演算値である位相誤差信号をpi(比例・
積分)演算器16で演算後、周波数指令として発振器1
8へ出力される。この周波数指令を基に発振器18で
は、指令周期毎に出力される交流信号の周波数を変化さ
せ、位相誤差信号がゼロになるよう制御する。これら一
連の動作を以下に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing an example of a power conversion device according to the present invention in correspondence with FIG. 4, and the same components are designated by the same reference numerals and their description is omitted. The operation of the control circuit D within the dotted line will be described below. This circuit is realized by using a microprocessor or the like, and its operation is realized by software. First, the reference power supply 11 in the figure is a DC voltage Vdc.
The target voltage is set and the subtracter 12 subtracts the target voltage from the detected value of the DC voltage Vdc to obtain a voltage deviation signal. This voltage deviation signal is amplified by the error amplifier 13 and inverted by the inverter 17 to create a DC current command. Next, the line voltage of the three-phase AC power supply is detected via the isolator 8. Further, the oscillator 18 generates AC signals each having a phase difference of 120 ° for each command cycle. The AC signal is subjected to a product-sum operation with the three-phase line voltage, and the calculated phase error signal is pi (proportional
(Integration) After being calculated by the calculator 16, the oscillator 1 is used as a frequency command.
8 is output. Based on this frequency command, the oscillator 18 changes the frequency of the AC signal output for each command cycle and controls so that the phase error signal becomes zero. A series of these operations will be described below.

【0009】例えば、アイソレータ8から検出される3
相電源の線間電圧をR−S相:ers=Esin(ω1t1
),S−T相:est=Esin(ω1t1 +120
°),T−R相:etr=Esin(ω1t1 −120
°)、また、発振器18からの交流信号をs1 =−co
s(ω2t2 ),s2 =−cos(ω2t2 +120°),
s3 =−cos(ω2t2 −120°)とおくと位相誤差
信号:Aは、
For example, 3 detected by the isolator 8
The line voltage of the phase power supply is the RS phase: ers = Esin (ω1t1
), ST phase: est = Esin (ω1t1 + 120
°), TR phase: etr = Esin (ω1t1 −120
), And the AC signal from the oscillator 18 is s1 = -co
s (ω2t2), s2 = -cos (ω2t2 + 120 °),
When s3 = -cos (ω2t2 -120 °) is set, the phase error signal: A is

【数1】 A=ers×s1 +est×s2 +etr×s3 =−(Esin(ω1t1 )×cos(ω2t2 )+Esi
n(ω1t1 +120°)×cos(ω2t2 +120°)
+Esin(ω1t1 −120°)×cos(ω2t2 −1
20°)) となる。
## EQU1 ## A = ers × s1 + est × s2 + etr × s3 = − (Esin (ω1t1) × cos (ω2t2) + Esi
n (ω1t1 + 120 °) x cos (ω2t2 + 120 °)
+ Esin (ω1t1 −120 °) × cos (ω2t2 −1
20 °)).

【0010】次に、図2を用いて3相交流電源の線間電
圧と交流信号の関係について説明する。まず、各線間電
圧に比べ、交流信号の位相が90°進んだ状態で安定し
た場合、それぞれの乗算波形はα1,α2,α3とな
り、結果として位相誤差信号:A=0となる。よって、
pi演算器16から出力される周波数指令に変化はな
い。また、各線間電圧に比べ、交流信号の位相が安定状
態から進んだ場合、それぞれの乗算波形はβ1,β2,
β3となり、結果として位相誤差信号:A<0となる。
よって、pi演算器16から出力される周波数指令は小
さくなる。その結果、交流信号の位相が遅れるように発
振器18が動作し、結果としてA=0に安定する。ま
た、各線間電圧に比べ、交流信号の位相が安定状態から
遅れた場合、それぞれの乗算波形はγ1,γ2,γ3と
なり、結果として位相誤差信号:A>0となる。よっ
て、pi演算器16から出力される周波数指令は大きく
なる。その結果、交流信号の位相が進むように発振器1
8が動作し、結果としてA=0に安定する。この様にし
てpi演算器16から出力される周波数指令は、位相誤
差信号:Aの値に比例して変化し、位相誤差信号:A=
0となる周波数指令で安定する。
Next, the relationship between the line voltage of the three-phase AC power supply and the AC signal will be described with reference to FIG. First, when the phase of the AC signal is stable in a state in which the phase of the AC signal is advanced by 90 ° with respect to each line voltage, the respective multiplied waveforms are α1, α2, α3, and as a result, the phase error signal: A = 0. Therefore,
There is no change in the frequency command output from the pi calculator 16. Further, when the phase of the AC signal advances from the stable state as compared with each line voltage, the respective multiplied waveforms are β1, β2,
β3, and as a result, the phase error signal: A <0.
Therefore, the frequency command output from the pi calculator 16 becomes small. As a result, the oscillator 18 operates so that the phase of the AC signal is delayed, and as a result, A = 0 is stabilized. Further, when the phase of the AC signal is delayed from the stable state as compared with each line voltage, the respective multiplied waveforms are γ1, γ2, γ3, and as a result, the phase error signal: A> 0. Therefore, the frequency command output from the pi calculator 16 becomes large. As a result, the oscillator 1 is arranged so that the phase of the AC signal advances.
8 operates and, as a result, stabilizes at A = 0. In this way, the frequency command output from the pi calculator 16 changes in proportion to the value of the phase error signal: A, and the phase error signal: A =
Stabilizes with a frequency command of 0.

【0011】なお、交流信号s1,s2,s3は、それ
ぞれ3相交流電源の各相電圧et ,er ,es に対し
て、位相が180°異なる同周波数である。よって、反
転器17によって正負反転された直流電流指令と乗算す
ることで同位相,同周波数の交流電流指令iR* ,iS
* ,iT* を作成できる。また、pi演算器16がロー
パスフィルタの役割を果たすので、高周波の電源電圧歪
みに対しても、発振器18から発生する交流信号に影響
がほとんどない。従って、電源電圧が歪んでも交流電流
指令に影響ない。よって、電源電圧歪みに影響しない交
流電流指令は、減算器20によって電流検出器6で検出
した電流検出値と引き算され、さらに誤差増幅器10で
増幅して交流電圧指令を作成し、PWM制御回路9に入
力される。この交流電圧指令を基にPWM制御回路9で
は、入力された信号をキャリヤ信号によってパルス幅変
調し、トランジスタTr 1〜Tr 6のON/OFF制御
信号が生成される。この様にして、コンバータ4の入出
力交流電流は前記交流電流指令に対してフィードバック
制御がなされるので、図3の様な正弦波の交流電流i
R,iS,iTとなる。
The AC signals s1, s2, and s3 have the same frequency with a phase difference of 180 ° with respect to the phase voltages et, er, and es of the three-phase AC power supply. Therefore, by multiplying by the DC current command that has been inverted by the inverter 17, the AC current commands iR *, iS having the same phase and the same frequency can be obtained.
*, IT * can be created. Further, since the pi calculator 16 plays the role of a low-pass filter, the AC signal generated from the oscillator 18 is hardly affected by high-frequency power supply voltage distortion. Therefore, even if the power supply voltage is distorted, the AC current command is not affected. Therefore, the AC current command that does not affect the power supply voltage distortion is subtracted from the current detection value detected by the current detector 6 by the subtractor 20, and further amplified by the error amplifier 10 to create the AC voltage command, and the PWM control circuit 9 Entered in. Based on the AC voltage command, the PWM control circuit 9 pulse-width modulates the input signal with the carrier signal to generate ON / OFF control signals for the transistors Tr1 to Tr6. In this way, the input / output AC current of the converter 4 is feedback-controlled with respect to the AC current command, so that the AC current i having a sine wave as shown in FIG.
R, iS, and iT.

【0012】[0012]

【発明の効果】以上説明したように、本発明によれば、
電源電圧が歪んだ場合にも歪みのない交流電流指令を発
生してフィードバック制御でき、回生電流も歪みのない
ものとなる。従って、電源への悪影響をなくすことが可
能となる。
As described above, according to the present invention,
Even when the power supply voltage is distorted, a distortion-free AC current command can be generated and feedback-controlled, and the regenerative current is also distorted. Therefore, it is possible to eliminate the adverse effect on the power supply.

【0013】[0013]

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る電力回生が行なえるモータ制御
用電力変換装置の一実施例を示すシステム構成図であ
る。
FIG. 1 is a system configuration diagram showing an embodiment of a motor control power conversion device capable of power regeneration according to the present invention.

【図2】 図1に示す電力変換装置の電源電圧と指令と
の関係を示す図である。
FIG. 2 is a diagram showing a relationship between a power supply voltage of the power conversion device shown in FIG. 1 and a command.

【図3】 電源電圧とコンバータへ流れる交流電流との
関係を示す図である。
FIG. 3 is a diagram showing a relationship between a power supply voltage and an alternating current flowing through a converter.

【図4】 従来例の電力変換装置のシステム構成図であ
る。
FIG. 4 is a system configuration diagram of a conventional power converter.

【符号の説明】[Explanation of symbols]

1 3相交流電源、2 インバータ回路、3 交流モー
タ、4 コンバータ、5 平滑コンデンサ、6 電流検
出器、7 チョークコイル、8 アイソレータ、9 P
WM制御回路、10,13 増幅器、11 基準電源、
12,20 減算器、14,19 乗算器、15 加算
器、16 pi(比例・積分)演算器、17 反転器、
18 発振器、21 変換器。
1 3 phase AC power supply, 2 inverter circuit, 3 AC motor, 4 converter, 5 smoothing capacitor, 6 current detector, 7 choke coil, 8 isolator, 9 P
WM control circuit, 10,13 amplifier, 11 reference power supply,
12, 20 Subtractor, 14, 19 Multiplier, 15 Adder, 16 pi (proportional / integral) calculator, 17 Inverter,
18 oscillators, 21 converters.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数のトランジスタ及びこの複数のトラ
ンジスタに逆並列に接続された複数のダイオードによっ
て構成され、入力された交流電圧指令に応じてこれら複
数のトランジスタをPWM制御するコンバータによって
3相交流電圧を直流電圧に可逆変換する電力変換装置に
おいて、 前記コンバータの入出力する交流電流を検出して交流電
流検出値を出力する手段と、 前記コンバータの出力する直流電圧に基づいた直流電流
指令を発生する手段と、 前記コンバータの3相交流電源の線間電圧ers,est,
etrを検出して線間電圧検出値を出力する手段と、 位相が120°ずつ異なる3つの交流信号s1 ,s2 ,
s3 を発生する発振手段と、 前記線間電圧検出値と前記交流信号とをA=ers×s1
+est×s2 +etr×s3 なる積和演算を行ない位相誤
差信号Aを出力する手段と、 前記位相誤差信号Aを比例・積分演算した演算値を周波
数指令として前記発振手段に出力する手段と、 前記交流信号と前記直流電流指令とを乗算して交流電流
指令を発生する手段と、 前記交流電流検出値と前記交流電流指令との誤差に基づ
き前記交流電流をフィードバック制御する手段と、 を備え、 前記発振手段は、交流信号s1 ,s2 ,s3 の周波数を
前記周波数指令に基づいた周波数とする電力変換装置。
1. A three-phase AC voltage including a plurality of transistors and a plurality of diodes connected in anti-parallel to the plurality of transistors, the converter PWM-controlling the plurality of transistors according to an input AC voltage command. In a power conversion device for reversibly converting into a DC voltage, means for detecting an AC current input to and output from the converter and outputting an AC current detection value, and a DC current command based on the DC voltage output from the converter. Means and line voltages ers, est, of the three-phase AC power supply of the converter
a means for detecting the value of etr and outputting the detected value of the line voltage, and three AC signals s1, s2, which have different phases by 120 °,
The oscillation means for generating s3, the line voltage detection value and the AC signal are A = ers × s1
+ Est × s2 + etr × s3, a means for performing a sum-of-products operation and outputting a phase error signal A, a means for outputting to the oscillating means a calculated value obtained by performing a proportional / integral operation on the phase error signal A as a frequency command, and the alternating current Means for multiplying a signal and the direct current command to generate an alternating current command; and means for feedback controlling the alternating current based on the error between the detected alternating current value and the alternating current command, The means is a power conversion device that sets the frequency of the AC signals s1, s2, s3 to a frequency based on the frequency command.
JP13388195A 1995-05-31 1995-05-31 Power converter Expired - Fee Related JP3261010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13388195A JP3261010B2 (en) 1995-05-31 1995-05-31 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13388195A JP3261010B2 (en) 1995-05-31 1995-05-31 Power converter

Publications (2)

Publication Number Publication Date
JPH08331860A true JPH08331860A (en) 1996-12-13
JP3261010B2 JP3261010B2 (en) 2002-02-25

Family

ID=15115275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13388195A Expired - Fee Related JP3261010B2 (en) 1995-05-31 1995-05-31 Power converter

Country Status (1)

Country Link
JP (1) JP3261010B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001169554A (en) * 1999-12-06 2001-06-22 Okuma Corp Power converter
JP2006174633A (en) * 2004-12-17 2006-06-29 Sanken Electric Co Ltd Three-phase power conversion equipment
US8188701B2 (en) 2007-04-10 2012-05-29 Mitsubishi Electric Corporation Power regenerative converter
WO2017212739A1 (en) 2016-06-10 2017-12-14 Ntn株式会社 Power factor improvement device
KR20180127173A (en) 2017-05-19 2018-11-28 에누티에누 가부시기가이샤 Isolated switching power supply for three-phase AC
KR20180127172A (en) 2017-05-19 2018-11-28 에누티에누 가부시기가이샤 Isolated switching power supply for three-phase AC
KR20180127903A (en) 2017-05-22 2018-11-30 엔티엔 가부시키가이샤 Insulated switching power supply
KR20190000777A (en) 2017-06-23 2019-01-03 에누티에누 가부시기가이샤 Isolated switching power supply for three-phase AC
KR20190040875A (en) 2017-10-11 2019-04-19 엔티엔 가부시키가이샤 Insulated switching power supply
KR20200097722A (en) 2017-12-13 2020-08-19 에누티에누 가부시기가이샤 Isolated switching power supply
KR20200100057A (en) 2017-12-13 2020-08-25 엔티엔 가부시키가이샤 Isolated switching power supply
US10778095B2 (en) 2016-06-10 2020-09-15 Ntn Corporation Switching DC/DC converter having power output during on and off periods

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001169554A (en) * 1999-12-06 2001-06-22 Okuma Corp Power converter
JP2006174633A (en) * 2004-12-17 2006-06-29 Sanken Electric Co Ltd Three-phase power conversion equipment
US8188701B2 (en) 2007-04-10 2012-05-29 Mitsubishi Electric Corporation Power regenerative converter
US10541600B2 (en) 2016-06-10 2020-01-21 Ntn Corporation Power factor improvement device
WO2017212739A1 (en) 2016-06-10 2017-12-14 Ntn株式会社 Power factor improvement device
US10778095B2 (en) 2016-06-10 2020-09-15 Ntn Corporation Switching DC/DC converter having power output during on and off periods
KR20180127173A (en) 2017-05-19 2018-11-28 에누티에누 가부시기가이샤 Isolated switching power supply for three-phase AC
KR20180127172A (en) 2017-05-19 2018-11-28 에누티에누 가부시기가이샤 Isolated switching power supply for three-phase AC
KR20180127903A (en) 2017-05-22 2018-11-30 엔티엔 가부시키가이샤 Insulated switching power supply
KR20190000777A (en) 2017-06-23 2019-01-03 에누티에누 가부시기가이샤 Isolated switching power supply for three-phase AC
KR20190040875A (en) 2017-10-11 2019-04-19 엔티엔 가부시키가이샤 Insulated switching power supply
KR20200097722A (en) 2017-12-13 2020-08-19 에누티에누 가부시기가이샤 Isolated switching power supply
KR20200100057A (en) 2017-12-13 2020-08-25 엔티엔 가부시키가이샤 Isolated switching power supply

Also Published As

Publication number Publication date
JP3261010B2 (en) 2002-02-25

Similar Documents

Publication Publication Date Title
JP3261010B2 (en) Power converter
EP0307719B1 (en) Power source apparatus
JPH0759351A (en) Control device for power converter
JPH11289793A (en) Motor injection molding machine equipped with higher harmonic control type power supply generating converter
JP4479292B2 (en) AC / AC power converter controller
JPH08266059A (en) Power converter
JP3442580B2 (en) Power converter
JPH08186986A (en) Power conversion apparatus
JPH07322629A (en) Power rectifying device
JPH10304568A (en) Power compensating equipment
JP3822754B2 (en) Power converter
JPH05333077A (en) Switching type simulated load device
JPH0748951B2 (en) Power converter
JP3227009B2 (en) AC electric vehicle control device
JP3423858B2 (en) Passive filter damping circuit
JPS5846895A (en) Induction motor inverter control system
JPH0728536B2 (en) Frequency converter
JPH05176553A (en) Inverter control method of non-interruption power supply apparatus and non-interruption power supply apparatus
JP3167314B2 (en) Inverter device
JPH0775344A (en) Current loop control type pwm inverter
JP2562591Y2 (en) Power conversion circuit with regenerative function
JPH07241079A (en) Power converter
JP2734111B2 (en) Power regeneration circuit controller
JPS5947931B2 (en) PWM waveform improvement device
JPH05227756A (en) Switching method for current type inverter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees