[go: up one dir, main page]

JPH08330373A - Evaluation of polycrystalline material - Google Patents

Evaluation of polycrystalline material

Info

Publication number
JPH08330373A
JPH08330373A JP15665795A JP15665795A JPH08330373A JP H08330373 A JPH08330373 A JP H08330373A JP 15665795 A JP15665795 A JP 15665795A JP 15665795 A JP15665795 A JP 15665795A JP H08330373 A JPH08330373 A JP H08330373A
Authority
JP
Japan
Prior art keywords
polycrystalline material
harmonic
sample
beam diameter
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15665795A
Other languages
Japanese (ja)
Other versions
JP2715999B2 (en
Inventor
Koji Watabe
宏治 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7156657A priority Critical patent/JP2715999B2/en
Publication of JPH08330373A publication Critical patent/JPH08330373A/en
Application granted granted Critical
Publication of JP2715999B2 publication Critical patent/JP2715999B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE: To evaluate the grain diameter and orientation of polycrystalline material in line at the manufacturing site with high accuracy even when the polycrystalline surface is covered with an oxide film, etc. CONSTITUTION: Laser beams projected from a light source 1 are s-polarized by a polarizer 2, unnecessary beams are removed by a filter 3 and the beam diameter is adjusted to a desired size by a lens 4. The laser beams are applied to a polycrystalline sample 5 by rotating the polarizer 2 or the sample 5. The obtained second harmonic is received by a photomultiplier 9 through a filter 6, lens 7 and a polarizer 8, are detected by a photo counting system 10 and the data is saved in a personal computer 11. When the beam diameter is sufficiently larger than the grain diameter, the strength change dependent on the rotating angle is not detected in the obtained second harmonic. The grain diameter is obtained from the beam diameter wherein the strength change dependent on the rotation angle has occurred. The crystal orientation is obtained from the pattern of the strength change dependent on the rotation angle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多結晶材料の結晶配向
および結晶粒径を非破壊で検出する多結晶材料の評価方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating a polycrystalline material which nondestructively detects the crystal orientation and the crystal grain size of the polycrystalline material.

【0002】[0002]

【従来の技術】従来の結晶性評価方法として、電子顕微
鏡やX線回折を用いる観察法がある。電子顕微鏡として
は、透過型、反射型、走査型のものが用いられるが、透
過型を使用する方法では、高電圧で加速された電子を試
料内部を透過させ、回折電子線を利用して材料内部の構
造を観察する。また、走査型電子顕微鏡を用いる場合に
は、細く絞った電子線を試料上で走査しそのとき得られ
る2次電子を記録することによって試料表面の結晶状態
を評価する。X線回折法は、X線を様々な角度から試料
表面に照射し、その回折線の方向と強度から結晶構造を
解析する方法である。
2. Description of the Related Art As a conventional crystallinity evaluation method, there is an observation method using an electron microscope or X-ray diffraction. As the electron microscope, a transmission type, a reflection type, and a scanning type are used. In the method of using the transmission type, electrons accelerated by a high voltage are transmitted through the inside of the sample, and a material is obtained by using a diffracted electron beam. Observe the internal structure. When a scanning electron microscope is used, the crystal state of the sample surface is evaluated by scanning a finely focused electron beam on the sample and recording the secondary electrons obtained at that time. The X-ray diffraction method is a method of irradiating the sample surface with X-rays from various angles and analyzing the crystal structure from the direction and intensity of the diffraction lines.

【0003】近年、ラマン散乱による半導体材料の評価
が行われている。ラマン散乱とは、素励起の励起または
消滅の伴った光の非弾性散乱をいう。例えば、特開平4
−43661号公報に記載された評価方法では、多結晶
材料の表面を第1のビーム径を有するレーザビームで走
査し、ラマン散乱ピークの強度が前記表面で変化する第
1の強度変化を求め、第1のビーム径より小さい第2の
ビーム径を有するレーザビームによる走査を行ってラマ
ン散乱ピークの強度が前記表面で変化する第2の強度変
化を求め、第1の強度変化と第2の強度変化を比較し、
ラマン分光法による測定精度以上の差があったときに、
多結晶材料の結晶粒径が第1のビーム径より小でかつ第
2のビーム径より大であると確定するようにしている。
In recent years, semiconductor materials have been evaluated by Raman scattering. Raman scattering refers to inelastic scattering of light accompanied by elementary excitation or extinction. For example, JP-A-4
In the evaluation method described in JP-A-43661, the surface of the polycrystalline material is scanned with a laser beam having a first beam diameter, and a first intensity change in which the intensity of the Raman scattering peak changes on the surface is obtained, Scanning with a laser beam having a second beam diameter smaller than the first beam diameter is performed to obtain a second intensity change in which the intensity of the Raman scattering peak changes on the surface, and the first intensity change and the second intensity change. Compare the changes,
When there is a difference more than the measurement accuracy by Raman spectroscopy,
The crystal grain size of the polycrystalline material is determined to be smaller than the first beam diameter and larger than the second beam diameter.

【0004】さらに、上記公報に記載された方法では、
レーザビームを多結晶材料に対して相対的に回転させて
ラマン散乱ピークを求め、また第2のビーム径による走
査を異なる偏光角度で2回行って、ラマン散乱ピークの
強度より各結晶粒の方位を測定し、粒径と結晶粒の方位
を同時に求めている。
Further, in the method described in the above publication,
The Raman scattering peak is obtained by rotating the laser beam relative to the polycrystalline material, and scanning with the second beam diameter is performed twice at different polarization angles to determine the orientation of each crystal grain from the intensity of the Raman scattering peak. Is measured and the grain size and crystal grain orientation are simultaneously determined.

【0005】[0005]

【発明が解決しようとする課題】上述した従来の多結晶
材料の評価方法のうち、電子顕微鏡を使うものでは、特
殊な試料作成を必要とするため、検査後に試料を半導体
の製造工程に戻すことはできない。また、透過型電子顕
微鏡を使用する評価法やX線回折による評価法は電子線
やX線が透過した体積の情報を含むため、結晶面方位や
粒径はその平均的情報としてしか得られず、表面・界面
からの精度の高い情報を取り出すことはできない。ま
た、電子顕微鏡法やX線回折法は、高価で大掛かりな装
置が必要となるため、製造現場におけるインラインの評
価方法として採用するすることは困難である。
Among the above-mentioned conventional methods for evaluating a polycrystalline material, the one using an electron microscope requires a special sample preparation. Therefore, the sample must be returned to the semiconductor manufacturing process after the inspection. I can't. Moreover, since the evaluation method using a transmission electron microscope and the evaluation method by X-ray diffraction include information on the volume through which an electron beam or X-ray is transmitted, the crystal plane orientation and the grain size can be obtained only as average information. , It is not possible to extract highly accurate information from the surface / interface. Further, the electron microscope method and the X-ray diffraction method require expensive and large-scale equipment, and thus it is difficult to adopt them as in-line evaluation methods at the manufacturing site.

【0006】ラマン散乱による測定は、結晶表面からの
散乱を観察するものであるため、大気中での測定で表面
に酸化膜が形成されると、注目する結晶表面からの正確
な情報が得られなくなる。また、従来のラマン散乱法で
は、多結晶体の上に絶縁体などの材料層を堆積した場合
には、その下層に存在する多結晶体の界面での情報を得
ることは不可能である。
The Raman scattering measurement is for observing the scattering from the crystal surface. Therefore, if an oxide film is formed on the surface in the measurement in the atmosphere, accurate information from the crystal surface of interest can be obtained. Disappear. Further, in the conventional Raman scattering method, when a material layer such as an insulator is deposited on a polycrystal, it is impossible to obtain information at the interface of the polycrystal existing in the lower layer.

【0007】本発明はこのような従来例の問題点に鑑み
てなされたものであって、その目的は、大掛かりな装置
を使用することなく、非破壊で結晶表面・界面からの情
報を選択的に取り出し得るようにして、大気中において
もあるいは他の被膜に覆われた状態においてもインライ
ンで多結晶材料の結晶粒径・結晶配向性を測定できるよ
うにしようとするものである。
The present invention has been made in view of the above problems of the conventional example, and an object thereof is to select information from the crystal surface / interface nondestructively without using a large-scale device. Therefore, the crystal grain size and crystal orientation of the polycrystalline material can be measured in-line even in the air or in a state of being covered with another film.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
め、本発明によれば、多結晶材料の試料表面に、ビーム
径を異ならせたレーザビームを、試料面に対し相対的に
回転または移動させて入射させ、ビーム径毎に第2高調
波を観測し、第2高調波強度の回転角乃至移動量依存性
を測定することにより多結晶材料の結晶方位および結晶
粒径を確定することを特徴とする多結晶材料の評価方
法、が提供される。
In order to achieve the above object, according to the present invention, a laser beam having a different beam diameter is rotated or rotated on a sample surface of a polycrystalline material relative to the sample surface. Determining the crystal orientation and crystal grain size of the polycrystalline material by displacing it and making it incident, observing the second harmonic for each beam diameter, and measuring the rotation angle or movement amount dependency of the second harmonic intensity. A method for evaluating a polycrystalline material is provided.

【0009】[0009]

【作用】本発明においては、多結晶界面で発生する第2
高調波を利用することにより、結晶の配向性・粒径を評
価する。媒質の分極Pは、 P=Χ(1) E+(dΧ(1) /dq)ΔqE+Χ(2) EE+・・・ (1) と表すことができる。ここで、Χ(1) 、Χ(2) はそれぞ
れ1次の線形感受率テンソル、2次の非線形感受率テン
ソルを表している。また、qは基準座標、Eは光電場を
示す。この式で、第1項は線形な反射や屈折を示す項で
ある。第2項はラマン分極を示す項で、媒質の分極率が
基準座標qで表されるような媒質の変位の関数であると
きに、分極にqの振動数の変調が加わる項である。第3
項は、第2高調波等を生成する2次の非線形項で、電場
の2乗に比例した分極である。
In the present invention, the second phenomenon that occurs at the polycrystalline interface
The crystal orientation and grain size are evaluated by using the harmonics. The polarization P of the medium can be expressed as P = Χ (1) E + (dΧ (1) / dq) ΔqE + Χ (2) EE + ... (1). Here, Χ (1) and Χ (2) represent the first-order linear susceptibility tensor and the second-order nonlinear susceptibility tensor, respectively. Further, q represents a reference coordinate, and E represents a photoelectric field. In this equation, the first term is a term indicating linear reflection and refraction. The second term is a term indicating Raman polarization, and is a term in which polarization is modulated by the frequency of q when the polarizability of the medium is a function of the displacement of the medium represented by the reference coordinate q. Third
The term is a quadratic non-linear term that generates a second harmonic or the like, and is a polarization proportional to the square of the electric field.

【0010】従来のラマン散乱による評価方法が線形な
ラマン分極を利用するものであるのに対し、本発明は、
(1)式の第3項に起因する第2高調波を利用して表面
・界面での結晶配向性・結晶粒径を評価する。第2高調
波は、結晶の反転対称性が崩れる表面・界面から発生す
る。(1)式第3項に基づいて、本発明の評価方法の原
理について説明する。反転とは、座標を反転することで
物理量をみることを意味しており、例えば1次元で考え
ると、−xをxで置き換えることで表すことができる。
電場は物質とは無関係な場であるので、E-x=−Ex
あるが、分極は反転対称性がある場合、P-x=−Px
反転対称性がない場合、P-x≠−Px である。したがっ
て、 P-x=Χxxx (2)-x-x=Χxxx (2)xx −Px =−Χxxx (2)xx である。反転対称性がある場合(P-x=−Px )、Χ
xxx (2)=−Χxxx (2)=0となり、反転対称性が崩れる場
合(P-x≠−Px )、Χxxx (2)≠0となる。
While the conventional evaluation method using Raman scattering utilizes linear Raman polarization, the present invention is
The crystal orientation / crystal grain size on the surface / interface is evaluated by using the second harmonic resulting from the third term of the equation (1). The second harmonic is generated from the surface / interface where the crystal inversion symmetry is broken. The principle of the evaluation method of the present invention will be described based on the third term of the equation (1). The inversion means observing the physical quantity by inverting the coordinates, and can be expressed by replacing -x with x in the case of one-dimensional consideration.
Since the electric field is a field independent of matter, E −x = −E x , but if the polarization has inversion symmetry, P −x = −P x ,
If there is no inversion symmetry, then P −x ≠ −P x . Therefore, P- x = Χ xxx (2) E -x E -x = Χ xxx (2) E x E x -P x = -Χ xxx (2) E x E x . If there is inversion symmetry (P -x = -P x ), Χ
If xxx (2) = -Χ xxx (2) = 0 and the inversion symmetry is broken (P -x ≠ -P x ), Χ xxx (2) ≠ 0.

【0011】このように本発明による評価方法が結晶の
反転対称性が崩れる界面において発生する第2高調波を
利用するものであるため、多結晶材料層上に絶縁層等の
他の被膜が形成された後においてもこの被膜を通しての
測定が可能になる。したがって、例えば、多結晶体を大
気に触れさせたためにその表面が自然酸化膜によって覆
われることがあっても、この被膜の存在に無関係に精度
の高い測定が可能になる。
As described above, since the evaluation method according to the present invention utilizes the second harmonic generated at the interface where the crystal inversion symmetry is broken, another film such as an insulating layer is formed on the polycrystalline material layer. It is possible to measure through this coating even after being applied. Therefore, for example, even if the surface of a polycrystalline body is covered with a natural oxide film due to exposure to the atmosphere, highly accurate measurement is possible regardless of the presence of this coating.

【0012】本発明においては、例えば、レーザ集光レ
ンズの倍率を変えることにより、試料上に異なる径のビ
ームを入射させ、それぞれのビーム径について試料ある
いは偏光面を回転させることによって、第2高調波の回
転角依存性を測定する。そして、回転角に対して第2高
調波に強度変化の現れないときのビーム径と現れたとき
のビーム径を求めることにより、結晶粒径がこれら2つ
のビーム径の間にあると確定する。そして、強度変化の
現れるビーム径で得られる第2高調波の回転角依存性か
ら多結晶材料の結晶方位を求める。すなわち、後述する
ように、得られた第2高調波の強度変化のパターンから
結晶方位を求める。
In the present invention, for example, by changing the magnification of the laser condenser lens, beams having different diameters are made incident on the sample, and the sample or the polarization plane is rotated for each beam diameter, whereby the second harmonic is generated. The rotation angle dependence of the wave is measured. Then, by determining the beam diameter when the intensity change does not appear in the second harmonic with respect to the rotation angle and the beam diameter when it appears, the crystal grain size is determined to be between these two beam diameters. Then, the crystal orientation of the polycrystalline material is obtained from the rotation angle dependence of the second harmonic obtained by the beam diameter where the intensity change appears. That is, as described later, the crystal orientation is obtained from the obtained pattern of intensity change of the second harmonic.

【0013】多結晶体に粒径に対して十分に大きい径の
ビームが入射しているとき、2次の非線形分極の空間分
布は平均化されてしまうため、第2高調波は回転角依存
性を示さない。ビーム径を変化させることによってその
径が結晶粒径程度になったとき、第2高調波は回転依存
性を示すようになる。
When a beam having a diameter sufficiently larger than the grain size is incident on the polycrystalline body, the spatial distribution of the second-order nonlinear polarization is averaged, so that the second harmonic wave has a rotation angle dependence. Not shown. When the beam diameter is changed to be about the crystal grain size by changing the beam diameter, the second harmonic becomes rotation-dependent.

【0014】多結晶材料を測定する光学系では、第2高
調波測定装置において、入射角度、入射または反射光の
偏光方向、試料の結晶軸を変化させることによって照射
位置はそのままで第2高調波の強度を測定することがで
きる。これらのパラメータの組み合わせによって導かれ
る理論式と測定結果とを比較することにより、その個々
の結晶粒の面方位を決定することができる。
In an optical system for measuring a polycrystalline material, in the second harmonic measuring device, by changing the incident angle, the polarization direction of incident or reflected light, and the crystal axis of the sample, the irradiation position remains the second harmonic. The intensity of can be measured. By comparing the theoretical formula derived by the combination of these parameters with the measurement result, the plane orientation of each individual crystal grain can be determined.

【0015】例えば、s偏光(入射光の電界成分が入射
面に垂直な偏光)45°入射/試料回転/s偏光受光で
実験を行った場合、(111)、(110)に配向した
表面・界面から得られる第2高調波光強度ISHのパター
ンは、それぞれ、 ISH=C|sin3δ|2SH=C′|sin3δ+1.5sin4δ|2 で表すことができる。ここで、C、C′はフレネル係数
を含む比例定数、δは試料回転角を表している。ビーム
径が結晶粒の大きさと比べて同程度か同じ大きさになっ
てときに、上記の式で示したパターンが現れ、結晶の配
向性を知ることができる。
For example, when an experiment is conducted with s-polarized light (polarization in which the electric field component of the incident light is perpendicular to the incident surface) 45 ° incidence / sample rotation / s-polarized light reception, surfaces oriented in (111) and (110) The patterns of the second harmonic light intensity I SH obtained from the interface can be expressed by I SH = C | sin3δ | 2 I SH = C ′ | sin3δ + 1.5sin4δ | 2 , respectively. Here, C and C ′ are proportional constants including the Fresnel coefficient, and δ is the sample rotation angle. When the beam diameter is about the same as or the same as the size of the crystal grain, the pattern shown by the above equation appears and the crystal orientation can be known.

【0016】図1は、結晶粒径がビーム径に比較して同
程度あるいはこれより大きいときに得られる第2高調波
光強度の回転角依存性を示す図であり、図2は、結晶粒
径がビーム径に比較して十分に小さいときに得られる第
2高調波光強度の回転角依存性を示す図である。なお、
図を見やすくするために(100)に配向した表面・界
面からの第2高調波光の強度変化パターンについては示
さなかったが、(100)配向の場合にも、適当な光学
系を用いることによって他の配向とは異なる独特のパタ
ーンが現れる。
FIG. 1 is a diagram showing the rotation angle dependence of the second harmonic light intensity obtained when the crystal grain size is comparable to or larger than the beam diameter, and FIG. 2 is the crystal grain size. FIG. 6 is a diagram showing the rotation angle dependence of the second harmonic light intensity obtained when is sufficiently smaller than the beam diameter. In addition,
Although the intensity change pattern of the second harmonic light from the surface / interface oriented to (100) is not shown in order to make the figure easier to see, it is not possible to use another suitable optical system in the case of (100) orientation as well. A unique pattern that differs from the orientation of appears.

【0017】[0017]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。図3は、本発明の一実施例において用いら
れる測定装置の概略構成図である。Nd−YAGレーザ
からなるレーザ光源1のレーザ光(λ=1064nm)
を、偏光子2を通してs偏光化し、フィルタ3によって
不要な波長成分をカットし、レンズ4にてビーム径を調
節した後、試料5に対して45°で入射させる。試料か
ら発生した第2高調波はフィルタ6によって目的の波長
(λ=532nm)のみが選択的に透過され、レンズ7
によって集光される。次に、偏光子8を通してs偏光成
分を光電子増倍管9で受光する。微弱なシグナルをフォ
トンカウンティングシステム10により検出し、そのデ
ータをパソコン11にセーブする。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 3 is a schematic configuration diagram of a measuring device used in one embodiment of the present invention. Laser light of laser light source 1 composed of Nd-YAG laser (λ = 1064 nm)
Is s-polarized through the polarizer 2, unnecessary wavelength components are cut by the filter 3, the beam diameter is adjusted by the lens 4, and then incident on the sample 5 at 45 °. Only the target wavelength (λ = 532 nm) of the second harmonic wave generated from the sample is selectively transmitted by the filter 6, and the lens 7
Is collected by. Next, the s-polarized component is received by the photomultiplier tube 9 through the polarizer 8. A weak signal is detected by the photon counting system 10 and the data is saved in the personal computer 11.

【0018】具体的な試料として、シリコン基板上に熱
酸化膜を5000Å形成し、その上にポリシリコンを4
50℃で1μm堆積する。その後窒素雰囲気中で850
℃、30分間のアニールを行い、大気中にて自然酸化膜
を形成したものを用いた。この試料に対し、Nd−YA
Gレーザのレーザビームをレンズによって集光してその
試料上での径をφ=1.5μm、14.5μmとして、
それぞれのビーム径で測定を行った。光学系はs偏光4
5°入射/試料回転/s偏光受光であった。レーザビー
ム径をφ=1.5μm、14.5μmとしたときのそれ
ぞれの観測結果は、図1、図2に示すようになった。
As a concrete sample, a thermal oxide film of 5000 Å is formed on a silicon substrate, and a polysilicon film is formed thereon.
Deposit 1 μm at 50 ° C. Then 850 in nitrogen atmosphere
After annealing at 30 ° C. for 30 minutes and forming a natural oxide film in the atmosphere, a film was used. For this sample, Nd-YA
The laser beam of the G laser is focused by a lens and the diameter on the sample is φ = 1.5 μm, 14.5 μm,
The measurement was performed at each beam diameter. Optical system is s-polarized 4
It was 5 ° incidence / sample rotation / s-polarized light reception. The observation results when the laser beam diameter was φ = 1.5 μm and 14.5 μm were as shown in FIGS. 1 and 2.

【0019】なお、本発明は図3に示される測定装置に
より好適に実施されるがこのような構成の装置に限定さ
れるものではない。例えば、偏光子、フィルタ、レンズ
等の順序を入れ替える等した装置を使用することができ
る。また、上記の実施例では、レーザビームの偏光面を
試料に対して相対的に回転させていたが、この方法に代
えて、レーザビームに対して試料を相対的に移動させる
ようにして試料面をレーザビームにより走査するように
してもよい。
The present invention is preferably implemented by the measuring device shown in FIG. 3, but is not limited to the device having such a configuration. For example, a device in which the order of the polarizer, the filter, the lens, etc. is changed can be used. Further, in the above embodiment, the plane of polarization of the laser beam was rotated relative to the sample, but instead of this method, the sample was moved relative to the laser beam. May be scanned by a laser beam.

【0020】[0020]

【発明の効果】以上説明したように、本発明による多結
晶材料の評価方法は、異なるビーム径のレーザビームを
試料面に相対的に回転乃至移動させながら照射し、試料
面で発生する第2高調波を利用して、多結晶材料の粒径
および結晶方位を評価するものであるので、以下の効果
を享受することができる。
As described above, in the method for evaluating a polycrystalline material according to the present invention, a laser beam having a different beam diameter is applied to the sample surface while being rotated or moved relative to the sample surface. Since the grain size and crystal orientation of the polycrystalline material are evaluated using the harmonics, the following effects can be enjoyed.

【0021】 高価で大掛かりな装置を使用すること
なく、非破壊での測定が可能であるので、インラインで
の測定・評価が可能になる。 結晶の反転対称性が崩れる界面で発生する第2高調
波を利用する評価方法であるため、多結晶材料に非晶質
の材料が堆積されていてもこれに妨害されることなく精
度の高い評価を行うことができる。 上記と同様の理由により多結晶体の表面に自然酸
化膜が結晶されても測定結果に影響が現れることはない
ので、酸化され易い材料の多結晶体の大気中での評価が
可能になる。
Since non-destructive measurement is possible without using an expensive and large-scale device, in-line measurement / evaluation is possible. Since the evaluation method uses the second harmonic generated at the interface where the crystal inversion symmetry is broken, even if an amorphous material is deposited on the polycrystalline material, it is not interfered by this and highly accurate evaluation is possible. It can be performed. For the same reason as above, even if the natural oxide film is crystallized on the surface of the polycrystal, it does not affect the measurement result, so that the polycrystal of the material which is easily oxidized can be evaluated in the atmosphere.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例でのレーザビーム径が結晶粒径
より小さいときの第2高調波光の回転角依存性を示す
図。
FIG. 1 is a diagram showing the rotation angle dependence of the second harmonic light when the laser beam diameter is smaller than the crystal grain diameter in the example of the present invention.

【図2】本発明の実施例でのレーザビーム径が結晶粒径
より十分大きいときの第2高調波光の回転角依存性を示
す図。
FIG. 2 is a diagram showing the rotation angle dependence of the second harmonic light when the laser beam diameter is sufficiently larger than the crystal grain diameter in the example of the present invention.

【図3】本発明の一実施例において用いられる測定装置
の概略構成図。
FIG. 3 is a schematic configuration diagram of a measuring device used in an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 レーザ光源 2、8 偏光子 3、6 フィルタ 4、7 レンズ 5 試料 9 光電子増倍管 10 フォトンカウンティングシステム 11 パーソナルコンピュータ 1 Laser Light Source 2, 8 Polarizer 3, 6 Filter 4, 7 Lens 5 Sample 9 Photomultiplier Tube 10 Photon Counting System 11 Personal Computer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 多結晶材料の試料表面に、ビーム径を異
ならせたレーザビームを、試料面に対し相対的に回転ま
たは移動させて入射させ、ビーム径毎に第2高調波を観
測し、第2高調波強度の回転角乃至移動量依存性を測定
することにより多結晶材料の結晶方位および結晶粒径を
確定することを特徴とする多結晶材料の評価方法。
1. A laser beam having a different beam diameter is incident on a sample surface of a polycrystalline material by rotating or moving the beam relative to the sample surface, and observing the second harmonic for each beam diameter. A method for evaluating a polycrystalline material, characterized in that the crystal orientation and the crystal grain size of the polycrystalline material are determined by measuring the rotation angle or movement amount dependency of the second harmonic intensity.
【請求項2】 試料にs偏光波を45°の角度をもって
入射させることを特徴とする請求項1記載の多結晶材料
の評価方法。
2. The method for evaluating a polycrystalline material according to claim 1, wherein the s-polarized wave is incident on the sample at an angle of 45 °.
【請求項3】 第2高調波反射波の強度変化が現れる前
後の2つのレーザビームのビーム径を認識し、多結晶材
料の結晶粒径がそれら2つのビーム径の間にあると確定
することを特徴とする請求項1記載の多結晶材料の評価
方法。
3. Recognizing the beam diameters of the two laser beams before and after the intensity change of the second harmonic reflected wave appears, and determining that the crystal grain size of the polycrystalline material is between these two beam diameters. The method for evaluating a polycrystalline material according to claim 1, wherein:
【請求項4】 第2高調波反射波の回転角乃至移動距離
に依存した強度波形から多結晶材料の結晶配向を確定す
ることを特徴とする請求項1記載の多結晶材料の評価方
法。
4. The method for evaluating a polycrystalline material according to claim 1, wherein the crystal orientation of the polycrystalline material is determined from an intensity waveform depending on a rotation angle or a moving distance of the second harmonic reflected wave.
【請求項5】 多結晶材料層上に無定形の材料層を形成
し、その無定形の材料層を通してレーザビームを入射さ
せ多結晶材料の結晶配向および結晶粒径を確定すること
を特徴とする請求項1記載の多結晶材料の評価方法。
5. An amorphous material layer is formed on a polycrystalline material layer, and a laser beam is made incident through the amorphous material layer to determine the crystal orientation and the crystal grain size of the polycrystalline material. The method for evaluating a polycrystalline material according to claim 1.
JP7156657A 1995-06-01 1995-06-01 Evaluation method for polycrystalline materials Expired - Lifetime JP2715999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7156657A JP2715999B2 (en) 1995-06-01 1995-06-01 Evaluation method for polycrystalline materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7156657A JP2715999B2 (en) 1995-06-01 1995-06-01 Evaluation method for polycrystalline materials

Publications (2)

Publication Number Publication Date
JPH08330373A true JPH08330373A (en) 1996-12-13
JP2715999B2 JP2715999B2 (en) 1998-02-18

Family

ID=15632455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7156657A Expired - Lifetime JP2715999B2 (en) 1995-06-01 1995-06-01 Evaluation method for polycrystalline materials

Country Status (1)

Country Link
JP (1) JP2715999B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100479904B1 (en) * 2002-06-29 2005-03-30 삼성테크윈 주식회사 Apparatus for inspecting parts
JP2019219326A (en) * 2018-06-21 2019-12-26 株式会社ディスコ Crystal orientation detection device, and crystal orientation detection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443661A (en) * 1990-06-11 1992-02-13 Fujitsu Ltd Evaluation method of semiconductor element constituent materials
JPH04340404A (en) * 1990-10-30 1992-11-26 Internatl Business Mach Corp <Ibm> Material processing method and material surface monitoring apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443661A (en) * 1990-06-11 1992-02-13 Fujitsu Ltd Evaluation method of semiconductor element constituent materials
JPH04340404A (en) * 1990-10-30 1992-11-26 Internatl Business Mach Corp <Ibm> Material processing method and material surface monitoring apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100479904B1 (en) * 2002-06-29 2005-03-30 삼성테크윈 주식회사 Apparatus for inspecting parts
JP2019219326A (en) * 2018-06-21 2019-12-26 株式会社ディスコ Crystal orientation detection device, and crystal orientation detection method

Also Published As

Publication number Publication date
JP2715999B2 (en) 1998-02-18

Similar Documents

Publication Publication Date Title
US5294289A (en) Detection of interfaces with atomic resolution during material processing by optical second harmonic generation
Reiter et al. Ellipsometric microscopy. Imaging monomolecular surfactant layers at the air-water interface
CN101398293B (en) Measurement system and method for measuring critical dimensions using ellipsometry
Fanton et al. Multiparameter measurements of thin films using beam‐profile reflectometry
TWI687674B (en) Apparatus and method for metrology analysis of thin film and method of obtaining properties of thin film
JPH05661B2 (en)
US6671047B2 (en) Combination thermal wave and optical spectroscopy measurement systems
CN106441124A (en) Novel method for measuring film thickness by time response based on laser-induced thermoelectricity voltage
US7777880B2 (en) Metrological characterisation of microelectronic circuits
JP2715999B2 (en) Evaluation method for polycrystalline materials
TW202118992A (en) X-ray reflectometry and method thereof for measuring three dimensional nanostructures on flat substrate
JPH0755702A (en) Crystal defect measuring apparatus and semiconductor manufacturing apparatus using the same
JP2002286442A (en) Measurement technology for very thin film oxide
WO2019175611A1 (en) Measuring crystal quality in low dimensional 2d materials based on polarization resolved second harmonic generation
Mundy et al. Photothermal deflection microscopy of thin film optical coatings
JP4558217B2 (en) Method and apparatus for optically measuring properties of metal samples
JP2850856B2 (en) Interface analysis method
US11668645B2 (en) Spectroscopic ellipsometry system for thin film imaging
JPH11281576A (en) Device for measuring photo luminescence in crystal
JPH10253546A (en) Method and equipment for evaluating semiconductor substrate
RU2006985C1 (en) Process of measurement and testing of parameters of layers of microcircuits
JP2856562B2 (en) Insulation film inspection method
Sharples et al. Fast noncontact imaging of material microstructure using local surface acoustic wave velocity mapping
JPH0443661A (en) Evaluation method of semiconductor element constituent materials
RU2164020C2 (en) Process of examination of conductive surface