JPH08327318A - Position detector - Google Patents
Position detectorInfo
- Publication number
- JPH08327318A JPH08327318A JP13678395A JP13678395A JPH08327318A JP H08327318 A JPH08327318 A JP H08327318A JP 13678395 A JP13678395 A JP 13678395A JP 13678395 A JP13678395 A JP 13678395A JP H08327318 A JPH08327318 A JP H08327318A
- Authority
- JP
- Japan
- Prior art keywords
- image
- position detection
- light
- optical system
- detection mark
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 229
- 238000005286 illumination Methods 0.000 claims abstract description 220
- 238000001514 detection method Methods 0.000 claims abstract description 204
- 230000004907 flux Effects 0.000 claims abstract description 104
- 210000001747 pupil Anatomy 0.000 claims abstract description 78
- 230000008859 change Effects 0.000 claims abstract description 41
- 239000000758 substrate Substances 0.000 claims abstract description 25
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 23
- 238000003384 imaging method Methods 0.000 claims description 63
- 230000000670 limiting effect Effects 0.000 claims description 42
- 238000000034 method Methods 0.000 claims description 25
- 230000001678 irradiating effect Effects 0.000 claims description 9
- 230000002708 enhancing effect Effects 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 description 24
- 238000004088 simulation Methods 0.000 description 22
- 239000010408 film Substances 0.000 description 21
- 238000010586 diagram Methods 0.000 description 16
- 230000008569 process Effects 0.000 description 16
- 230000014509 gene expression Effects 0.000 description 11
- 230000007246 mechanism Effects 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 238000002834 transmittance Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 229920002120 photoresistant polymer Polymers 0.000 description 8
- 238000012545 processing Methods 0.000 description 7
- 239000010409 thin film Substances 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 6
- 230000036961 partial effect Effects 0.000 description 6
- 238000000206 photolithography Methods 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 230000002411 adverse Effects 0.000 description 4
- 230000004075 alteration Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 230000010363 phase shift Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 230000002238 attenuated effect Effects 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000008033 biological extinction Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えば半導体素子等を
製造する際にマスクパターンを感光性の基板上に露光す
るフォトリソグラフィ工程で使用される露光装置に適用
されるマスクパターンと感光性基板の相対的な位置合わ
せ技術に関し、特に感光基板上のマークパターンの検出
技術に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mask pattern and a photosensitive substrate applied to an exposure apparatus used in a photolithography process in which a mask pattern is exposed on a photosensitive substrate when manufacturing a semiconductor device or the like. And a technique for detecting a mark pattern on a photosensitive substrate.
【0002】[0002]
【従来の技術】例えば半導体素子、液晶表示素子、薄膜
磁気ヘッド、撮像素子(CCD)、又は光磁気ディスク
等を製造するためのフォトリソグラフィ工程では、転写
用のパターンが形成されたフォトマスク又はレチクル
(以下、まとめて「レチクル」という)の像を、投影光
学系を介した投影露光法、あるいはプロキシミティ露光
法により、フォトレジストが塗布されたウエハ、又はガ
ラスプレート等の感光基板上に転写する露光装置が使用
されている。2. Description of the Related Art In a photolithography process for manufacturing, for example, a semiconductor device, a liquid crystal display device, a thin film magnetic head, an image pickup device (CCD), a magneto-optical disk, etc., a photomask or reticle on which a transfer pattern is formed. An image of (hereinafter collectively referred to as "reticle") is transferred onto a photoresist-coated wafer or a photosensitive substrate such as a glass plate by a projection exposure method via a projection optical system or a proximity exposure method. An exposure device is used.
【0003】このような露光装置においては、露光に先
立ってレチクルとウエハとの位置合わせ(アライメン
ト)を高精度に行う必要がある。このアライメントを行
うために、ウエハ上には以前の工程で形成(露光転写)
された位置検出マーク(アライメントマ−ク)が形成さ
れており、このアライメントマ−クの位置を検出するこ
とで、ウエハ(ウエハ上の回路パターン)の正確な位置
を検出することができる。In such an exposure apparatus, it is necessary to perform alignment of the reticle and the wafer with high accuracy prior to exposure. In order to perform this alignment, it was formed on the wafer in the previous process (exposure transfer)
The formed position detection mark (alignment mark) is formed. By detecting the position of this alignment mark, the accurate position of the wafer (circuit pattern on the wafer) can be detected.
【0004】アライメントマークの検出方法としては、
例えばレーザビームスキャン方式、レーザ干渉式等のレ
ーザ光の散乱、回折光を検出するものがある。しかしな
がら、レーザ光は単色性が強く、フォトレジスト表面と
マーク表面との多重干渉等の悪影響により、位置検出精
度が悪化する恐れがある。これに対して、ランプ等を光
源としてアライメントマークをブロードバンドな光束で
照明し、その像を結像光学系を介して撮像し、その画像
信号に基づいて位置検出を行なう方式(以後「結像式位
置検出」と称す)は、フォトレジスト等の悪影響を受け
にくいというメリットがある。As a method of detecting the alignment mark,
For example, there is a laser beam scanning method, a laser interference method, or the like that detects scattered laser light and diffracted light. However, the laser light has a strong monochromaticity, and the position detection accuracy may be deteriorated due to adverse effects such as multiple interference between the photoresist surface and the mark surface. On the other hand, a method of illuminating an alignment mark with a broadband light flux using a lamp as a light source, capturing an image of the alignment mark through an imaging optical system, and performing position detection based on the image signal (hereinafter referred to as "imaging method"). This is referred to as "position detection") and has the advantage that it is unlikely to be adversely affected by the photoresist or the like.
【0005】[0005]
【発明が解決しようとする課題】近年、半導体集積回路
等の微細化に伴い、成膜工程後であってフォトリソグラ
フィ工程前に、ウエハ表面を平坦化する工程が導入され
るようになった。これには、回路パターンが形成される
生成膜の厚さを均一化して素子特性を改善する効果と、
フォトリソグラフィ工程においてウエハ表面の凹凸が転
写パターンの線幅誤差に与える悪影響を改善する効果が
ある。In recent years, with the miniaturization of semiconductor integrated circuits and the like, a process of flattening the wafer surface has been introduced after the film forming process and before the photolithography process. To this end, the effect of improving the device characteristics by making the thickness of the generated film on which the circuit pattern is formed uniform,
In the photolithography process, there is an effect of improving the adverse effect of the unevenness of the wafer surface on the line width error of the transfer pattern.
【0006】しかしながら、ウエハ表面のアライメント
マーク部での凹凸変化や反射率変化を基に位置検出を行
なう方式においては、平坦化工程によりアライメントマ
ーク部での凹凸変化が著しく減少するため、アライメン
トマークを検出できなくなる恐れがある。特に不透明な
生成膜(金属や半導体膜)に対する工程では、アライメ
ントマークは一様な反射率の不透明膜で被われる。この
ため、位置検出はマークの凹凸変化のみに頼ることにな
り、不透明な生成膜は平坦化が最も問題となる工程であ
る。However, in the method of detecting the position based on the unevenness change and the reflectance change in the alignment mark portion on the wafer surface, the unevenness change in the alignment mark portion is significantly reduced by the flattening process, and thus the alignment mark is removed. It may not be detected. Particularly in a process for an opaque generation film (metal or semiconductor film), the alignment mark is covered with an opaque film having a uniform reflectance. Therefore, the position detection depends only on the change in the unevenness of the mark, and the flattening is the most important step for the opaque generated film.
【0007】本発明は上述の問題点を鑑みてなされたも
ので、凹凸変化(段差)の極めて小さい位置検出マーク
であっても精度良く確実にその位置を検出できる位置検
出装置を提供することを目的とする。The present invention has been made in view of the above problems, and it is an object of the present invention to provide a position detecting device capable of accurately and reliably detecting the position of a position detection mark having an extremely small variation (step). To aim.
【0008】[0008]
【課題を解決するための手段】本発明は、所定の波長域
の照明光(例えば広帯域光、又は多波長光)で基板上の
位置検出マークを照射する照明光学系と、その位置検出
マークから発生する光を入射して撮像素子上にその位置
検出マークの像を形成する結像光学系とを備え、撮像素
子から出力される画像信号に基づいてその位置検出マー
クの位置を検出する装置に適用されるものである。The present invention provides an illumination optical system for irradiating a position detection mark on a substrate with illumination light in a predetermined wavelength range (for example, broadband light or multi-wavelength light), and the position detection mark. A device for detecting the position of the position detection mark based on an image signal output from the image pickup device, which comprises an imaging optical system that forms an image of the position detection mark on the image pickup device by entering the generated light. It is applied.
【0009】そして本発明では、位置検出マークに対し
て実質的に光学的フーリエ変換の関係となる照明光学系
中の第1面(瞳面)上での照明光を、照明光学系の光軸
を中心とするほぼ輪帯状の第1領域内に制限する光束制
限部材と、位置検出マークに対して実質的に光学的フー
リエ変換の関係となる結像光学系中の第2面(瞳面)上
の、第1領域と結像関係となるほぼ輪帯状の第2領域と
それ以外の領域とにそれぞれ分布する結像光束の位相を
異ならせる位相差部材とを設ける。In the present invention, the illumination light on the first surface (pupil surface) in the illumination optical system, which has a substantially optical Fourier transform relationship with the position detection mark, is converted into the optical axis of the illumination optical system. And a second surface (pupil surface) in the image forming optical system having a substantially optical Fourier transform relationship with respect to the position detection mark. A phase difference member that makes the phases of the image-forming light fluxes distributed respectively in the second region, which is in a substantially annular shape and has an image-forming relationship with the first region, and the other regions is provided.
【0010】または、照明光学系中の第1面上での照明
光を、その光軸を中心とするほぼ輪帯状の第1領域内に
制限する光束制限部材と、結像光学系中の第2面上に分
布する、位置検出マークからの0次光とそれ以外の光の
位相を異ならせる位相差部材とを設けるようにしてもよ
い。あるいは、照明光学系中の第1面上での照明光、又
は2次光源(面光源)の強度分布を、輪帯状の第1領域
で他の領域よりも高める光学部材と、結像光学系中の第
2面上の、第1領域と結像関係となるほぼ輪帯状の第2
領域とそれ以外の領域とにそれぞれ分布する結像光束の
位相を異ならせる位相差部材とを設けるようにしてもよ
い。Alternatively, a light flux limiting member for limiting the illumination light on the first surface in the illumination optical system to a substantially annular first region centered on the optical axis thereof and a first light flux limiting member in the imaging optical system. You may make it provide the phase-difference member which distributes | distributes on two surfaces and which makes the phase of 0th-order light from a position detection mark and the other light differ. Alternatively, an optical member that enhances the intensity distribution of the illumination light on the first surface in the illumination optical system or the intensity of the secondary light source (surface light source) in the ring-shaped first region compared to other regions, and an imaging optical system. A second zone having a substantially annular shape in an image forming relationship with the first area on the second surface inside
You may make it provide the phase difference member which makes the phase of the image-forming light beam respectively distributed in an area | region and the area other than that differ.
【0011】もしくは、照明光学系の実質的な瞳面上
の、輪帯状の第1領域内に分布する照明光束を透過せし
める絞り部材と、結像光学系中の第2面上の、第1領域
と結像関係となるほぼ輪帯状の第2領域とそれ以外の領
域とにそれぞれ分布する結像光束の位相を異ならせる位
相差部材とを設けるようにしてもよい。または、照明光
学系の実質的な瞳面上に、その光軸を中心とするほぼ輪
帯状の2次光源(もしくは、その瞳面上の光軸を中心と
するほぼ輪帯状の領域内に複数の光源像)を形成する部
材と、結像光学系の実質的な瞳面上の、その2次光源と
結像関係となるほぼ輪帯状の領域とそれ以外の領域とに
それぞれ分布する結像光束の位相を異ならせる位相差部
材とを設けるようにしてもよい。Alternatively, a diaphragm member for transmitting the illumination light flux distributed in the first zone-shaped area on the substantial pupil plane of the illumination optical system and the first surface on the second surface in the imaging optical system. A phase difference member for changing the phases of the image-forming light fluxes distributed in the substantially annular second region having an image formation relationship with the region and the other region may be provided. Alternatively, on the substantial pupil plane of the illumination optical system, a plurality of secondary light sources having a substantially annular shape centered on the optical axis (or a plurality of secondary light sources in an approximately annular zone centered on the optical axis on the pupil surface). Image forming member, which forms a light source image of the image forming optical system, and an image which is distributed in a substantially ring-shaped region having an image forming relationship with the secondary light source on the substantial pupil plane of the image forming optical system and the other region. You may make it provide the phase difference member which makes the phase of a light beam differ.
【0012】あるいは、照明光学系の実質的な瞳面上で
の光強度分布を、照明光学系の光軸を中心とするほぼ輪
帯状の領域でその内側の領域よりも高める光学部材と、
結像光学系の実質的な瞳面上の、その内側領域と結像関
係となるほぼ円形の領域とそれ以外の領域とにそれぞれ
分布する結像光束の位相を異ならせる位相差部材とを設
けるようにしてもよい。Alternatively, an optical member that enhances the light intensity distribution on the substantial pupil plane of the illumination optical system in a substantially annular zone centered on the optical axis of the illumination optical system as compared with an inner region thereof.
Provided is a phase difference member for varying the phases of the image-forming light fluxes distributed in a substantially circular region having an image-forming relationship with the inner region and the other region on the substantial pupil plane of the image-forming optical system. You may do it.
【0013】また、結像光学系中の第2面上の輪帯状の
領域内に分布する結像光束、即ちその第2面上に分布す
る0次光を減光する部材を有することが望ましい。この
減光部材は、位相差部材と一体に形成してもよいし、位
相差部材に近接して配置しても、あるいは位相差部材と
ほぼ共役な面(瞳共役面)内に配置してもよい。さらに
位相差部材は、第2領域内に分布する結像光束とそれ以
外の領域内に分布する結像光束との間に、ほぼ(2m+
1)π/2±π/4 [rad](mは整数)の位相差を与え
ることが望ましい。このとき、第2領域内に分布する結
像光束の位相とそれ以外の領域内に分布する結像光束の
位相のどちらをシフトさせてもよい。また、両光束の位
相シフト量をそれぞれ異ならせて前述の位相差を与える
ようにしてもよい。Further, it is desirable to have a member for dimming the image forming light flux distributed in the annular zone on the second surface in the image forming optical system, that is, the 0th order light distributed on the second surface. . The dimming member may be formed integrally with the phase difference member, may be arranged in the vicinity of the phase difference member, or may be arranged in a plane (pupil conjugate plane) substantially conjugate with the phase difference member. Good. Further, the phase difference member is disposed between the image-forming light beam distributed in the second region and the image-forming light beam distributed in the other region to be approximately (2 m +
1) It is desirable to give a phase difference of π / 2 ± π / 4 [rad] (m is an integer). At this time, either the phase of the image forming light beam distributed in the second region or the phase of the image forming light beam distributed in the other region may be shifted. Further, the phase shift amounts of the two light beams may be different from each other to give the above-mentioned phase difference.
【0014】また、照明光のうち画像信号の形成に寄与
する光束の波長域中の最短波長をλ1、最長波長をλ
2、位置検出マークの周期をPとすると、輪帯状の第1
領域の外半径ro 、及び内半径ri は、 ri≧λ2/(2×P) ro−ri≦λ1/P の関係を満たすことが望ましい。また、結像光学系の開
口数NAoは、 NAo≧ro+λ2/P の関係を満たすことが望ましい。Further, the shortest wavelength in the wavelength range of the luminous flux that contributes to the formation of the image signal in the illumination light is λ1, and the longest wavelength is λ.
2. If the period of the position detection mark is P,
It is desirable that the outer radius ro and the inner radius r i of the region satisfy the relationship of ri ≧ λ2 / (2 × P) ro-ri ≦ λ1 / P. Further, it is desirable that the numerical aperture NAo of the imaging optical system satisfies the relationship of NAo ≧ ro + λ2 / P.
【0015】さらに、結像光学系の光路に対して位相差
部材を挿脱可能に保持する部材を設けると良い。さらに
このとき、照明光学系の光路に対して光束制限部材(又
は光学部材、絞り部材、2次光源(光源像)形成部材)
を挿脱可能に保持する部材も設けると良い。また、撮像
素子上に指標マークの像を形成する像形成手段を設け、
撮像素子から出力される画像信号に基づいて位置検出マ
ークの像と指標マークの像との位置ずれを検出するよう
にしても良い。この像形成手段は、指標マークを有する
指標板と、基板上に照射される照明光とは異なる光ビー
ムで指標板を照射する照明系と、指標マークから発生し
た光を入射してその像を撮像素子上に形成する結像系と
を有することが望ましい。特に指標板を、結像光学系中
の基板と実質的に共役な面に配置し、結像光学系によっ
て、位置検出マークの像を指標板上に形成するととも
に、この位置検出マークの像と指標マークの像とを撮像
素子上に形成するようにしても良い。Further, it is preferable to provide a member for holding the phase difference member in the optical path of the imaging optical system so that the phase difference member can be inserted and removed. Further, at this time, a light flux limiting member (or an optical member, a diaphragm member, a secondary light source (light source image) forming member) with respect to the optical path of the illumination optical system.
It is advisable to also provide a member for holding the insertable and detachable. Further, an image forming means for forming an image of the index mark is provided on the image sensor,
The positional deviation between the image of the position detection mark and the image of the index mark may be detected based on the image signal output from the image sensor. This image forming means includes an index plate having an index mark, an illumination system that illuminates the index plate with a light beam different from the illumination light that illuminates the substrate, and the image generated by entering the light generated from the index mark. It is desirable to have an imaging system formed on the image sensor. In particular, the index plate is arranged on a surface substantially conjugate with the substrate in the imaging optical system, and the image of the position detection mark is formed on the index plate by the imaging optical system. The image of the index mark may be formed on the image sensor.
【0016】さらに、例えば照明光学系の光路に対する
光束制限部材(又は光学部材等)の挿脱、又は交換に伴
う、撮像素子に入射する位置検出マークからの結像光束
の光量変化に応じて、指標マークを照明する光ビームの
強度の調整する部材を設けることが望ましい。一例とし
ては、照明光路からの光束制限部材の退出に連動して、
その光ビームの強度を高くする。この調整部材は、光ビ
ームを射出する光源に供給する電力(電流、電圧)を変
化させるもの、あるいは透過率が異なる複数の減光フィ
ルターをそれぞれ交換してビーム光路に配置するもの等
でよい。Further, for example, in accordance with the change in the light amount of the image-forming light beam from the position detection mark incident on the image pickup element due to the insertion / removal or replacement of the light beam restriction member (or the optical member etc.) with respect to the optical path of the illumination optical system. It is desirable to provide a member for adjusting the intensity of the light beam that illuminates the index mark. As an example, in conjunction with the exit of the light flux limiting member from the illumination optical path,
Increase the intensity of the light beam. This adjusting member may be one that changes the power (current, voltage) supplied to the light source that emits the light beam, or one that replaces a plurality of neutral density filters with different transmittances and arranges them in the beam optical path.
【0017】また、照明光学系中の第1面上での照明光
(又は2次光源)の強度分布を、輪帯状の第1領域で他
の領域よりも高める光学部材は、他の領域での光強度を
ほぼ零にするように、他の領域をほぼ覆う遮光部を持つ
絞り部材でも良い。さらに光学部材は、輪帯状の第1領
域の外半径と内半径の少なくとも一方を変化させる強度
分布変更部材を有することが望ましい。この強度分布変
更部材は、輪帯状の開口の外半径と内半径の少なくとも
一方が異なる複数の絞り部材と、この複数の絞り部材の
1つを照明光学系の光路中に配置するように複数の絞り
部材を保持する部材とを持つようにしても良い。さらに
位相差部材は、第1領域の外半径と内半径の少なくとも
一方の変化に応じて、輪帯状の第2領域の半径方向の幅
と位置との少なくとも一方を変化させることが望まし
い。Further, an optical member which enhances the intensity distribution of the illumination light (or the secondary light source) on the first surface in the illumination optical system in the first zone-shaped region compared to the other regions is the other region. A diaphragm member having a light-shielding portion that substantially covers other areas may be used so that the light intensity of the above is almost zero. Further, it is desirable that the optical member has a strength distribution changing member that changes at least one of the outer radius and the inner radius of the first zone-shaped region. The intensity distribution changing member includes a plurality of diaphragm members in which at least one of the outer radius and the inner radius of the ring-shaped aperture is different, and a plurality of diaphragm members in which one of the plurality of diaphragm members is arranged in the optical path of the illumination optical system. It may have a member for holding the diaphragm member. Further, it is desirable that the retardation member changes at least one of the radial width and the position of the ring-shaped second region in accordance with the change of at least one of the outer radius and the inner radius of the first region.
【0018】また、前述した輪帯状の第1領域(2次光
源)の外半径や内半径(即ち半径方向の幅や位置)、照
明光の強度分布の変更は、例えば液晶素子、又はエレク
トロクロミック素子で作られた開口絞りを瞳面に配置す
る、あるいは開口部の外半径と内半径の少なくとも一方
が異なる複数の絞り部材をそれぞれ交換して光路中に配
置可能に構成することで実現できる。あるいは、可変開
口絞りを瞳面に配置してその開口径を任意に変更可能
(又は開口径が異なる複数の開口絞りをそれぞれ交換し
て光路中に配置可能)として外半径を変更するように
し、かつ互いに直径が異なる複数の円形の遮光板をそれ
ぞれ交換して光路中に配置可能に構成して内半径を変更
するようにしてもよい。Further, the outer radius and inner radius (that is, the width and position in the radial direction) of the first zone-shaped region (secondary light source) and the intensity distribution of the illumination light are changed by, for example, a liquid crystal element or an electrochromic device. This can be realized by arranging an aperture stop made of elements on the pupil plane, or by exchanging a plurality of stop members having different outer and / or inner radii of the apertures and arranging them in the optical path. Alternatively, it is possible to arrange the variable aperture stop on the pupil plane and arbitrarily change its aperture diameter (or to replace a plurality of aperture stops having different aperture diameters and arrange them in the optical path) to change the outer radius, In addition, a plurality of circular light shielding plates having different diameters may be replaced with each other so that they can be arranged in the optical path to change the inner radius.
【0019】さらに、前述した輪帯状の第2領域の外半
径や内半径(即ち半径方向の位置や幅)の変更は、例え
ば輪帯状の位相シフター(誘電体膜等)、あるいは輪帯
状の凹部(又は凸部)の半径方向の位置と幅の少なくと
も一方が異なる複数の透明基板をそれぞれ交換して光路
中に配置可能に構成することで実現できる。尚、輪帯状
の位相シフターを設ける代わりに、輪帯状の第2領域以
外に位相シフターを設けるようにしてもよい。または、
光学的な厚さはほぼ同一で、直径が異なる複数の円形透
明板をそれぞれ交換して光路中に配置可能に構成するだ
けでもよい。但し、前述した第1領域の外半径を変更す
るときは、その変更された第1領域と結像関係となる第
2領域内の結像光束とその外側の結像光束との間に位相
差を付与できないが、その変更により像コントラストや
忠実性が、所望の位置検出精度を得られない程度に劣化
しなければ何ら問題ない。尚、像コントラストや忠実性
の劣化が問題になるときは、例えば可変開口絞りによっ
て第2領域の外側に分布する結像光束を遮光するように
してもよい。Furthermore, the outer radius and inner radius (that is, the position and width in the radial direction) of the second zone-shaped region can be changed by, for example, a zone-shaped phase shifter (dielectric film or the like) or a zone-shaped recess. This can be realized by replacing a plurality of transparent substrates having different radial positions and / or widths (or convex portions) so that they can be arranged in the optical path. Instead of providing the ring-shaped phase shifter, the phase shifter may be provided in a region other than the ring-shaped second region. Or
A plurality of circular transparent plates having substantially the same optical thickness but different diameters may be replaced with each other so that they can be arranged in the optical path. However, when the outer radius of the first area is changed, the phase difference between the image forming light flux in the second area and the image forming light flux outside the second area, which has an image forming relationship with the changed first area, is changed. However, there is no problem if the image contrast and fidelity are not deteriorated to the extent that desired position detection accuracy cannot be obtained by the change. When deterioration of image contrast or fidelity becomes a problem, for example, a variable aperture stop may be used to block the image forming light flux distributed outside the second region.
【0020】[0020]
【作用】ほぼ平坦な被検物上の「段差」部のみを検出す
る光学系としては、「暗視野顕微鏡」や「位相差顕微
鏡」が知られている。暗視野顕微鏡は、結像光学系の瞳
面(被検物に対するフーリエ変換面)に遮光領域を設
け、被検物(例えばウエハ上の位置検出マーク)への照
明光の照射によってその被検物から発生する反射回折光
のうち、0次回折光(正反射光)を遮光し、高次回折光
(及び散乱光)のみによる像を形成するものである。こ
のうち0次回折光は、被検物の凹凸や反射率変化に関す
る情報をほとんど含まないが、高次(1次以上)の回折
光はこれらの情報を含んでいる。従って暗視野顕微鏡で
は、0次回折光が遮光され、高次回折光のみにより像が
形成されるため、通常の(明視野の)顕微鏡よりも明瞭
に(高コントラストで)段差を可視化することが可能と
なる。The "dark field microscope" and the "phase contrast microscope" are known as optical systems for detecting only the "step" portion on a substantially flat object. A dark-field microscope is provided with a light-shielding area on the pupil plane (Fourier transform surface for a test object) of an imaging optical system, and the test object (for example, a position detection mark on a wafer) is irradiated with illumination light to that test object. Of the reflected diffracted light generated from, the 0th-order diffracted light (regularly reflected light) is blocked and an image is formed only by the higher-order diffracted light (and scattered light). Of these, the 0th-order diffracted light contains almost no information about the unevenness of the test object and the reflectance change, but the higher-order (1st-order or higher) diffracted light contains such information. Therefore, in the dark field microscope, the 0th-order diffracted light is blocked and an image is formed only by the high-order diffracted light, so that it is possible to visualize the step difference (clearly with high contrast) more clearly than an ordinary (brightfield) microscope. Become.
【0021】これに対して位相差顕微鏡は、結像光学系
の瞳面に、0次回折光と他の次数の回折光(及び散乱
光)との間に位相差を与えて透過せしめる位相差フィル
ターを設けたものである。低段差のマークパターンから
発生する高次(1次以上)回折光の光量は極めて僅かで
あるが、位相差顕微鏡では光量の多い0次回折光も像形
成に寄与させることができるため、暗視野顕微鏡よりも
明るい(強度の大きい)像を得ることができる。尚、0
次回折光と他の次数の回折光との強度比が極端に大きい
と像コントラストが低下するため、0次回折光を減光す
ることもある。On the other hand, the phase contrast microscope gives a phase difference between the 0th-order diffracted light and the diffracted light (and scattered light) of other orders on the pupil plane of the imaging optical system, and transmits the phase difference filter. Is provided. Although the amount of high-order (1st or more) diffracted light generated from a mark pattern with a low step is extremely small, the 0th-order diffracted light with a large amount of light can also contribute to image formation in a phase-contrast microscope. A brighter (higher intensity) image can be obtained. In addition, 0
If the intensity ratio between the diffracted light of the second order and the diffracted lights of other orders is extremely large, the image contrast is lowered, so that the 0th order diffracted light may be dimmed.
【0022】しかしながら、従来の位相差顕微鏡をウエ
ハ上の位置検出マークの検出に用いると、像形成に不要
な0次回折光だけでなく、他の次数の回折光(像形成に
寄与する有益な回折光)に対しても位相差の付加や減光
効果が及んでしまい、像のコントラストや忠実性が劣化
するという問題がある。そこで本発明では、ウエハ等の
基板上の位置検出マークには通常、その位置検出方向に
ある一定の周期性(周期P)があることに着目し、その
周期性により生じる0次以外の回折光が極力、位相差部
材の影響を受けないように、その位相差部材、及び照明
光学系の2次光源(照明光学系の瞳面での照明光束分
布、又は照明光の強度分布)の形状を設定したので、0
次回折光のみに対して重点的に位相差を付加する、さら
には減光することができる。However, when the conventional phase difference microscope is used to detect the position detection mark on the wafer, not only the 0th-order diffracted light unnecessary for image formation but also diffracted light of other orders (useful diffraction that contributes to image formation) There is a problem that the contrast and fidelity of the image are deteriorated because the phase difference is added and the effect of dimming is exerted on (light). Therefore, in the present invention, attention is paid to the fact that a position detection mark on a substrate such as a wafer usually has a certain periodicity (period P) in the position detection direction, and diffracted light other than the 0th order caused by the periodicity is noted. So as not to be affected by the phase difference member as much as possible, the shape of the phase difference member and the secondary light source of the illumination optical system (illumination luminous flux distribution on the pupil plane of the illumination optical system or intensity distribution of the illumination light) Since it was set, 0
It is possible to add a phase difference to only the second-order diffracted light, and further reduce the light.
【0023】即ち本発明では、位置検出マークに対して
実質的に光学的フーリエ変換の関係となる照明光学系中
の第1面(瞳面)での照明光束を、光軸を中心とするほ
ぼ輪帯状の第1領域内に制限し、かつ位置検出マークに
対して実質的に光学的フーリエ変換の関係となる結像光
学系中の第2面(瞳面)上の、第1領域と結像関係とな
るほぼ輪帯状の第2領域とそれ以外の領域とにそれぞれ
分布する結像光束の位相を異ならせる、換言すればその
第2面上に分布する位置検出マークからの0次光とそれ
以外の光とでその位相を異ならせるようにした。That is, according to the present invention, the illumination light flux on the first surface (pupil surface) in the illumination optical system, which has a substantially optical Fourier transform relationship with the position detection mark, is substantially centered on the optical axis. It is limited to the first zone-shaped area and is connected to the first area on the second surface (pupil surface) in the imaging optical system that has a substantially optical Fourier transform relationship with the position detection mark. The phases of the image-forming light fluxes distributed respectively in the substantially annular second region and the other regions having an image relationship are made different from each other, in other words, the zero-order light from the position detection marks distributed on the second surface thereof. I tried to make the phase different from other light.
【0024】または、照明光学系中の第1面上での照明
光(又は2次光源、面光源)の強度分布を、輪帯状の第
1領域で他の領域よりも高める、あるいは照明光学系の
実質的な瞳面上の、輪帯状の第1領域内に分布する照明
光束を透過せしめる、もしくは照明光学系の実質的な瞳
面上に、その光軸を中心とするほぼ輪帯状の2次光源
(面光源)を形成する、または照明光学系の実質的な瞳
面上の、その光軸を中心とするほぼ輪帯状の領域内に複
数の光源像を形成するようにしてもよい。また、照明光
学系の実質的な瞳面上での光強度分布を、照明光学系の
光軸を中心とするほぼ輪帯状の領域でその内側の領域よ
りも高め、かつ結像光学系の実質的な瞳面上の、その内
側領域と結像関係となるほぼ円形の領域とそれ以外の領
域とにそれぞれ分布する結像光束の位相を異ならせるよ
うにしてもよい。Alternatively, the intensity distribution of the illumination light (or the secondary light source or the surface light source) on the first surface in the illumination optical system is increased in the annular zone first area as compared with other areas, or the illumination optical system On the substantial pupil plane of the illumination optical system, which transmits the illumination luminous flux distributed in the first zone-shaped zone, or on the substantial pupil plane of the illumination optical system, which has a substantially annular zone centered on the optical axis thereof. A plurality of light source images may be formed in a substantially annular zone centered on the optical axis of the secondary light source (surface light source) or substantially on the pupil plane of the illumination optical system. In addition, the substantial light intensity distribution on the pupil plane of the illumination optical system is made higher in a substantially annular zone centered on the optical axis of the illumination optical system than in the area inside thereof, and The phases of the image-forming light fluxes distributed in the substantially circular area and the other area, which have an image-forming relationship with the inner area of the pupil plane, may be different.
【0025】このため、凹凸変化(段差)の極めて小さ
い位置検出マークに対しても、確実に(高コントラスト
な像で)位置検出を行なうことが可能となる。尚、前述
の第1及び第2領域や2次光源(面光源)の形状は輪帯
(円環)状であるとしたが、例えば矩形、正方形、又は
多角形(特に正多角形)としても良い。さらに、照明光
学系中の第1面(瞳面)上の第1領域を部分的に遮光
(又は減光)する、即ち第1領域を複数の部分領域(そ
の形状は任意で良く、例えば円弧、円形、又は直線状等
として構わない)から構成しても良い。これに対応して
結像光学系中の第2面(瞳面)上の第2領域を、その第
1領域と同一の形状としても良いし、あるいはその第1
領域と結像関係となる複数の部分領域をほぼ含む輪帯、
矩形、又は多角形状等としても良い。Therefore, it is possible to reliably perform position detection (with a high-contrast image) even with respect to a position detection mark having an extremely small unevenness change (step). The shapes of the first and second regions and the secondary light source (surface light source) described above are annular (circular) shapes, but may be rectangular, square, or polygonal (particularly regular polygonal). good. Further, the first area on the first surface (pupil surface) in the illumination optical system is partially shielded (or dimmed), that is, the first area is divided into a plurality of partial areas (the shape may be arbitrary, for example, an arc shape). It may be circular, linear, or the like). Correspondingly, the second area on the second surface (pupil surface) in the imaging optical system may have the same shape as the first area, or the first area thereof.
An annular zone that substantially includes a plurality of partial areas that have an imaging relationship with the area,
It may be rectangular or polygonal.
【0026】また、結像光学系中の第2面上の輪帯状の
領域内に分布する結像光束、即ちその第2面上に分布す
る0次回折光を減光する部材を設ける。これにより、位
置検出マークからの0次回折光と他の次数の回折光との
強度比を小さくすることができ、位置検出マークの像を
より高いコントラストで検出することができる。さら
に、照明光のうち画像信号の形成に寄与する光束の波長
域中の最短波長をλ1、最長波長をλ2、位置検出マー
クの周期をPとすると、輪帯状の第1領域の外半径ro
、及び内半径ri を、 ri≧λ2/(2×P) ro−ri≦λ1/P なる関係を満足するように設定する。また、結像光学系
の開口数NAoを、 NAo≧ro+λ2/P なる関係を満足するように設定する。このため、低段差
の位置検出マークの像をより高いコントラストで検出す
ることができる。Further, a member for reducing the image-forming light beam distributed in the annular zone on the second surface in the image-forming optical system, that is, the 0th-order diffracted light distributed on the second surface is provided. As a result, the intensity ratio between the 0th-order diffracted light from the position detection mark and the diffracted light of other orders can be reduced, and the image of the position detection mark can be detected with higher contrast. Further, if the shortest wavelength in the wavelength range of the light flux that contributes to the formation of the image signal in the illumination light is λ1, the longest wavelength is λ2, and the period of the position detection mark is P, the outer radius ro of the first zone-shaped region is ro.
, And the inner radius ri are set so as to satisfy the relationship of ri ≧ λ2 / (2 × P) ro-ri ≦ λ1 / P. Further, the numerical aperture NAo of the imaging optical system is set so as to satisfy the relationship of NAo ≧ ro + λ2 / P. Therefore, it is possible to detect an image of a position detection mark having a low step with higher contrast.
【0027】さらに、結像光学系内の第2面(瞳面)、
又はその共役面に、結像光学系の開口数NAoを変化さ
せるための可変開口絞り(NA絞り)を、位相差部材と
機械的に干渉しないように設けると良い。これにより、
位置検出マークの周期が変化しても、前述の条件を満足
するように、結像光学系の開口数をその周期に対応した
値に設定することができ、常にそのマーク像を高いコン
トラストで検出できる。尚、可変開口絞りは結像光学系
の瞳面、又はその共役面から光軸方向にずらして配置し
ても構わない。Further, the second surface (pupil surface) in the imaging optical system,
Alternatively, a variable aperture stop (NA stop) for changing the numerical aperture NAo of the imaging optical system may be provided on the conjugate surface so as not to mechanically interfere with the phase difference member. This allows
Even if the cycle of the position detection mark changes, the numerical aperture of the imaging optical system can be set to a value corresponding to that cycle so that the above conditions are satisfied, and the mark image is always detected with high contrast. it can. The variable aperture stop may be arranged so as to be displaced in the optical axis direction from the pupil plane of the imaging optical system or its conjugate plane.
【0028】また、結像光学系の光路に対して位相差部
材を挿脱可能に保持する部材を設ける。このため、明視
野検出との切り替えを行うことができ、位置検出マーク
の段差量に応じて位相差部材の有無を選択してそのマー
ク像を検出できる。従って、位置検出マークの段差量に
依らず、常に高いコントラストのマーク像を得ることが
でき、位置検出精度を向上させることができる。Further, a member for holding the phase difference member detachably with respect to the optical path of the imaging optical system is provided. Therefore, it is possible to switch to the bright field detection, and it is possible to detect the mark image by selecting the presence or absence of the phase difference member according to the step amount of the position detection mark. Therefore, it is possible to always obtain a mark image having a high contrast regardless of the step amount of the position detection mark, and it is possible to improve the position detection accuracy.
【0029】さらに、照明光学系の光路に対して光束制
限部材(又は光学部材、絞り部材、2次光源形成部材)
を挿脱可能に保持する部材も設ける。このため、輪帯照
明と通常照明とを切り替えることができ、位置検出マー
クが低段差でない場合にはその反射率が低くても、通常
照明によってそのマーク像を確実に検出することができ
る。Further, with respect to the optical path of the illumination optical system, a light flux limiting member (or optical member, diaphragm member, secondary light source forming member).
Also provided is a member that holds the plug in a removable manner. Therefore, the annular illumination and the normal illumination can be switched, and when the position detection mark does not have a low step, even if the reflectance thereof is low, the mark image can be reliably detected by the normal illumination.
【0030】また、照明光学系中の第1面上での照明光
(2次光源、面光源)の強度分布を、輪帯状の第1領域
で他の領域よりも高める光学部材は、輪帯状の第1領域
の外半径と内半径の少なくとも一方を変化させる強度分
布変更部材を有する。このため、位置検出マークの周期
が変化しても、前述の条件式を満足するように、輪帯状
の第1領域の外半径と内半径の少なくとも一方をその周
期に対応した値に設定することができる。従って、位置
検出マークの周期に依らず、常に高いコントラストのマ
ーク像を得ることができる。尚、輪帯状の第1領域の外
半径や内半径は、位置検出マークの周期の変化に連動し
て変更する必要はなく、その変化により像コントラスト
や忠実性が、所望の位置検出精度を得られない程度に劣
化したときのみ、その外半径や内半径を変更するように
しても良い。Further, the optical member for increasing the intensity distribution of the illumination light (secondary light source, surface light source) on the first surface in the illumination optical system in the first zone-shaped region compared to the other regions is a zone-shaped region. Has a strength distribution changing member for changing at least one of the outer radius and the inner radius of the first region. Therefore, even if the cycle of the position detection mark changes, at least one of the outer radius and the inner radius of the first zone-shaped region should be set to a value corresponding to the cycle so that the above conditional expression is satisfied. You can Therefore, it is possible to always obtain a mark image having a high contrast regardless of the cycle of the position detection mark. The outer radius and inner radius of the ring-shaped first region do not need to be changed in conjunction with the change in the period of the position detection mark, and the change causes the image contrast and fidelity to obtain a desired position detection accuracy. The outer radius and the inner radius may be changed only when the deterioration has occurred to the extent that the deterioration cannot be achieved.
【0031】さらに位相差部材は、第1領域の外半径と
内半径の少なくとも一方の変化に応じて、輪帯状の第2
領域の半径方向の幅と位置の少なくとも一方を変化させ
る。このため、位置検出マークの周期に応じて輪帯状の
第1領域の外半径と内半径の少なくとも一方が変化して
も、常に0次回折光のみに対して位相差を付与して撮像
素子に入射させることができる。尚、結像光学系の輪帯
状の第2領域の幅や位置は、輪帯状の第1領域の外半径
や内半径(位置検出マークの周期)の変化に連動して変
更する必要はなく、その変化により像コントラストや忠
実性が、所望の位置検出精度を得られない程度に劣化し
たときのみ、その位相シフト部の幅や位置を変更するだ
けでも良い。また、第1領域の外半径及び内半径の変化
に連動して第2領域の外半径と内半径の両方を変更する
必要はなく、例えば第2領域の内半径のみを変更するだ
けでもよい。Further, the retardation member has a ring-shaped second portion according to a change in at least one of the outer radius and the inner radius of the first region.
At least one of the radial width and the position of the area is changed. Therefore, even if at least one of the outer radius and the inner radius of the ring-shaped first region changes in accordance with the cycle of the position detection mark, a phase difference is always imparted to only the 0th-order diffracted light and is incident on the image sensor. Can be made. It is not necessary to change the width and position of the ring-shaped second region of the imaging optical system in conjunction with the change of the outer radius and inner radius (cycle of the position detection mark) of the ring-shaped first region. Only when the image contrast and fidelity deteriorate due to the change to the extent that desired position detection accuracy cannot be obtained, the width and position of the phase shift portion may be changed. Further, it is not necessary to change both the outer radius and the inner radius of the second region in association with the change of the outer radius and the inner radius of the first region, and for example, only the inner radius of the second region may be changed.
【0032】[0032]
【実施例】図1〜図6を参照して本発明の実施例につい
て説明する。図1は、本実施例の位置検出装置の概略的
な全体構成を示す。図1において、ハロゲンランプ等の
光源1を発したブロードバンドな照明光束(広帯域光)
はコンデンサーレンズ2、及び波長選択素子(シャープ
カットフィルター、又は干渉フィルター等)3を経て照
明視野絞り4に入射する。Embodiments of the present invention will be described with reference to FIGS. FIG. 1 shows a schematic overall configuration of the position detecting device of this embodiment. In FIG. 1, a broadband illumination luminous flux (broadband light) emitted from a light source 1 such as a halogen lamp.
Enters the illumination field stop 4 through the condenser lens 2 and the wavelength selection element (sharp cut filter, interference filter, or the like) 3.
【0033】波長選択素子3は、後述するウエハ10上
に塗布されたフォトレジスト(露光波長は例えば365
nm、又は248nm)に対して、非感光な波長域(例
えば波長550nm〜750nm)の光束のみを透過さ
せる。ただし本発明を、フォトレジストで覆われていな
い基板の位置検出装置、例えば露光、現像処理後のウエ
ハ上の、回路パターンと転写したレジストパターンとの
重ね合わせ位置検出装置に適用するのであれば、フォト
レジストの感光を防ぐ必要はないので、より短波長の
(露光波長に近い)光束も使用することができる。The wavelength selection element 3 is a photoresist (exposure wavelength is, for example, 365) applied on the wafer 10 described later.
nm or 248 nm), only a light beam in a non-photosensitive wavelength range (for example, a wavelength of 550 nm to 750 nm) is transmitted. However, if the present invention is applied to a position detection device for a substrate not covered with photoresist, for example, an overlay position detection device for a circuit pattern and a transferred resist pattern on a wafer after exposure and development processing, Light fluxes of shorter wavelengths (closer to the exposure wavelength) can also be used, since it is not necessary to prevent the photoresist from being exposed.
【0034】照明視野絞り4を透過した光束は、リレー
レンズ5を経て本発明の照明光束制限部材(開口絞り)
6に入射する。さらに照明光は、ビームスプリッター
8、及び対物レンズ群9を介して、位置検出マーク11
が形成されたウエハ10に入射する。照明光束制限部材
6は、ウエハ10の表面(位置検出マーク11)に対し
て、対物レンズ群9とビームスプリッター8を介して、
光学的にフーリエ変換の関係となっている面(以後「照
明系瞳面」と略す)に配置されている。すなわち、照明
光束制限部材6内の所定点の、照明光学系(1〜5、
8、9)の光軸AXIからの位置ずれ量は、その所定点
を通過する照明光束の、ウエハ10の表面に対する入射
角の正弦に比例する。The light flux transmitted through the illumination field stop 4 passes through the relay lens 5 and the illumination light flux limiting member (aperture stop) of the present invention.
It is incident on 6. Further, the illumination light is transmitted through the beam splitter 8 and the objective lens group 9 to the position detection mark 11
It is incident on the wafer 10 on which is formed. The illumination light flux limiting member 6 is attached to the surface (position detection mark 11) of the wafer 10 via the objective lens group 9 and the beam splitter 8.
It is arranged on a plane (hereinafter abbreviated as “illumination system pupil plane”) optically related to Fourier transform. That is, the illumination optical system (1 to 5,
The amount of positional deviation of the optical axes 8 and 9) from the optical axis AXI is proportional to the sine of the incident angle of the illumination light flux passing through the predetermined point with respect to the surface of the wafer 10.
【0035】ここで、照明光束制限部材6は輪帯開口を
有し、その輪帯開口の中心が照明光学系の光軸AXIと
一致するように可動部材7に保持されている。この可動
部材7は、例えばターレット板、又はスライダーであ
り、照明光学系の光路に対して照明光束制限部材6を挿
脱可能としている。従って、本実施例では可動部材7に
よって輪帯照明と通常照明とを切り替えることができ、
位置検出マーク11の段差量(及び/又は微細度(周
期、線幅等))に応じていずれか一方を選択できるように
なっている。例えば、低段差の位置検出マーク、及び高
段差の微細な位置検出マークでは輪帯照明が選択されて
照明光束制限部材6が光路中に挿入され、高段差の粗い
位置検出マークでは通常照明が選択されて照明光束制限
部材6が光路外に待避される。Here, the illumination light flux limiting member 6 has an annular opening and is held by the movable member 7 so that the center of the annular opening coincides with the optical axis AXI of the illumination optical system. The movable member 7 is, for example, a turret plate or a slider, and allows the illumination light flux limiting member 6 to be inserted into and removed from the optical path of the illumination optical system. Therefore, in this embodiment, the movable member 7 can switch between the annular illumination and the normal illumination,
Either one can be selected according to the step amount (and / or the fineness (period, line width, etc.)) of the position detection mark 11. For example, for the low step position detection mark and the high step fine position detection mark, the annular illumination is selected and the illumination light flux limiting member 6 is inserted in the optical path, and for the high step rough position detection mark, the normal illumination is selected. As a result, the illumination light flux limiting member 6 is retracted outside the optical path.
【0036】また、照明視野絞り4は一連の光学系5〜
9を介して、ウエハ10の表面(位置検出マーク11)
と実質的に共役(結像関係)となっており、照明視野絞
り4の透過部の形状、大きさに応じて、ウエハ10上で
の照明範囲を制限することができる。照明視野絞り4
は、例えば複数の可動ブレードからなり、位置検出マー
ク11の大きさや形状に応じて、その複数の可動ブレー
ドによって規定される開口部の大きさや形状を変化させ
ることでウエハ10上での照明範囲を変更することがで
きる。The illumination field stop 4 includes a series of optical systems 5-5.
Surface of wafer 10 (position detection mark 11)
Is substantially conjugate with (imaging relationship), and the illumination range on the wafer 10 can be limited according to the shape and size of the transmission part of the illumination field stop 4. Illumination field diaphragm 4
Is composed of, for example, a plurality of movable blades, and the size and shape of the opening defined by the plurality of movable blades are changed according to the size and shape of the position detection mark 11 to change the illumination range on the wafer 10. Can be changed.
【0037】ウエハ10は、2次元移動可能なウエハス
テージ12に載置され、このウエハステージ12の端部
にはレーザ干渉計15からのレーザビームを反射するミ
ラー14が固定されている。ウエハステージ12(ウエ
ハ10)のX、Y方向の位置はレーザ干渉計15によっ
て、例えば0.01μm程度の分解能で常時検出され
る。さらにウエハステージ12には、ベースライン計測
等に用いられる基準マークが形成された基準板13が設
けられている。The wafer 10 is mounted on a wafer stage 12 which is two-dimensionally movable, and a mirror 14 for reflecting the laser beam from the laser interferometer 15 is fixed to the end of the wafer stage 12. The position of the wafer stage 12 (wafer 10) in the X and Y directions is constantly detected by the laser interferometer 15 with a resolution of, for example, about 0.01 μm. Further, the wafer stage 12 is provided with a reference plate 13 on which reference marks used for baseline measurement and the like are formed.
【0038】さて、ウエハ10(位置検出マーク11)
で反射した光束は、対物レンズ群9、及びビームスプリ
ッター8を介して、本発明の位相差部材(位相差フィル
ター)16に至る。位相差フィルター16は、ウエハ1
0の表面(位置検出マーク11)に対して、対物レンズ
群9とビームスプリッター8を介して、光学的にフーリ
エ変換の関係となっている面(以後「結像系瞳面」と略
す)に配置されている。即ち、位相差フィルター16内
の所定点の、結像光学系の光軸AXからの位置ずれ量
は、その所定点を通過する光束(結像光束)の、ウエハ
10の表面に対する射出角の正弦に比例する。Now, the wafer 10 (position detection mark 11)
The light flux reflected by (1) reaches the phase difference member (phase difference filter) 16 of the present invention through the objective lens group 9 and the beam splitter 8. The phase difference filter 16 is used for the wafer 1
With respect to the surface of 0 (position detection mark 11), through the objective lens group 9 and the beam splitter 8, a surface (hereinafter abbreviated as "imaging system pupil plane") that is optically in a Fourier transform relationship is formed. It is arranged. That is, the amount of positional deviation of the predetermined point in the phase difference filter 16 from the optical axis AX of the imaging optical system is the sine of the exit angle of the light beam (image forming light beam) passing through the predetermined point with respect to the surface of the wafer 10. Proportional to.
【0039】位相差フィルター16の具体的な構成につ
いては後で詳しく説明するが、位相差フィルター16は
その中心が結像光学系の光軸AXと一致するように可動
部材17に保持されている。この可動部材17は、例え
ばターレット板、又はスライダーであり、結像光学系の
光路に対して位相差フィルター16を挿脱可能としてい
る。従って、本実施例では可動部材17によって明視野
検出との切り替えを行うことができ、位置検出マーク1
1の段差量に応じていずれか一方を選択できるようにな
っている。例えば、低段差の位置検出マークでは位相差
フィルター16が光路中に挿入され、高段差の位置検出
マークでは明視野検出が選択されて位相差フィルター1
6が光路外に待避される。The specific structure of the phase difference filter 16 will be described in detail later, but the phase difference filter 16 is held by the movable member 17 so that the center thereof coincides with the optical axis AX of the image forming optical system. . The movable member 17 is, for example, a turret plate or a slider, and allows the phase difference filter 16 to be inserted into and removed from the optical path of the imaging optical system. Therefore, in the present embodiment, it is possible to switch to bright field detection by the movable member 17, and the position detection mark 1
Either one can be selected according to the step amount of 1. For example, the phase difference filter 16 is inserted in the optical path for a position detection mark with a low step, and the bright field detection is selected for a position detection mark with a high step, and the phase difference filter 1 is selected.
6 is saved outside the optical path.
【0040】ここで、光学的なフーリエ変換の関係を図
2を用いて説明するが、図2では1枚のレンズ9’で表
される対物レンズ群9(焦点距離をfとする)の一方の
焦点面に、ウエハ10を配置すれば、他方の焦点面が
「光学的なフーリエ変換面(瞳面)」FPとなる。そし
て、ウエハ10上での入射、及び射出角度がθである光
束はそれぞれフーリエ変換面(瞳面)FP上の、光軸A
Xからf・ sinθだけ離れた位置を通ることになる。The relationship of the optical Fourier transform will be described with reference to FIG. 2. In FIG. 2, one of the objective lens groups 9 (the focal length is f) represented by one lens 9 '. If the wafer 10 is placed on the focal plane of, the other focal plane becomes the "optical Fourier transform plane (pupil plane)" FP. Then, the light fluxes whose incidence and exit angles are θ on the wafer 10 are respectively on the optical axis A on the Fourier transform plane (pupil plane) FP.
It will pass a position away from X by f · sin θ.
【0041】図2では、対物レンズ群9を1枚のレンズ
9’で表しているが、これが複数枚から成るレンズ系で
あっても本質的には何ら変わりはなく、複数枚のレンズ
の合成焦点面にウエハ10を配置すれば、他方の焦点面
がフーリエ変換面(瞳面)となる。そして、対物レンズ
群9と瞳面との間にビームスプリッター8を配すること
で、送光側(照明系)瞳面と受光側(結像系)瞳面とを
分離することが可能となる。また、この分離された2つ
の瞳面は共にウエハ10に対するフーリエ変換面であ
る、即ち照明系瞳面と結像系瞳面とはウエハ10、対物
レンズ群9、及びビームスプリッター8を介して実質的
に共役(結像関係)となっている。In FIG. 2, the objective lens group 9 is represented by a single lens 9 ', but there is essentially no difference even if this is a lens system composed of a plurality of lenses, and a composite of a plurality of lenses is used. When the wafer 10 is placed on the focal plane, the other focal plane becomes the Fourier transform plane (pupil plane). By arranging the beam splitter 8 between the objective lens group 9 and the pupil plane, it becomes possible to separate the light-transmitting side (illumination system) pupil plane and the light-receiving side (imaging system) pupil plane. . Further, the two separated pupil planes are both Fourier transform planes for the wafer 10, that is, the illumination system pupil plane and the imaging system pupil plane are substantially through the wafer 10, the objective lens group 9, and the beam splitter 8. Are conjugated (image formation relationship).
【0042】位相差フィルター16を通過した結像光束
は、レンズ系18、及びビームスプリッター19を経
て、指標板24上に位置検出マーク11の像を形成す
る。一方、指標板24は、指標板照明用光学系20〜2
3によっても照明される。この指標板照明用光学系は、
発光ダイオード等の光源20、コンデンサーレンズ2
1、指標板照明視野絞り22、及びリレーレンズ23か
らなる。指標板照明視野絞り22は、リレーレンズ2
3、及びビームスプリッター19を介して指標板24と
共役、ひいてはウエハ10の表面と共役になっている。
さらに指標板24には、後述するように位置検出マーク
11の検出に際して使用される基準指標(指標マーク)
が形成されている。指標板照明視野絞り22は、指標板
24上の基準指標のみが光源20からの照明光で照射さ
れるように、その基準指標と結像関係になる領域に開口
を有する。The image-forming light flux that has passed through the phase difference filter 16 forms an image of the position detection mark 11 on the index plate 24 through the lens system 18 and the beam splitter 19. On the other hand, the index plate 24 is an optical system for illuminating the index plate 20-2.
It is also illuminated by 3. The optical system for illuminating the index plate is
Light source 20 such as light emitting diode, condenser lens 2
1, an index plate illumination field stop 22, and a relay lens 23. The index plate illumination field diaphragm 22 is a relay lens 2
3 and the beam splitter 19 and the index plate 24, and thus the surface of the wafer 10.
Further, the index plate 24 has a reference index (index mark) used for detecting the position detection mark 11 as described later.
Are formed. The index plate illumination field stop 22 has an opening in a region having an image forming relationship with the reference index so that only the reference index on the index plate 24 is irradiated with the illumination light from the light source 20.
【0043】指標板照明用光学系20〜23はこの基準
指標を照明するためのものであるので、光源20からの
照明光は、位置検出マーク11を照射する光源1からの
照明光と異なり、単色光でもよい。また、光源20から
の照明光はウエハ10上に照射されないため、その波長
がフォトレジストの感光波長であっても構わない。そこ
で、本実施例では発光ダイオードである光源20の波長
を500nm程度とし、ビームスプリッター19の反射
面をダイクロイックミラーとすることで、ウエハ10か
らの結像光束及び指標用照明光の利用効率を高める(即
ち光量損失を抑える)ことができる。尚、本実施例では
照明視野絞り4によってウエハ10上での照明範囲が制
限されるので、位置検出マーク11の像が基準指標に重
畳して形成されることはない。Since the index plate illuminating optical systems 20 to 23 are for illuminating the reference index, the illumination light from the light source 20 is different from the illumination light from the light source 1 for irradiating the position detection mark 11. Monochromatic light may be used. Further, since the illumination light from the light source 20 is not irradiated on the wafer 10, the wavelength may be the photosensitive wavelength of the photoresist. Therefore, in this embodiment, the wavelength of the light source 20, which is a light emitting diode, is set to about 500 nm, and the reflecting surface of the beam splitter 19 is a dichroic mirror, so that the utilization efficiency of the imaging light flux from the wafer 10 and the index illumination light is increased. (That is, the loss of light quantity can be suppressed). In this embodiment, since the illumination field stop 4 limits the illumination range on the wafer 10, the image of the position detection mark 11 is not formed on the reference index.
【0044】指標板24上に形成される位置検出マーク
11の像と基準指標の像はそれぞれリレーレンズ25、
27によってCCD等の撮像素子28上に結像される。
画像処理系29は、撮像素子28からの出力信号を基
に、前述の基準指標像と位置検出マーク11の像との位
置関係(位置ずれ量)を算出する。位置検出マーク11
の像位置は、当然ながらレーザ干渉計15によって規定
される直交座標系XY上での位置検出マーク11の位置
を反映したものであるから、これにより位置検出マーク
11の位置検出が可能となる。即ち、画像処理系29で
算出される位置ずれ量と干渉計15から出力される座標
位置とによって位置検出マーク11の位置が求められ
る。The image of the position detection mark 11 and the image of the reference index formed on the index plate 24 are respectively relay lens 25,
An image is formed on an image pickup device 28 such as a CCD by 27.
The image processing system 29 calculates the positional relationship (positional shift amount) between the reference index image and the image of the position detection mark 11 based on the output signal from the image sensor 28. Position detection mark 11
Since the image position of (1) naturally reflects the position of the position detection mark 11 on the orthogonal coordinate system XY defined by the laser interferometer 15, the position of the position detection mark 11 can be detected. That is, the position of the position detection mark 11 is obtained from the position shift amount calculated by the image processing system 29 and the coordinate position output from the interferometer 15.
【0045】ここで、例えば可動部材7による照明光束
制限部材6の挿脱、又は交換に伴い、撮像素子28に入
射する、位置検出マーク11からの結像光束の光量が変
化する。このため、撮像素子28上でそのマーク像と基
準指標像の各強度(明るさ)が異なることになり、その
強度差が大きくなると、画像処理系29での位置ずれ検
出精度が悪化する恐れがある。そこで本実施例では、撮
像素子28上に結像される位置検出マーク11の像と基
準指標の像の各強度が常にほぼ等しくなるように、その
結像光束の光量変化に応じて、基準指標を照明する、光
源20からの照明光の強度を調整可能に構成する。本実
施例では、光源(発光ダイオード)20への注入電流を
調節してその発光強度を調整するものとし、例えば照明
光学系の光路から照明光束制限部材6を退出させたとき
は、光源20の発光強度を高くする。尚、光源20と指
標板24との間に、透過率が異なる複数の減光フィルタ
ーを保持する部材(ターレット板、スライダー等)に設
け、この保持部材を駆動して、複数の減光フィルターを
それぞれ交換してその光路中に配置するように構成して
もよい。図示していないが、照明光束制限部材6や位相
差フィルター16の挿脱、又は交換は、入力装置(キー
ボード等)からの情報(位置検出マーク11の周期や段
差量等)に基づいて、図1の装置全体を統括制御するコ
ントローラが自動的に行うようになっている。さらにコ
ントローラは、照明光束制限部材6や位相差フィルター
16の種類や有無に応じて光源20の発光強度を調整す
る。Here, for example, when the illumination light flux limiting member 6 is inserted or removed by the movable member 7 or is replaced, the light amount of the imaging light flux incident on the image pickup element 28 from the position detection mark 11 changes. Therefore, the mark image and the reference index image have different intensities (brightness) on the image sensor 28, and if the intensity difference becomes large, the positional deviation detection accuracy in the image processing system 29 may deteriorate. is there. Therefore, in this embodiment, the reference index is changed in accordance with the change in the light amount of the image-forming light flux so that the intensities of the image of the position detection mark 11 and the image of the reference index formed on the image sensor 28 are always substantially equal. The intensity of the illumination light from the light source 20 that illuminates In this embodiment, the light emission intensity is adjusted by adjusting the injection current to the light source (light emitting diode) 20, and for example, when the illumination light flux limiting member 6 is withdrawn from the optical path of the illumination optical system, Increase the emission intensity. In addition, between the light source 20 and the index plate 24, a member (turret plate, slider, etc.) for holding a plurality of neutral density filters having different transmittances is provided, and the holding member is driven to drive the plurality of neutral density filters. They may be replaced with each other and arranged in the optical path. Although not shown, the insertion / removal or replacement of the illumination light flux limiting member 6 and the phase difference filter 16 is performed based on information (such as the period of the position detection mark 11 and the amount of step difference) from the input device (keyboard, etc.). The controller that integrally controls the entire device of No. 1 automatically performs this. Further, the controller adjusts the emission intensity of the light source 20 according to the type and presence of the illumination light flux limiting member 6 and the phase difference filter 16.
【0046】ところで、開口絞り26はウエハ10に対
して実質的に光学的なフーリエ変換の関係となる結像光
学系(9〜27)中の面(位相差フィルター16と共役
(結像関係)の面)に配置され、結像光学系の開口数を
制限するものである。本実施例では、開口絞り26によ
って結像光学系の開口数を任意に変更できるものとす
る。また、図1では指標板24を結像光学系の光路中に
配置したが、指標板24をその光路外に配置し、結像系
を介して撮像素子28上に基準指標の像を形成するよう
に構成してもよい。例えば、指標板24の代わりに撮像
素子28を配置し、かつ指標板照明視野絞り22の代わ
りに指標板24を配置すれば、リレーレンズ25、27
が不要となって装置全体を小型化できる。このとき、基
準指標以外からの光が撮像素子28に入射しないよう
に、指標板24上の、基準指標以外の領域は遮光してお
くと良い。また、開口絞り26は位相差フィルター16
と機械的に干渉しないようにそれに近接して配置すれば
良い。By the way, the aperture stop 26 is a plane (conjugate (image-forming relationship) with the phase difference filter 16) in the image-forming optical system (9 to 27) having a substantially optical Fourier transform relationship with the wafer 10. Of the image forming optical system and limits the numerical aperture of the image forming optical system. In this embodiment, the numerical aperture of the imaging optical system can be arbitrarily changed by the aperture stop 26. Further, although the index plate 24 is arranged in the optical path of the imaging optical system in FIG. 1, the index plate 24 is arranged outside the optical path, and an image of the reference index is formed on the image sensor 28 via the imaging system. It may be configured as follows. For example, if the image pickup device 28 is arranged in place of the index plate 24 and the index plate 24 is arranged in place of the index plate illumination field stop 22, the relay lenses 25, 27.
Is unnecessary and the entire apparatus can be downsized. At this time, it is advisable to shield the area other than the reference index on the index plate 24 so that light from other than the reference index does not enter the image sensor 28. Further, the aperture stop 26 is the phase difference filter 16
It should be placed close to it so as not to mechanically interfere with it.
【0047】ここで、位置検出マーク11の形状、指標
板24、指標板照明視野絞り22、及び照明視野絞り4
の各透過部の形状、及び撮像素子28上に形成される像
の強度分布の一例を、図3、図4を用いて説明する。図
4(A)は位置検出マーク11の上面図を示し、図4
(B)はその位置計測方向(図4(A)中のX方向)の
断面図を示す。即ち、本実施例ではウエハ10の表面
に、X方向に周期Pで配列される3本の帯状凹部からな
る位置検出マーク11を形成している。また、ウエハ1
0の表面には図4(B)に示すようにフォトレジスト1
0’が塗布されている。Here, the shape of the position detection mark 11, the index plate 24, the index plate illumination field stop 22, and the illumination field stop 4 are shown.
An example of the shape of each transmission part and the intensity distribution of the image formed on the image sensor 28 will be described with reference to FIGS. 3 and 4. FIG. 4A shows a top view of the position detection mark 11, and FIG.
FIG. 4B shows a sectional view in the position measuring direction (X direction in FIG. 4A). That is, in this embodiment, the position detection marks 11 composed of three band-shaped concave portions arranged in the X direction at the period P are formed on the surface of the wafer 10. Also, the wafer 1
As shown in FIG.
0'is applied.
【0048】照明視野絞り4は、図3(A)に示すよう
に、ウエハ10上での照明領域を制限する四角形の透過
部4M以外は、全て遮光部(斜線部)となっている。そ
して、この透過部4Mがウエハ10上に投影され、位置
検出マーク11を含む部分領域のみを照明する。この照
明領域は、図4(B)中のマーク領域M(X方向の幅
W)に相当し、図3(C)に示す指標板24上のマーク
像領域MIにも相当する。すなわち、指標板24上のマ
ーク像領域MI内に位置検出マーク11の像が形成され
る。As shown in FIG. 3 (A), the illumination field stop 4 is a light-shielding portion (hatched portion) except for the rectangular transmission portion 4M that limits the illumination area on the wafer 10. Then, the transmissive portion 4M is projected onto the wafer 10 to illuminate only the partial region including the position detection mark 11. This illumination area corresponds to the mark area M (width W in the X direction) in FIG. 4B, and also corresponds to the mark image area MI on the index plate 24 shown in FIG. 3C. That is, the image of the position detection mark 11 is formed in the mark image area MI on the index plate 24.
【0049】一方、指標板照明視野絞り22も図3
(B)に示すように、2つの四角形の透過部4L、4R
以外は、全て遮光部(斜線部)となっている。この透過
部4L、4Rからの透過光は、図3(C)に示す指標板
24上の矩形領域(透過部)LI、RIを照明する。そ
してこの矩形領域LI、RI内にはそれぞれ遮光部であ
る前述の基準指標(バーマーク)24L、24Rが形成
されている。On the other hand, the index plate illumination field stop 22 is also shown in FIG.
As shown in (B), two quadrangular transparent portions 4L, 4R
Except for the above, all are light-shielding portions (hatched portions). The transmitted light from the transmissive portions 4L and 4R illuminates rectangular regions (transmissive portions) LI and RI on the index plate 24 shown in FIG. In the rectangular areas LI and RI, the above-mentioned reference indexes (bar marks) 24L and 24R, which are light shielding portions, are formed.
【0050】以上のことから、撮像素子28上に形成さ
れる像強度分布は図4(C)のようになる。即ち、光源
(ハロゲンランプ)1からの照明光で照射された位置検
出マーク11の像IMを中心として、その左右に光源
(発光ダイオード)20からの照明光で照射された基準
指標24L、24Rの像(暗像)IL、IRが形成され
る。前述したように、位置検出マーク11の像IMと基
準指標24L、24Rの像IL、IR上との明るさがあ
まり異なると、両像の位置ずれの検出精度が悪化する恐
れがあるので、光源(発光ダイオード)20への注入電
流を調節して、両像がほぼ等しい強度となるように調整
する機構(不図示)が設けられている。From the above, the image intensity distribution formed on the image pickup device 28 is as shown in FIG. That is, with the image IM of the position detection mark 11 illuminated by the illumination light from the light source (halogen lamp) 1 as the center, the reference indices 24L, 24R illuminated by the illumination light from the light source (light emitting diode) 20 on the left and right sides of the image IM. Images (dark images) IL and IR are formed. As described above, when the brightness of the image IM of the position detection mark 11 and the brightness of the reference indices 24L and 24R on the images IL and IR are too different, the detection accuracy of the positional deviation between the two images may be deteriorated. A mechanism (not shown) is provided to adjust the current injected into the (light emitting diode) 20 so that the two images have substantially equal intensities.
【0051】また、図4(B)の断面図において、位置
検出マーク11の左右の領域L、Rを平坦な領域とした
が、この領域L、Rの状態は位置検出マーク11の位置
検出には全く影響を与えない(照明光で照明されていな
い)ので、ここに回路パターン等が存在しても全く問題
はない。画像処理系29は、撮像素子28からの出力さ
れる図4(C)の如き光量信号を基に、位置検出マーク
11の像IMと基準指標24L、24Rの像IL、IR
との位置関係を算出する。この算出過程は、従来の結像
式位置検出で一般に行なわれている処理と全く同様であ
る。例えば、所定のスライスレベルSLでの光量信号の
スライス位置(Lo、Li、M1 〜Mn 、Ri、Ro)
に基づいて位置検出を行なってもよいし、あるテンプレ
ート信号とマーク部の光量信号の相関を基に位置検出を
行なってもよい。Further, in the sectional view of FIG. 4B, the left and right regions L and R of the position detection mark 11 are flat regions, but the states of these regions L and R are used for the position detection of the position detection mark 11. Has no influence (is not illuminated by illumination light), so there is no problem even if a circuit pattern or the like exists here. The image processing system 29, based on the light amount signal as shown in FIG. 4C output from the image pickup device 28, the image IM of the position detection mark 11 and the images IL and IR of the reference indices 24L and 24R.
Calculate the positional relationship with. This calculation process is exactly the same as the process generally performed in the conventional imaging position detection. For example, slice positions (Lo, Li, M 1 to Mn, Ri, Ro) of the light amount signal at a predetermined slice level SL.
The position may be detected on the basis of, or the position may be detected on the basis of the correlation between a certain template signal and the light amount signal of the mark portion.
【0052】また、これらの位置検出に先立ち、検出位
置の基準となる基準指標24L、24Rの、ウエハ10
(ウエハステージ12)に対する位置関係を計測してお
く必要がある。これも従来から知られているベースライ
ンチェックと呼ばれる処理であり、本実施例に於ても従
来と基本的に同様である。即ち、ウエハステージ12上
に固設される基準板13の表面に、位置検出マーク11
と同一形状の基準マークを形成しておき、位置検出マー
ク11の検出に先立ち、ウエハステージ12を駆動して
この基準マークを対物レンズ群9の下に移動し、この基
準マークと基準指標24L、24Rとの位置関係を検出
する。同時に、このときのウエハステージ12の位置
(ウエハステージ12上のミラー14の位置)をレーザ
干渉計15で計測する。この干渉計15の出力値と上記
検出値(画像処理系29で検出される位置関係)の和を
「ベースライン量」として記憶する。そして、位置検出
マーク11の計測時の干渉計15の出力値と、前述の光
量信号から求めた位置検出マーク11と基準指標24
L、24Rとの位置関係との和から「ベースライン量」
を差し引いた値が、位置検出マーク11の基準マークに
対する位置となるわけである。Prior to the detection of these positions, the wafer 10 having the reference indexes 24L and 24R, which serve as the reference of the detection positions, is detected.
It is necessary to measure the positional relationship with respect to (wafer stage 12). This is also a conventionally known process called baseline check, and this embodiment is basically the same as the conventional process. That is, the position detection mark 11 is formed on the surface of the reference plate 13 fixed on the wafer stage 12.
A reference mark having the same shape as the reference mark is formed. Prior to detecting the position detection mark 11, the wafer stage 12 is driven to move the reference mark below the objective lens group 9, and the reference mark and the reference index 24L, The positional relationship with 24R is detected. At the same time, the position of the wafer stage 12 (the position of the mirror 14 on the wafer stage 12) at this time is measured by the laser interferometer 15. The sum of the output value of the interferometer 15 and the detected value (the positional relationship detected by the image processing system 29) is stored as the "baseline amount". Then, the position detection mark 11 and the reference index 24 obtained from the output value of the interferometer 15 at the time of measuring the position detection mark 11 and the light amount signal described above.
"Baseline amount" from the sum of the positional relationship with L and 24R
The value obtained by subtracting is the position of the position detection mark 11 with respect to the reference mark.
【0053】また、本発明を投影露光装置の位置検出系
(アライメント系)に適用する場合には、以上の位置検
出値と、投影露光装置内に記憶された露光ショットの配
列データとを基に、ウエハ上の各ショット領域を不図示
の投影光学系の下に移動し、重ね合わせ露光を行なう。
次に、本実施例の照明光束制限部材6、及び位相差フィ
ルター16について、周期8μmの位置検出マーク11
を波長域550〜750nmの照明光束で照射してその
位置検出することを前提として説明する。When the present invention is applied to the position detection system (alignment system) of the projection exposure apparatus, based on the above position detection values and the exposure shot array data stored in the projection exposure apparatus. , Each shot area on the wafer is moved under a projection optical system (not shown), and overlay exposure is performed.
Next, regarding the illumination light flux limiting member 6 and the phase difference filter 16 of the present embodiment, the position detection mark 11 with a cycle of 8 μm
Will be irradiated with an illumination light beam having a wavelength range of 550 to 750 nm to detect its position.
【0054】図5(A)、(B)はそれぞれこの条件に
適した照明光束制限部材6、位相差フィルター16の構
成の一例を示す。各図中のU軸、V軸方向は、それぞれ
図4(A)に示した位置検出マーク11のX軸、Y軸方
向に等しいが、照明光束制限部材6、及び位相差フィル
ター16はそれぞれ位置検出マーク11に対する光学的
なフーリエ変換面(瞳面)に配置されるので、慣例に従
ってU軸、V軸と表す。FIGS. 5A and 5B show examples of the structures of the illumination light flux limiting member 6 and the phase difference filter 16 which are suitable for this condition. The U-axis and V-axis directions in each figure are equal to the X-axis and Y-axis directions of the position detection mark 11 shown in FIG. 4A, but the illumination light flux limiting member 6 and the phase difference filter 16 are respectively located. Since it is arranged on the optical Fourier transform plane (pupil plane) with respect to the detection mark 11, it is represented by U-axis and V-axis according to the convention.
【0055】図5(A)に示すように照明光束制限部材
6は、遮光性基板上に、照明光学系(1〜9)の光軸
(U軸とV軸の交点)を中心として内半径riが0.1
6(単位は開口数、即ち半径riの円上の所定点を通過
した光束の位置検出マーク11への入射角の正弦、以下
も同様)、外半径roが0.20である円環(輪帯)状
の透過部Iが形成されたものである。照明光束制限部材
6としては、金属遮光板上の特定個所に輪帯開口を開け
たもの、又はガラス等の透明基板上に金属等で遮光膜を
形成し、特定個所の遮光膜を除去したものを使用する。As shown in FIG. 5A, the illumination light flux limiting member 6 has an inner radius centered on the optical axis (intersection point of the U axis and V axis) of the illumination optical system (1 to 9) on the light shielding substrate. ri is 0.1
6 (the unit is the numerical aperture, that is, the sine of the incident angle of the light flux that has passed through a predetermined point on a circle of radius ri to the position detection mark 11; the same applies below), and the outer radius ro is 0.20. The band-shaped transparent portion I is formed. The illumination light flux limiting member 6 has a ring-shaped aperture formed in a specific portion on a metal light-shielding plate, or has a light-shielding film formed of metal or the like on a transparent substrate such as glass, and the light-shielding film at the specific portion is removed. To use.
【0056】一方、位相差フィルター16は、照明光束
制限部材6上の輪帯透光部Iと共役な位置に、その輪帯
透光部Iと結像関係となる輪帯形状の位相差付加部S
(図中斜線部)が形成されたものとなっている。図6
は、図5(B)のU軸での断面図である。図6に示すよ
うに位相差フィルター16は、ガラス等の透明基板16
Aの表面に、金属薄膜So及び誘電体膜S1を積層して
形成したものであり、金属薄膜Soによって透過光を減
光し、かつ誘電体膜S1によってその透過光の位相をシ
フトさせる。従って、位相差付加部Sとそれ以外の領域
とにそれぞれ分布する位置検出マーク11からの結像光
束の位相が互いに異なる、即ち両光束の間に所定の位相
差が与えられることになる。このような構成は、従来の
位相差顕微鏡での位相差フィルター、あるいは最近フォ
トリソグラフィ工程で使用され始めた「ハーフトーン位
相シフトレチクル」と同様であり、それらの各種製法を
用いて製造することができる。On the other hand, the phase difference filter 16 adds a phase difference in the shape of an annular zone having an image-forming relationship with the annular zone transparent section I at a position conjugate with the annular zone transparent section I on the illumination light flux limiting member 6. Department S
(Hatched portion in the figure) is formed. Figure 6
FIG. 6 is a sectional view taken along the U axis in FIG. As shown in FIG. 6, the phase difference filter 16 is a transparent substrate 16 such as glass.
A thin metal film So and a dielectric film S1 are laminated on the surface of A. The thin metal film So attenuates the transmitted light and the dielectric film S1 shifts the phase of the transmitted light. Therefore, the phases of the image forming light beams from the position detection marks 11 distributed in the phase difference adding portion S and the other regions are different from each other, that is, a predetermined phase difference is given between the two light beams. Such a structure is similar to a phase difference filter in a conventional phase difference microscope or a “halftone phase shift reticle” which has recently begun to be used in a photolithography process, and can be manufactured by using various manufacturing methods thereof. it can.
【0057】また、金属薄膜So及び誘電体膜S1によ
り透過光に与えられる位相差(他の部分の透過光との位
相差)はπ/2[rad](即ち1/4波長)程度が最適であ
るので、誘電体膜S1の厚さはその屈折率をnとしてλ
/(4(n−1))程度とする。このとき、λは照明光の
うち結像に寄与する光束の中心波長(図6の例では65
0nm)である。但し、位相差付加部Sの位相差量(位
相シフト量)に多少の誤差があっても位置検出マーク1
1の像コントラストは急激には低下しないので、位相差
付加部Sの透過光に与えるべき位相差はπ/2±π/4
[rad] の範囲であれば、精度良く位置検出可能な、比較
的良好なコントラストの像を得ることができる。また、
特にこの位相差がπ/2±π/6[rad] 程度に抑えられ
れば、より良好なコントラストの像を得ることができ
る。Further, the phase difference given to the transmitted light by the metal thin film So and the dielectric film S1 (the phase difference from the transmitted light of other parts) is optimally π / 2 [rad] (that is, 1/4 wavelength). Therefore, the thickness of the dielectric film S1 is λ where n is its refractive index.
/ (4 (n-1)). At this time, λ is the central wavelength of the light flux of the illumination light that contributes to image formation (65 in the example of FIG. 6).
0 nm). However, even if there is some error in the phase difference amount (phase shift amount) of the phase difference adding portion S, the position detection mark 1
Since the image contrast of 1 does not decrease sharply, the phase difference to be given to the transmitted light of the phase difference adding section S is π / 2 ± π / 4.
Within the range of [rad], it is possible to obtain an image with relatively good contrast, which enables accurate position detection. Also,
In particular, if this phase difference is suppressed to about π / 2 ± π / 6 [rad], an image with better contrast can be obtained.
【0058】ここで、結像に寄与する光束の波長域が狭
い(即ち照明光が実質的に単色に近い)場合には、誘電
体膜S1の厚さは(2k+1)λ/(4(n−1))(位
相差は(2k+1)π/4[rad])(但しkは自然数)で
あってもよい。これに対して結像に寄与する光束の波長
域が広い場合、中心波長以外の波長に対しては、kが大
きいほど位相差が(2k+1)π/4[rad](最適条件)
からずれるので、誘電体膜S1の厚さはλ/(4(n−
1))とするのが良い。このような条件の位相差フィルタ
ー16を使用すると、位置検出マーク11の凹部が明る
く凸部が暗い、明瞭なコントラストを持ったマーク像を
得ることができる。Here, when the wavelength range of the light flux contributing to image formation is narrow (that is, the illumination light is substantially monochromatic), the thickness of the dielectric film S1 is (2k + 1) λ / (4 (n −1)) (the phase difference is (2k + 1) π / 4 [rad]) (where k is a natural number). On the other hand, when the wavelength range of the light flux that contributes to image formation is wide, the phase difference becomes (2k + 1) π / 4 [rad] (optimum condition) as the value of k increases with respect to wavelengths other than the central wavelength.
The thickness of the dielectric film S1 is λ / (4 (n−
1)) is good. When the phase difference filter 16 under such conditions is used, it is possible to obtain a mark image having a clear contrast in which the concave portion of the position detection mark 11 is bright and the convex portion is dark.
【0059】また、位相差フィルターとして、位相差付
加部Sに金属薄膜Soのみを形成し、他の部分に誘電体
膜S1を形成する構成としてもしても良い。この場合、
0次光の位相は他の次数の回折光に対してπ/2[rad]
進んだものとなるので、位置検出マーク11の像は図6
の位相差フィルター16の使用時とは異なり、位置検出
マーク11の凹部が暗く凸部が明るい像となる。但し、
像のコントラストはいずれの場合にも同等で、かつ高い
ことは勿論である。Further, as the phase difference filter, only the metal thin film So may be formed in the phase difference adding portion S and the dielectric film S1 may be formed in the other portion. in this case,
The phase of the 0th order light is π / 2 [rad] with respect to the diffracted lights of other orders.
Since it has advanced, the image of the position detection mark 11 is shown in FIG.
Unlike the case where the phase difference filter 16 is used, the concave portion of the position detection mark 11 becomes dark and the convex portion becomes a bright image. However,
It goes without saying that the image contrast is equal and high in all cases.
【0060】さらに、位相差付加部Sは必ずしも減光作
用を有している必要はなく、この場合には金属薄膜So
を付加しなくてもよい。また、位相差を付加するために
誘電体膜S1を形成する代わりに、透明基板16Aをエ
ッチングにより掘り込んでも良い。また、位相差付加部
Sの大きさは、照明光束制限部材6上の輪帯透過部Iよ
りも多少大きくなるように、内半径ri'を0.15、外
半径ro'を0.21とした。これは、位置検出マーク1
1からの0次回折光が位相差フィルター16上で若干広
がることを考慮して、より確実に0次回折光に前述の位
相差を付加するためである。また、結像光学系の開口数
NAo(結像系瞳面の半径)は0.30であるものとし
た。尚、図1では実際の開口数を規定する開口絞り26
が、位相差フィルター16と同一位置ではなく、その共
役位置に配置されているが、ここでの開口数NAoは、
開口絞り26の開口数が対物レンズ群9の開口数よりも
小さく絞られている場合には、開口絞り26の開口数
(実効的な開口数)を表すことになる。また、照明光束
制限部材6の外周の半径は照明光学系の開口数(照明系
瞳面の半径)に比べて十分に大きく、輪帯透光部Iの外
側に分布する透過光は当然ながら位置検出マーク11に
は達しない。Further, the phase difference adding portion S does not necessarily have to have a light-reducing effect, and in this case, the metal thin film So
Need not be added. Further, instead of forming the dielectric film S1 to add a phase difference, the transparent substrate 16A may be dug by etching. Further, the size of the phase difference adding portion S is set to 0.15 for the inner radius ri 'and 0.21 for the outer radius ro' so that the size of the phase difference adding portion S is slightly larger than that of the annular zone transmitting portion I on the illumination light flux limiting member 6. did. This is the position detection mark 1
This is because the above-mentioned phase difference is more reliably added to the 0th-order diffracted light in consideration of the fact that the 0th-order diffracted light from 1 spreads slightly on the phase difference filter 16. In addition, the numerical aperture NAo (radius of the pupil plane of the image forming system) of the image forming optical system is set to 0.30. In FIG. 1, the aperture stop 26 that defines the actual numerical aperture is
However, the numerical aperture NAo here is not the same position as the phase difference filter 16 but its conjugate position.
When the numerical aperture of the aperture diaphragm 26 is smaller than that of the objective lens group 9, it represents the numerical aperture (effective numerical aperture) of the aperture diaphragm 26. Further, the outer radius of the illumination light flux limiting member 6 is sufficiently larger than the numerical aperture (radius of the illumination system pupil plane) of the illumination optical system, and the transmitted light distributed outside the annular light transmitting portion I is naturally located at the position. It does not reach the detection mark 11.
【0061】図5(B)に、図5(A)の照明光束制限
部材6上の輪帯透光部Iを透過した照明光の照射によ
り、位置検出マーク11から発生した1つの1次回折光
の、位相差フィルター16上での分布(図中の2つの破
線円で囲まれた領域D)を示す。尚、位置検出マーク1
1からの回折光のうち0次回折光は、輪帯透光部Iと共
役な(かつそれよりも一回り大きい)位相差付加部S上
に分布し、金属薄膜Soによって減光され、かつ誘電体
膜S1によって位相差が付加される。もちろん実際に
は、これ以外の次数の回折光も分布しているが、ここで
は位置検出マーク11の像の形成に支配的な0次及び1
次の回折光についてのみ考察する。FIG. 5B shows one first-order diffracted light generated from the position detection mark 11 by irradiation of the illumination light transmitted through the annular light-transmitting portion I on the illumination light flux limiting member 6 of FIG. 5A. The distribution on the phase difference filter 16 (area D surrounded by two dashed circles in the figure) is shown. The position detection mark 1
Of the diffracted light from 1, the 0th-order diffracted light is distributed on the phase difference adding portion S that is conjugate (and one size larger than it) with the annular light transmitting portion I, is attenuated by the metal thin film So, and is A phase difference is added by the body film S1. Of course, actually, diffracted lights of orders other than this are also distributed, but here, the 0th order and the 1st order, which are dominant in the formation of the image of the position detection mark 11, are distributed.
Consider only the following diffracted light.
【0062】ところで、図5(B)に示すように1次回
折光の一部は位相差付加部Sで減光されることになる
が、本実施例では図5(A)に示したように輪帯透過部
Iの内半径ri、及び外半径roが適切に定められてい
るので、位相差付加部Sによる1次回折光の減光、及び
位相差の付加は最小限に抑えられている。以下、この理
由を説明する。By the way, as shown in FIG. 5B, a part of the first-order diffracted light is attenuated by the phase difference adding portion S, but in the present embodiment, as shown in FIG. 5A. Since the inner radius ri and the outer radius ro of the ring zone transmission portion I are appropriately determined, the attenuation of the first-order diffracted light and the addition of the phase difference by the phase difference addition portion S are suppressed to the minimum. Hereinafter, the reason will be described.
【0063】まず、位相差付加部Sの内周及び外周とU
軸との交点のU座標はそれぞれri'、ro'(及び−r
i'、−ro')となる。一方、1次回折光が分布する領域
Dの境界(2つの破線円)とU軸との交点のU座標をD
pi、Dpo,Dmi、Dmoと定めると、これらの値は、 Dpi=λ/P+ri 、 Dpo=λ/P+ro Dmi=λ/P−ri 、 Dmo=λ/P−ro となる。First, the inner and outer circumferences of the phase difference adding section S and U
The U coordinates of the intersection with the axis are ri ', ro' (and -r, respectively)
i ', -ro'). On the other hand, the U coordinate of the intersection of the boundary of the area D where the first-order diffracted light is distributed (two dashed circles) and the U axis is D
When pi, Dpo, Dmi, and Dmo are defined, these values are Dpi = λ / P + ri, Dpo = λ / P + ro Dmi = λ / P-ri, and Dmo = λ / P-ro.
【0064】このとき、特にDpiの値がro'よりも小さ
い、あるいはDmoの値が−ri'よりも小さいと、位相差
付加部Sによる1次回折光の減光の度合いが大きくなる
ことは図5(B)から明らかである。また、Dmiの値が
ri'よりも大きくても、同様に減光の度合いが大きくな
る。図5(A)の例においては、位置検出マーク11の
周期Pは8μm、輪帯透過部Iの内半径riが0.1
6、外半径roが0.20であり、照明光の波長λの範
囲は最短波長λ1が550nm、最長波長λ2が750
nmであるので、Dpiの最小値はλ=λ1のときに、 Dpi=λ1/P+ri=0.23 (1) となってro'(=0.21)より大きく、Dmoの最小値
はλ=λ1のときに、 Dmo=λ1/P−ro=−0.13 (2) となって−ri'(=−0.15)より大きい。At this time, in particular, if the value of Dpi is smaller than ro 'or the value of Dmo is smaller than -ri', the degree of extinction of the first-order diffracted light by the phase difference adding section S becomes large. It is clear from 5 (B). Further, even if the value of Dmi is larger than ri ', the degree of dimming also increases. In the example of FIG. 5A, the period P of the position detection mark 11 is 8 μm, and the inner radius ri of the ring zone transmission portion I is 0.1.
6, the outer radius ro is 0.20, and the range of the wavelength λ of the illumination light is 550 nm for the shortest wavelength λ1 and 750 for the longest wavelength λ2.
Therefore, when λ = λ1, the minimum value of Dpi is Dpi = λ1 / P + ri = 0.23 (1), which is larger than ro ′ (= 0.21), and the minimum value of Dmo is λ = When λ1, Dmo = λ1 / P−ro = −0.13 (2), which is larger than −ri ′ (= −0.15).
【0065】さらに、Dmiの最大値はλ=λ2のとき
に、 Dmi=λ2/P−ri=−0.07 (3) となってri'(=0.15)より小さい。従って、位相
差付加部Sによる1次回折光の減光の度合いは小さくな
るが、このための条件を一般化すると、 Dpi=λ1/P+ri≧ro' (4) Dmo=λ1/P−ro≧−ri' (5) Dmi=λ2/P−ri≦ri' (6) となる。Further, the maximum value of Dmi is Dmi = λ2 / P-ri = -0.07 (3) when λ = λ2, which is smaller than ri '(= 0.15). Therefore, the degree of dimming of the 1st-order diffracted light by the phase difference adding unit S becomes small, but generalizing the condition for this, Dpi = λ1 / P + ri ≧ ro ′ (4) Dmo = λ1 / P−ro ≧ − ri ′ (5) Dmi = λ2 / P−ri ≦ ri ′ (6)
【0066】また、位相差付加部Sの外半径ro'は輪帯
透過部Iの外半径roよりも大きく、位相差付加部Sの
内半径ri'は輪帯透過部Iの内半径riよりも小さいの
で、上記不等式(4)〜(6)は、 Dpi=λ1/P+ri≧ro (7) Dmo=λ1/P−ro≧−ri (8) Dmi=λ2/P−ri≦ri (9) としても良い。特に不等式(7)、(8)は共に、 ro−ri≦λ1/P (10) と等価であり、不等式(9)は、 ri≧λ2/(2×P) (11) と等価である。The outer radius ro 'of the phase difference adding portion S is larger than the outer radius ro of the ring zone transmitting portion I, and the inner radius ri' of the phase difference adding portion S is larger than the inner radius ri of the ring zone transmitting portion I. Therefore, the above inequalities (4) to (6) are expressed as follows: Dpi = λ1 / P + ri ≧ ro (7) Dmo = λ1 / P-ro ≧ -ri (8) Dmi = λ2 / P-ri ≦ ri (9) Also good. In particular, the inequalities (7) and (8) are both equivalent to ro-ri ≦ λ1 / P (10), and the inequality (9) is equivalent to ri ≧ λ2 / (2 × P) (11).
【0067】従って、一般に輪帯透過部Iの内半径ri
及び外半径ro が不等式(10)、(11)を満たすと
き、位相差付加部Sによる1次回折光の減光の度合いを
極めて小さくできることになる。ところで、結像光学系
の開口数NAoの値によっては、位相差付加部Sによる
減光のみでなく、開口数NAoによる制限によって1次
回折光が遮光されてしまう恐れもある。これを避けるた
めには、Dpo=λ/P+roの値が前述した開口数NA
o以下であることが望ましい。Dpoの最大値は、λ=λ
2のときにλ2/P+roとなるので、開口数NAo
は、 NAo≧λ2/P+ro (12) の関係を満たすことが望ましい。Therefore, in general, the inner radius ri of the annular transmission portion I is
And the outer radius ro satisfies the inequalities (10) and (11), the degree of dimming of the first-order diffracted light by the phase difference adding section S can be made extremely small. By the way, depending on the value of the numerical aperture NAo of the imaging optical system, the first-order diffracted light may be blocked by not only the light reduction by the phase difference adding section S but also the limitation by the numerical aperture NAo. In order to avoid this, the value of Dpo = λ / P + ro is the numerical aperture NA mentioned above.
It is desirable that it is not more than o. The maximum value of Dpo is λ = λ
Since it becomes λ2 / P + ro when 2, the numerical aperture NAo
Preferably satisfies the following relationship: NAo ≧ λ2 / P + ro (12)
【0068】以上の説明では、0次回折光に対して片側
(+U方向)に発生する1次回折光のみに着目して説明
したが、反対方向(−U方向)に発生する1次回折光に
ついても全く同様であり、上記条件(不等式)に変わり
はない。また、位置検出マーク11の周期Pや照明光束
の波長域(λ1、λ2)も、上記の値に限らず、他の条
件であってもこれらの条件(不等式)が成立する。In the above description, only the 1st-order diffracted light generated on one side (+ U direction) with respect to the 0th-order diffracted light has been described, but the 1st-order diffracted light generated in the opposite direction (-U direction) is also completely absent. The same is true, and the above condition (inequality) remains unchanged. Further, the period P of the position detection mark 11 and the wavelength range (λ1, λ2) of the illumination light flux are not limited to the above values, and these conditions (inequality) are satisfied even under other conditions.
【0069】次に、本実施例の位置検出装置の効果につ
いて、凹凸変化(段差)が極めて小さい位置検出マーク
の像のシミュレーション結果を基に説明する。図7は、
本実施例の位置検出装置により得られる、段差5nmの
位置検出マーク像のシミュレーション結果を示す。マー
ク形成条件は、周期が12μmで、凹部幅と凸部幅が等
しく、マーク表面の材質は一様で(屈折率は3.5
5)、その上に屈折率が1.68であるフォトレジスト
が厚さ1μmで塗布されているものとした。尚、照明光
の波長域は550nm(=λ1)から750nm(=λ
2)であり、照明光束制限部材6上の輪帯透過部Iの内
半径、外半径はそれぞれ前述の条件(不等式)に従い、 ri=0.10≧λ2/(2×P)=0.750/24=0.031 ro=0.14 (ro−ri=0.04≦λ1/P=0.550/12=0.046) とした。Next, the effect of the position detecting device of the present embodiment will be described based on the simulation result of the image of the position detecting mark having a very small change in unevenness (step). FIG.
The simulation result of the position detection mark image having a step of 5 nm obtained by the position detection device of the present embodiment is shown. The mark formation condition is that the period is 12 μm, the width of the concave portion is equal to the width of the convex portion, and the material of the mark surface is uniform (refractive index is 3.5.
5), and a photoresist having a refractive index of 1.68 was applied thereon in a thickness of 1 μm. The wavelength range of the illumination light is 550 nm (= λ1) to 750 nm (= λ).
2), and the inner radius and the outer radius of the ring zone transmission portion I on the illumination light flux limiting member 6 are respectively ri = 0.10 ≧ λ2 / (2 × P) = 0.750 according to the above-mentioned condition (inequality). /24=0.031 ro = 0.14 (ro-ri = 0.04 ≦ λ1 / P = 0.550 / 12 = 0.046).
【0070】また、位相差フィルター16の構成は図6
の通りであり、その位相差付加部Sの内半径、外半径は
それぞれ輪帯透過部Iの内半径ri、外半径roと等し
くし、結像光学系の開口数NAoは前述の条件(不等
式)に従い、 NAo=0.22≧λ2/P+ro=0.750/12+0.14=0.20 3とした。The structure of the phase difference filter 16 is shown in FIG.
The inner radius and the outer radius of the phase difference adding portion S are equal to the inner radius ri and the outer radius ro of the annular transmission portion I, respectively, and the numerical aperture NAo of the imaging optical system is equal to the above condition (inequality). ), NAo = 0.22 ≧ λ2 / P + ro = 0.750 / 12 + 0.14 = 0.23.
【0071】さらに、位相差付加部Sの透過率は1%と
し、誘電体膜S1は、照明光の中心波長650nmに対
してπ/2[rad] の位相差を付加するように、屈折率を
1.5、厚さを325nmとした。図7に示した像強度
分布は、位置検出マーク11の1周期分であり、横軸の
位置0はマーク(凹部)の中心を示し、±P/4の破線
はマークのエッジ(凹部と凸部の境界)を示す。また、
縦軸の強度分布は一周期の像強度の最大値が1となるよ
うに規格化してある。Further, the transmittance of the phase difference adding portion S is set to 1%, and the dielectric film S1 has a refractive index so as to add a phase difference of π / 2 [rad] to the central wavelength of 650 nm of the illumination light. Was 1.5 and the thickness was 325 nm. The image intensity distribution shown in FIG. 7 is for one cycle of the position detection mark 11, the position 0 on the horizontal axis indicates the center of the mark (recess), and the broken line of ± P / 4 is the edge of the mark (recess and protrusion). Boundary). Also,
The intensity distribution on the vertical axis is standardized so that the maximum value of the image intensity for one cycle is 1.
【0072】さらに図8には、図7とほぼ同一の条件
で、開口数NAoのみを0.18とし、前述した開口数
NAoの条件式(12)を満たさない場合のシミュレー
ション結果を示す。この図8のマーク像は、図7に示し
た像に比べてやや暗部(マークのエッジ部分)のシャー
プさが劣るものの、エッジ位置、即ちマーク位置を検出
するのに十分なコントラストを有している。従って、本
実施例による前述の条件式(10)〜(12)のうち、
開口数NAoの条件式(12)については必ずしもこれ
を厳密に満たす必要はないことが分かる。Further, FIG. 8 shows a simulation result in the case where only the numerical aperture NAo is set to 0.18 and the above-described conditional expression (12) of the numerical aperture NAo is not satisfied under substantially the same conditions as in FIG. Although the mark image of FIG. 8 is slightly inferior in sharpness of the dark portion (edge portion of the mark) to the image shown in FIG. 7, it has sufficient contrast to detect the edge position, that is, the mark position. There is. Therefore, among the above conditional expressions (10) to (12) according to the present embodiment,
It is understood that the conditional expression (12) of the numerical aperture NAo does not necessarily have to be strictly satisfied.
【0073】同様に図9には、図7の条件とほぼ同一の
条件で、輪帯透過部Iの外半径roのみを0.18と
し、前述した外半径roの条件式(10)を満たさない
場合のシミュレーション結果を示す。この場合、図7、
図8に示した像に比べて像コントラストの劣化が顕著で
あり、従ってこのような像に基づいた位置検出では良好
な検出精度を得ることができないことが分かる。Similarly, in FIG. 9, only the outer radius ro of the ring zone transmission portion I is set to 0.18 under substantially the same conditions as in FIG. 7, and the above-mentioned conditional expression (10) of the outer radius ro is satisfied. The simulation result when there is not is shown. In this case, FIG.
It can be seen that the deterioration of the image contrast is more remarkable than that of the image shown in FIG. 8, and therefore good detection accuracy cannot be obtained by position detection based on such an image.
【0074】さらに図10には、図7の条件とほぼ同一
の条件で、輪帯透過部Iの内半径riを0.02、外半
径roを0.06とし、前述した外半径roの条件式
(10)は満たすものの、内半径riの条件式(11)
は満たさない場合のシミュレーション結果を示す。この
場合、像のコントラストは高いものの、マークエッジだ
けでなく凹部の中心にも若干の暗部が生じて像の忠実度
が低下し、これが位置検出に悪影響を及ぼす恐れがある
ので、位置検出に使用することは難しい。Further, in FIG. 10, the conditions of the outer radius ro described above are set to be substantially the same as the conditions of FIG. 7 with the inner radius ri of the annular zone I being 0.02 and the outer radius ro being 0.06. Although the expression (10) is satisfied, the conditional expression (11) of the inner radius ri
Shows the simulation result when not satisfied. In this case, although the image has a high contrast, a slight dark part is generated not only in the mark edge but also in the center of the concave part, and the image fidelity is reduced, which may adversely affect the position detection. Difficult to do.
【0075】図11には、図7〜図10と異なり、照明
光束制限部材6上の輪帯透過部Iが光軸を中心とする円
形(通常のσ絞り)であり、位相差フィルター16上の
位相差付加部Sも光軸を中心とする円形である場合のシ
ミュレーション結果を示す。尚、このときの透過部I、
位相差付加部Sの半径は共に0.66(σ値としては
0.3)とした。波長域、開口数、その他の条件は、図
7の条件と同一である。この場合の像も、図10と同様
に像の忠実度が低下したものとなり、位置検出に使用す
ることは難しい。Unlike FIG. 7 to FIG. 10, in FIG. 11, the annular transmission portion I on the illumination light flux limiting member 6 is a circle (normal σ stop) centered on the optical axis, and on the phase difference filter 16. The simulation result when the phase difference adding part S of is also a circle centering on the optical axis is shown. In this case, the transparent portion I at this time,
The radii of the phase difference adding portions S were both set to 0.66 (0.3 as the σ value). The wavelength range, numerical aperture, and other conditions are the same as the conditions in FIG. 7. The image in this case also has reduced image fidelity as in FIG. 10, and is difficult to use for position detection.
【0076】図12には、比較のために、照明光束制限
部材6の輪帯透過部I、及び位相差フィルター16上の
位相差付加部Sの形状が、本発明の条件を満たす図7の
例と同一であるが、位相差付加部Sの透過率が0%(位
相差付加部Sが遮光部)である、即ち暗視野顕微鏡によ
るマーク像を示す。尚、図12だけは比較が容易なよう
に、縦軸のスケールを図7と同一に設定してある。この
ような暗視野顕微鏡によっても、低段差の位置検出マー
クの像に明暗変化(コントラスト)が生じるものの、そ
の強度は本発明の位置検出装置での像強度(図7)の1
/5程度であってそのマーク像は暗く、従って撮像素子
28から出力される画像信号もS/N比の悪いものとな
る。In FIG. 12, for comparison, the shapes of the annular zone transmission portion I of the illumination light flux limiting member 6 and the phase difference adding portion S on the phase difference filter 16 satisfy the conditions of the present invention shown in FIG. Although the same as the example, the transmittance of the phase difference adding part S is 0% (the phase difference adding part S is a light shielding part), that is, a mark image by a dark field microscope is shown. It should be noted that only in FIG. 12, the scale of the vertical axis is set to be the same as that in FIG. 7 for easy comparison. Even with such a dark-field microscope, a light-dark change (contrast) occurs in the image of the position detection mark having a low step, but the intensity thereof is equal to the image intensity (FIG. 7) of the position detection device of the present invention.
Since the mark image is about / 5 and the mark image is dark, the image signal output from the image sensor 28 also has a poor S / N ratio.
【0077】さらに図13には、通常(明視野)の顕微
鏡による像を示す。σ絞りの半径は0.176(σ値と
しては0.8)であり、当然ながら位相差付加部Sは設
けない。その他の条件は図7の条件と同一である。図1
3から明らかなように、低段差(5nm)の位置検出マ
ークに対して明視野顕微鏡を使用すると、像に明暗変化
(コントラスト)が殆どなく、位置検出は不可能なこと
がわかる。Further, FIG. 13 shows an image obtained by a normal (bright field) microscope. The radius of the σ diaphragm is 0.176 (0.8 as the σ value), and of course, the phase difference adding section S is not provided. Other conditions are the same as the conditions of FIG. FIG.
As is clear from FIG. 3, when a bright field microscope is used for a position detection mark with a low step (5 nm), there is almost no change in contrast (contrast) in the image, and position detection is impossible.
【0078】以上のように、図9〜図13に示した各像
に比べて図7、図8に示した本発明の位置検出装置によ
る像は、コントラストが十分であるばかりでなく、その
明暗部がそれぞれマークの凹部、凸部と一致しているた
め、このようなマーク像を用いて確実な位置検出を行な
うことができる。尚、前述の実施例における照明光束制
限部材6及び位相差フィルター16は、段差の小さな位
置検出マークの検出に極めて有効であることは前述の通
りであるが、段差の大きな(例えば100nm以上)の
位置検出マークに対しては、従来の位置検出装置でも十
分な検出精度が得られるので、段差の大きなマークを検
出する際には、照明光束制限部材6及び位相差フィルタ
ー16を、交換機構(可動部材)7及び17を用いて光
路外へ待避させるようにしてもよい。また、ガラス基板
からなる位相差フィルター16(又は照明光束制限部材
6)の待避により、光学系の収差状態が変動する恐れが
ある場合は、その待避時に、位相差フィルター16(又
は照明光束制限部材6)の代わりにそれと同等な光学的
厚さを有する透明部材を挿入する必要がある。これは、
交換機構7、17にそれぞれその透明部材を保持させて
おけば、簡単に交換を行なうことができる。As described above, the images obtained by the position detecting device of the present invention shown in FIGS. 7 and 8 are not only sufficient in contrast as compared with the images shown in FIGS. Since the portions respectively correspond to the concave portions and the convex portions of the mark, reliable position detection can be performed using such a mark image. As described above, the illumination light flux limiting member 6 and the phase difference filter 16 in the above-described embodiment are extremely effective for detecting the position detection mark having a small step, but the step having a large step (for example, 100 nm or more). Sufficient detection accuracy can be obtained with respect to the position detection mark even with the conventional position detection device. Therefore, when detecting a mark with a large step, the illumination light flux limiting member 6 and the phase difference filter 16 are replaced by a replacement mechanism (movable). Alternatively, the members 7 and 17 may be used to evacuate the optical path. In addition, when there is a risk that the aberration state of the optical system changes due to the retracting of the phase difference filter 16 (or the illumination light flux limiting member 6) made of a glass substrate, the phase difference filter 16 (or the illumination light flux limiting member 6) may be saved during the retracting. Instead of 6), it is necessary to insert a transparent member having an optical thickness equivalent to that. this is,
If the exchange mechanisms 7 and 17 hold the transparent members respectively, the exchange can be easily performed.
【0079】また、前述のシミュレーションでは段差5
nmの位置検出マークを想定したが、これ程には低段差
でないマーク、例えば数十nm程度の段差を持つマーク
に対しては、図6に示した、減光及び位相差の付加を行
う位相差フィルター以外にも、位相差のみを付加して減
光を行わない位相差フィルターを用いることができる。
図14は、段差40nmの位置検出マークに対してこの
ような位相差フィルターを用いた場合のシミュレーショ
ン結果を示す。なおこのときの、照明光束制限部材6上
の輪帯透過部I、及び位相差フィルター16上の位相差
付加部Sの形状は、図7の例と同一である。図14から
明らかなように、段差がある程度大きい位置検出マーク
に対しては、位相差付加部Sの透過率が高くとも(さほ
ど減光しなくても)十分にコントラストの高い像が得ら
れる。In the above simulation, the step 5
Although the position detection mark of nm is assumed, for a mark having such a low level difference, for example, a mark having a level difference of several tens nm, the phase difference for performing the light reduction and the phase difference shown in FIG. In addition to the filter, a phase difference filter that adds only the phase difference and does not reduce light can be used.
FIG. 14 shows a simulation result when such a phase difference filter is used for a position detection mark having a step difference of 40 nm. At this time, the shapes of the annular transmission portion I on the illumination light flux limiting member 6 and the phase difference adding portion S on the phase difference filter 16 are the same as those in the example of FIG. 7. As is clear from FIG. 14, for a position detection mark having a large level difference, an image with sufficiently high contrast can be obtained even if the transmittance of the phase difference adding portion S is high (even if the light is not dimmed so much).
【0080】従って、図6の位相差フィルター16と位
相差の付加のみを行なう位相差フィルター(ないしは比
較的高い透過率を有する位相差フィルター)とを交換機
構17に保持させておき、位置検出マークの段差量に応
じて、その2つの位相差フィルターを交換して結像光路
中に配置するようにしてもよい。尚、より低段差のマー
クに対しては、透過率の低い位相差フィルターを選択し
て装填する。Therefore, the exchange mechanism 17 holds the phase difference filter 16 shown in FIG. 6 and the phase difference filter (or the phase difference filter having a relatively high transmittance) for only adding the phase difference, and the position detection mark is held. The two phase difference filters may be exchanged and arranged in the image forming optical path according to the amount of the step difference. For a mark having a lower step, a phase difference filter having a low transmittance is selected and loaded.
【0081】図15には、比較のために、図13と同一
条件の明視野顕微鏡を用いて段差40nmの位置検出マ
ークを検出した場合のシミュレーション結果を示す。図
15から明らかなように、段差が40nmであっても明
視野顕微鏡ではまだ十分なコントラストを得ることがで
きず、図14に示した本発明による像とのコントラスト
の差は明らかである。For comparison, FIG. 15 shows a simulation result when a position detection mark with a step difference of 40 nm is detected using a bright field microscope under the same conditions as in FIG. As is clear from FIG. 15, even if the step is 40 nm, sufficient contrast cannot be obtained with a bright field microscope, and the difference in contrast with the image according to the present invention shown in FIG. 14 is clear.
【0082】ところで、前述の実施例では、照明光束制
限部材6が形成する輪帯状の2次光源、即ち輪帯透過部
Iの内半径や外半径、その輪帯透過部Iと共役な位相差
フィルター16上の位相差付加部Sの内半径や外半径、
及び結像光学系の開口数は、照明光束の波長域(λ1〜
λ2)により決定されるとしたが、例えば位置検出マー
ク11と撮像素子28との間にシャープカットフィルタ
ー等の波長選択素子を挿入する場合、または撮像素子2
8の分光感度が照明光束の波長域よりも狭い場合など
は、これらを考慮して、すなわち位置検出マーク11の
画像信号の形成に実際に寄与する波長域に基づいて、各
値を決定することになる。By the way, in the above-mentioned embodiment, the inner and outer radii of the ring-shaped secondary light source formed by the illumination light flux limiting member 6, that is, the ring-shaped transparent portion I, and the phase difference conjugate with the ring-shaped transparent portion I. The inner radius and outer radius of the phase difference adding portion S on the filter 16,
And the numerical aperture of the imaging optical system is the wavelength range of the illumination light flux (λ1 to λ1
λ2), but when a wavelength selection element such as a sharp cut filter is inserted between the position detection mark 11 and the image sensor 28, or the image sensor 2
When the spectral sensitivity of 8 is narrower than the wavelength range of the illumination light flux, etc., these values are taken into consideration, that is, each value is determined based on the wavelength range that actually contributes to the formation of the image signal of the position detection mark 11. become.
【0083】また、前述の実施例で用いた照明光束制限
部材6は、照明系瞳面上に分布する光束のうち輪帯透過
部I内の光束のみを透過し、それ以外は遮光して輪帯状
の2次光源を形成するものであったが、照明系瞳面上の
輪帯領域に、例えば光ファイバー、又は凹型円錐プリズ
ムと凸型円錐プリズムとを組み合わせたもの等を用いて
照明光束を集光させて2次光源を形成するようにしても
良い。この場合、光量損失が大幅に低減されるという利
点が得られる。Further, the illumination light flux limiting member 6 used in the above-mentioned embodiment transmits only the light flux in the annular zone I of the light flux distributed on the pupil plane of the illumination system, and shields the other light fluxes. Although a band-shaped secondary light source is formed, the illumination light flux is collected in the annular zone on the pupil plane of the illumination system by using, for example, an optical fiber or a combination of a concave conical prism and a convex conical prism. You may make it light-emit and form a secondary light source. In this case, there is an advantage that the light quantity loss is significantly reduced.
【0084】さらに、光源1からの光を入射して、照明
系瞳面上に複数の光源像を形成するオプチカルインテグ
レータ(例えばフライアイレンズ)を設けるようにして
もよい。この場合、位置検出マーク11上での照明光の
照度均一性が大幅に向上するという利点が得られる。但
し、照明系瞳面上に輪帯状の2次光源を形成するため
に、例えばフライアイレンズの射出側面、又は入射側面
近傍に、輪帯開口を持つ開口絞り(図5(A))を配置す
ることになる。また、光量損失を最小限に抑えるため
に、光源1とフライアイレンズとの間に、前述の凹型及
び凸型円錐プリズム、又は輪帯状の射出端を持つ光ファ
イバーを配置する、あるいは光源1とフライアイレンズ
との間に配置されるインプットレンズの収差を利用する
ことにより、フライアイレンズの入射面上での照明光の
強度分布を、光軸を中心とする輪帯領域で他の領域より
も高くすることが好ましい。Further, an optical integrator (for example, a fly's eye lens) that receives light from the light source 1 and forms a plurality of light source images on the pupil plane of the illumination system may be provided. In this case, there is an advantage that the illuminance uniformity of the illumination light on the position detection mark 11 is significantly improved. However, in order to form a ring-shaped secondary light source on the pupil plane of the illumination system, for example, an aperture stop (FIG. 5 (A)) having a ring-shaped aperture is arranged near the exit side or the entrance side of the fly-eye lens. Will be done. In addition, in order to minimize the light amount loss, the above-mentioned concave and convex conical prisms or an optical fiber having a ring-shaped exit end is arranged between the light source 1 and the fly-eye lens, or the light source 1 and the fly eye lens are arranged. By utilizing the aberration of the input lens arranged between the eye lens and the eye lens, the intensity distribution of the illumination light on the entrance surface of the fly's eye lens can be adjusted in the annular zone around the optical axis more than in other areas. It is preferable to raise it.
【0085】さらに、輪帯透過部Iの外半径と内半径の
少なくとも一方が異なる、換言すれば輪帯透過部Iの半
径方向の幅(輪帯比)と位置の少なくとも一方が異なる
複数の開口絞りを交換機構7に設け、この複数の開口絞
りをそれぞれ交換して照明光路中に配置するように構成
しても良い。この場合、位置検出マーク11の微細度
(周期P)の変化に応じて、前述の条件式(10)、
(11)を満足する、その周期に最適な開口絞りを選択
して照明光路に配置することができる。従って、位置検
出マーク11の周期に依らず、常に高いコントラストの
マーク像を得ることができる。また、直径が異なる複数
の円形遮光板、及び円形開口の直径が異なる複数の絞り
部材(σ絞り)を交換機構7に設け、円形遮光板によっ
て輪帯透過部Iの内半径を、σ絞りによってその外半径
を規定するように構成し、円形遮光板とσ絞りとの組み
合わせによって照明系瞳面上での輪帯状の2次光源(照
明光束分布、又は光強度分布)の半径方向の幅や位置を
変更するようにしてもよい。ここで、複数のσ絞りを交
換機構7に設ける代わりに、光源1と交換機構7との間
にズームレンズ系を配置する、または円形遮光板に近接
して可変開口絞り(虹彩絞り)を配置し、このズームレ
ンズ系、または虹彩絞りによって照明光の光束径(大き
さ)、即ち輪帯透過部Iの外半径を任意に変更するよう
に構成してもよい。Further, a plurality of apertures having at least one of the outer radius and the inner radius of the annular zone transparent portion I different, in other words, having at least one of the radial width (annular zone ratio) and position of the annular zone transparent portion I different. A diaphragm may be provided in the exchange mechanism 7, and the plurality of aperture diaphragms may be respectively replaced and arranged in the illumination optical path. In this case, according to the change of the fineness (cycle P) of the position detection mark 11, the conditional expression (10),
It is possible to select the aperture stop that satisfies the condition (11) and is optimum for the period and arrange it in the illumination optical path. Therefore, it is possible to always obtain a high-contrast mark image regardless of the cycle of the position detection mark 11. In addition, a plurality of circular light-shielding plates having different diameters and a plurality of diaphragm members (σ diaphragms) having different diameters of circular openings are provided in the exchange mechanism 7, and the circular light-shielding plate is used to adjust the inner radius of the annular zone transmission portion I by the σ diaphragm. The outer radius is defined, and the width in the radial direction of the ring-shaped secondary light source (illumination luminous flux distribution or light intensity distribution) on the pupil plane of the illumination system is determined by combining the circular light shield and the σ diaphragm. The position may be changed. Here, instead of providing a plurality of σ diaphragms in the exchanging mechanism 7, a zoom lens system is arranged between the light source 1 and the exchanging mechanism 7, or a variable aperture diaphragm (iris diaphragm) is arranged close to the circular light shielding plate. However, the luminous flux diameter (size) of the illumination light, that is, the outer radius of the ring zone transmission portion I may be arbitrarily changed by this zoom lens system or the iris diaphragm.
【0086】また、複数の開口絞りを有する交換機構7
の代わりに、例えば液晶素子、又はエレクトロクロミッ
ク素子で作られた開口絞りを照明系瞳面に配置するよう
にしても良い。この場合、照明系瞳面上の透過部Iの形
状、大きさ、及び位置を任意に変更することが可能とな
る。さらに、凹状円錐プリズムと凸型円錐プリズムとを
組み合わせて、照明系瞳面上に前述の条件式(10)、
(11)を満足する輪帯状の照明光束分布(又は光強度
分布)を形成するようにしても良い。このとき、この2
つのプリズムを光軸方向に相対移動可能に構成して、そ
の輪帯状の照明光束分布(光強度分布)の半径方向の位
置を変更するようにしてもよい。また、光源1とこの2
つのプリズムとの間にズームレンズ系を配置して、光源
側の円錐プリズムに入射する照明光束の径(大きさ)を
変化させるようにし、その輪帯状の照明光束分布(光強
度分布)の半径方向の幅を変更するようにしても良い。Also, the exchange mechanism 7 having a plurality of aperture stops
Instead of, the aperture stop made of, for example, a liquid crystal element or an electrochromic element may be arranged on the pupil plane of the illumination system. In this case, the shape, size, and position of the transmission part I on the pupil plane of the illumination system can be arbitrarily changed. Furthermore, by combining the concave conical prism and the convex conical prism, the conditional expression (10) above on the pupil plane of the illumination system,
An annular luminous flux distribution (or light intensity distribution) satisfying (11) may be formed. At this time, this 2
The two prisms may be configured to be relatively movable in the optical axis direction, and the radial position of the annular luminous flux distribution (light intensity distribution) may be changed. Also, the light source 1 and this 2
A zoom lens system is placed between the two prisms to change the diameter (size) of the illumination luminous flux incident on the conical prism on the light source side, and the radius of the annular luminous flux distribution (light intensity distribution). The width in the direction may be changed.
【0087】尚、輪帯透過部I(2次光源)の外半径や
内半径は、位置検出マーク11の周期の変化に連動して
変更する必要はなく、その変化により像コントラストや
忠実性が、所望の位置検出精度を得られない程度に劣化
したときのみ、その外半径や内半径を変更するようにし
ても良い。また、像コントラストや忠実性を多少劣化さ
せても所望の位置検出精度が得られるのであれば、照明
系瞳面上の輪帯透過部I以外の領域に分布する照明光束
を完全に遮光しなくてもよい。即ち、照明系瞳面上での
輪帯領域以外の領域を減光部としてもよく、要は照明系
瞳面上の照明光(2次光源)の強度分布を、光軸を中心
とする輪帯領域で他の領域よりも高くすればよい。一例
としては、照明系瞳面上での光強度分布が輪帯領域で他
の領域よりも高くなるように、光源1と照明系瞳面との
間に配置される少なくとも1つのレンズ系、例えば図1
のリレーレンズ5の収差を調整すればよい。このとき、
収差の補正量が異なる複数のリレーレンズをそれぞれ交
換して照明光路中に配置して、照明系瞳面上での光強度
分布を変更するようにしてもよい。The outer and inner radii of the ring-shaped transmission portion I (secondary light source) do not need to be changed in conjunction with the change in the cycle of the position detection mark 11, and the change can improve the image contrast and fidelity. The outer radius and the inner radius may be changed only when the desired position detection accuracy is deteriorated. Further, if the desired position detection accuracy can be obtained even if the image contrast and the fidelity are slightly deteriorated, the illumination light flux distributed in the area other than the ring zone transmission portion I on the illumination system pupil plane is not completely blocked. May be. That is, a region other than the ring-shaped region on the illumination system pupil plane may be used as the dimming unit, and the point is that the intensity distribution of the illumination light (secondary light source) on the illumination system pupil plane is centered around the optical axis. The band area may be higher than the other areas. As an example, at least one lens system arranged between the light source 1 and the illumination system pupil plane such that the light intensity distribution on the illumination system pupil plane is higher in the annular zone than in other areas, for example, Figure 1
The aberration of the relay lens 5 may be adjusted. At this time,
A plurality of relay lenses having different amounts of aberration correction may be exchanged and arranged in the illumination optical path to change the light intensity distribution on the pupil plane of the illumination system.
【0088】さらに照明光源1として、半導体レーザ等
のレーザを用いてもよい。この場合も照明光束としては
ある程度の波長域を有することが望ましいので、多波長
で発振するレーザ、例えば色素レーザを使用するか、異
なる波長で発振する複数個のレーザを使用すると良い。
また、位相差フィルター16はその位相差付加部Sに、
結像光束(0次光)を減光する部材(金属薄膜So)が
一体に形成されるものとしたが、例えば輪帯状の金属薄
膜(減光部)を持つ透明基板を、位相差フィルター16
に近接して配置する、あるいは位相差フィルター16と
ほぼ共役な面(瞳共役面)に配置するようにしてもよ
い。Further, a laser such as a semiconductor laser may be used as the illumination light source 1. Also in this case, since it is desirable that the illumination light flux has a certain wavelength range, it is preferable to use a laser that oscillates at multiple wavelengths, for example, a dye laser or a plurality of lasers that oscillate at different wavelengths.
Further, the phase difference filter 16 has a phase difference adding section S
Although the member (metal thin film So) for dimming the image forming light flux (0th order light) is integrally formed, for example, a transparent substrate having a ring-shaped metal thin film (darkening portion) is used as the phase difference filter 16
May be arranged in close proximity to, or may be arranged on a plane (pupil conjugate plane) substantially conjugate with the phase difference filter 16.
【0089】さらに、照明系瞳面上の輪帯透過部Iの外
半径と内半径の少なくとも一方の変化に連動して、結像
系瞳面上の位相差付加部Sの外半径と内半径の少なくと
も一方を変化させるように構成してもよい。例えば、位
相差付加部Sの外半径と内半径の少なくとも一方が異な
る、換言すれば位相差付加部Sの半径方向の幅(輪帯
比)と位置の少なくとも一方が異なる複数の位相差フィ
ルターを交換機構17に設け、この複数の位相差フィル
ターをそれぞれ交換して結像光路中に配置するように構
成すればよい。この場合、前述の如く位置検出マーク1
1の周期に応じて輪帯透過部Iの外半径と内半径の少な
くとも一方が変化しても、この変化後の輪帯透過部Iに
最適な位相差フィルターを選択して結像光路に配置する
ことができる。従って、常に0次回折光のみに位相差を
付加して撮像素子28に入射させることができる。尚、
結像系瞳面上の位相差付加部Sの幅や位置は、照明系瞳
面上の輪帯透過部Iの外半径や内半径の変化に連動して
変更する必要はなく、その変化により像コントラストや
忠実性が、所望の位置検出精度を得られない程度に劣化
したときのみ、その遮光幅や位置を変更するだけでも良
い。Further, the outer radius and the inner radius of the phase difference adding portion S on the imaging system pupil plane are linked with the change of at least one of the outer radius and the inner radius of the ring zone transmission portion I on the pupil plane of the illumination system. At least one of the above may be changed. For example, a plurality of phase difference filters in which at least one of the outer radius and the inner radius of the phase difference adding part S is different, in other words, at least one of the radial width (ring ratio) and the position of the phase difference adding part S is different, It suffices to provide the exchanging mechanism 17 so that the plurality of phase difference filters are exchanged and arranged in the imaging optical path. In this case, as described above, the position detection mark 1
Even if at least one of the outer radius and the inner radius of the annular zone transmissive portion I changes according to the cycle of 1, the optimum phase difference filter for the changed annular zone transmissive portion I is selected and placed in the imaging optical path. can do. Therefore, it is possible to always add a phase difference only to the 0th-order diffracted light and make it enter the image pickup device 28. still,
It is not necessary to change the width and the position of the phase difference adding portion S on the pupil plane of the imaging system in conjunction with the change of the outer radius and the inner radius of the annular transmission portion I on the pupil plane of the illumination system. Only when the image contrast or the fidelity deteriorates to the extent that desired position detection accuracy cannot be obtained, the light shielding width or position may be changed.
【0090】また、前述の如く外半径及び/又は内半径
が異なる位相差付加部を持つ、複数の位相差フィルター
の代わりに、例えば光学的な厚さはほぼ同一で、直径が
異なる複数の円形透明板を交換機構17に設け、この複
数の円形透明板をそれぞれ交換して結像光路中に配置可
能に構成するだけでもよい。但し、照明系瞳面上の輪帯
透過部Iの外半径を変更するときは、その変更された輪
帯透過部と結像関係となる輪帯領域内の結像光束とその
外側の結像光束との間に位相差を付加できないが、その
変更により像コントラストや忠実性が、所望の位置検出
精度を得られない程度に劣化しなければ何ら問題ない。
尚、像コントラストや忠実性の劣化が問題になるとき
は、例えば開口絞り26によってその輪帯領域の外側に
分布する結像光束の少なくとも一部を遮光するようにし
てもよい。このとき、前述の不等式(12)をほぼ満足
する(結像光学系の開口数NAoの変更に伴う像コント
ラストや忠実性の劣化が実用上問題とならない)範囲内
で開口絞り26の開口径を変更することが望ましい。Further, instead of a plurality of phase difference filters having phase difference adding portions having different outer and / or inner radii as described above, for example, a plurality of circular shapes having substantially the same optical thickness but different diameters. It is also possible to provide a transparent plate in the exchange mechanism 17 and replace the plurality of circular transparent plates with each other so that they can be arranged in the imaging optical path. However, when changing the outer radius of the ring-shaped transmission part I on the pupil plane of the illumination system, the image-forming light flux in the ring-shaped region which is in an image-forming relationship with the changed ring-shaped transmission part and the image forming outside thereof are formed. A phase difference cannot be added to the light flux, but there is no problem if the change does not degrade the image contrast and fidelity to the extent that desired position detection accuracy cannot be obtained.
When deterioration of image contrast or fidelity becomes a problem, for example, the aperture stop 26 may block at least a part of the image-forming light flux distributed outside the annular region. At this time, the aperture diameter of the aperture stop 26 is set within a range that substantially satisfies the above inequality (12) (the deterioration of image contrast and fidelity due to the change of the numerical aperture NAo of the imaging optical system does not pose a practical problem). It is desirable to change.
【0091】また、前述の輪帯透過部I及び位相差付加
部Sは共にその形状が輪帯(円環)状であるとしたが、
例えば矩形、正方形、又は多角形(特に正多角形)とし
ても良い。さらに、照明系瞳面上の輪帯透過部Sを部分
的に遮光(又は減光)する、即ち輪帯透過部Iを複数の
部分透光部(その形状は任意で良く、例えば円弧、円
形、又は直線状等として構わない)から構成しても良
い。これに対応して結像系瞳面上の位相差付加部Sを、
その輪帯透過部Iと同一の形状としても良いし、あるい
はその部分透光部と結像関係となる複数の部分領域をほ
ぼ含む輪帯、矩形、又は多角形状等としても良い。尚、
照明系瞳面上の輪帯透過部Iを正方形とする場合は、そ
の正方形透過部の内側エッジと光軸との距離を前述の内
半径ri、その外側エッジと光軸との距離を前述の外半
径roと見做して、前述の条件式(10)、(11)を
満足するように各値を決定すれば良い。但し、結像光学
系の開口数NAoについては前述の条件式(12)から
決定される開口数よりも大きくしておくことが望まし
い。Further, both the annular zone transmitting portion I and the phase difference applying portion S described above are assumed to have an annular (annular) shape.
For example, it may be a rectangle, a square, or a polygon (particularly a regular polygon). Further, the annular zone transmissive portion S on the pupil plane of the illumination system is partially shielded (or dimmed), that is, the annular zone transmissive portion I is divided into a plurality of partial translucent portions (the shape may be arbitrary, for example, an arc or a circle). , Or may be linear or the like). Corresponding to this, the phase difference addition unit S on the pupil plane of the imaging system is
The shape may be the same as that of the annular zone transmissive portion I, or may be an annular zone, a rectangle, or a polygonal shape that substantially includes a plurality of partial regions that form an image-forming relationship with the partial translucent portion. still,
When the annular transmissive part I on the pupil plane of the illumination system is square, the distance between the inner edge of the square transmissive part and the optical axis is the above-mentioned inner radius ri, and the distance between the outer edge and the optical axis is the above-mentioned. Considering the outer radius ro, each value may be determined so as to satisfy the above conditional expressions (10) and (11). However, it is desirable that the numerical aperture NAo of the imaging optical system is set to be larger than the numerical aperture determined from the conditional expression (12).
【0092】尚、以上の実施例では半導体基板上のマー
クの位置を検出する装置を前提に説明を行ったが、本発
明はフォトリソグラフィ工程で使用される各種装置(露
光装置等)以外に、他の用途の光学装置に対しても応用
することが可能である。例えば、目視検査、観察に使用
される一般の光学顕微鏡に対して本発明を適用すれば、
上記と同様に低段差パターンに対して高コントラストな
像を得ることができる。さらには、生物顕微鏡のように
透過照明を使用する顕微鏡に対しても本発明を適用して
同様の効果を得ることができる。Although the above embodiments have been described on the premise of an apparatus for detecting the position of a mark on a semiconductor substrate, the present invention is not limited to various apparatuses used in a photolithography process (exposure apparatus, etc.) It can be applied to optical devices for other purposes. For example, if the present invention is applied to a general optical microscope used for visual inspection and observation,
Similar to the above, a high-contrast image can be obtained with respect to a low step pattern. Furthermore, the same effect can be obtained by applying the present invention to a microscope using transmitted illumination such as a biological microscope.
【0093】[0093]
【発明の効果】以上のように本発明によれば、平坦化工
程等により凹凸変化(段差)が極めて小さくなる位置検
出マークであっても、十分にコントラストの高いマーク
像を得ることができる。従って、高いコントラストの像
強度分布を用いてそのマーク位置の検出を高精度に行な
うことができる。As described above, according to the present invention, it is possible to obtain a mark image having a sufficiently high contrast even with the position detection mark in which the unevenness change (step) is extremely reduced by the flattening process or the like. Therefore, the mark position can be detected with high accuracy by using the image intensity distribution with high contrast.
【0094】また、表面段差、又は光束の位相変化が少
ない各種パターンの像を従来よりも高いコントラストで
検出可能な光学装置(光学顕微鏡等)を実現できる。Further, it is possible to realize an optical device (optical microscope or the like) capable of detecting images of various patterns with a small surface level difference or a small phase change of the light flux with a higher contrast than before.
【図1】本発明の実施例による位置検出装置の概略的な
全体構成を示す図。FIG. 1 is a diagram showing a schematic overall configuration of a position detection device according to an embodiment of the present invention.
【図2】本発明における光学的なフーリエ変換の関係の
説明に供する図。FIG. 2 is a diagram for explaining a relationship of optical Fourier transform in the present invention.
【図3】(A)は照明視野絞りの構成を示す図、(B)
は指標板用照明視野絞りの構成を示す図、(C)は指標
板の構成を示す図。FIG. 3A is a diagram showing a configuration of an illumination field diaphragm, and FIG.
FIG. 4 is a diagram showing a configuration of an illumination field diaphragm for an index plate, and (C) is a diagram showing a configuration of an index plate.
【図4】(A)、(B)は位置検出マークの具体的な構
成を示す図、(C)は撮像素子上に形成される像強度分
布を示す図。4A and 4B are diagrams showing a specific configuration of a position detection mark, and FIG. 4C is a diagram showing an image intensity distribution formed on an image sensor.
【図5】(A)は照明光束制限部材の具体的な構成を示
す図、(B)は位相差フィルターの具体的な構成を示す
図。5A is a diagram showing a specific configuration of an illumination light flux limiting member, and FIG. 5B is a diagram showing a specific configuration of a phase difference filter.
【図6】本発明の一実施例による位相差フィルターの断
面図。FIG. 6 is a sectional view of a phase difference filter according to an embodiment of the present invention.
【図7】本発明の実施例による位置検出装置で得られる
低段差の位置検出マークの像のシミュレーション結果を
示す図。FIG. 7 is a diagram showing a simulation result of an image of a position detection mark having a low step obtained by the position detection device according to the embodiment of the present invention.
【図8】図7のシミュレーション条件のうち結像光学系
の開口数のみを変更して得られる低段差の位置検出マー
クの像のシミュレーション結果を示す図。8 is a diagram showing a simulation result of an image of a position detection mark having a low step obtained by changing only the numerical aperture of the imaging optical system in the simulation conditions of FIG.
【図9】図7のシミュレーション条件のうち照明系瞳面
上の輪帯透過部の外半径のみを変更して得られる低段差
の位置検出マークの像のシミュレーション結果を示す
図。9 is a diagram showing a simulation result of an image of a position detection mark having a low step obtained by changing only the outer radius of the ring zone transmission portion on the pupil plane of the illumination system among the simulation conditions of FIG. 7.
【図10】図7のシミュレーション条件のうち照明系瞳
面上の輪帯透過部の内半径のみを変更して得られる低段
差の位置検出マークの像のシミュレーション結果を示す
図。FIG. 10 is a diagram showing a simulation result of an image of a position detection mark having a low step obtained by changing only the inner radius of the ring zone transmission portion on the pupil plane of the illumination system among the simulation conditions of FIG. 7.
【図11】照明系瞳面上の透過部、及び結像系瞳面上の
位相差付加部をそれぞれ円形としたときに得られる低段
差の位置検出マークの像のシミュレーション結果を示す
図。FIG. 11 is a diagram showing a simulation result of an image of a position detection mark having a low step obtained when each of the transmission part on the pupil plane of the illumination system and the phase difference adding part on the pupil plane of the imaging system is circular.
【図12】図7のシミュレーション条件のうち結像系瞳
面上の位相差付加部の透過率のみを変更して0%とし
た、所謂暗視野顕微鏡で得られる低段差の位置検出マー
クの像のシミュレーション結果を示す図。FIG. 12 is an image of a low step position detection mark obtained by a so-called dark-field microscope in which only the transmittance of the phase difference adding portion on the pupil plane of the imaging system is changed to 0% among the simulation conditions of FIG. 7. The figure which shows the simulation result of.
【図13】明視野顕微鏡で得られる低段差の位置検出マ
ークの像のシミュレーション結果を示す図。FIG. 13 is a diagram showing a simulation result of an image of a position detection mark having a low step obtained by a bright field microscope.
【図14】結像系瞳面上の位相差付加部の透過率が10
0%であるときに得られる低段差の位置検出マークの像
のシミュレーション結果を示す図。FIG. 14 shows that the transmittance of the phase difference adding portion on the pupil plane of the imaging system is 10
The figure which shows the simulation result of the image of the position detection mark of a low level difference obtained when it is 0%.
【図15】明視野顕微鏡で得られる比較的高段差の位置
検出マークの像のシミュレーション結果を示す図。FIG. 15 is a diagram showing a simulation result of an image of a position detection mark having a relatively high step obtained by a bright field microscope.
4 照明視野絞り 6 照明光束制限部材 16 位相差フィルター 22 指標板照明視野絞り 24 指標板 28 撮像素子 29 画像処理系 4 Illumination field stop 6 Illumination light flux limiting member 16 Phase difference filter 22 Index plate Illumination field stop 24 Index plate 28 Image sensor 29 Image processing system
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/30 525P 525B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01L 21/30 525P 525B
Claims (29)
出マークを照射する照明光学系と、該位置検出マークか
ら発生する光を入射して撮像素子上に該位置検出マーク
の像を形成する結像光学系とを備え、前記撮像素子から
出力される画像信号に基づいて前記位置検出マークの位
置を検出する装置において、 前記位置検出マークに対して実質的に光学的フーリエ変
換の関係となる前記照明光学系中の第1面での照明光束
を、前記照明光学系の光軸を中心とするほぼ輪帯状の第
1領域内に制限する光束制限部材と;前記位置検出マー
クに対して実質的に光学的フーリエ変換の関係となる前
記結像光学系中の第2面上の、前記第1領域と結像関係
となるほぼ輪帯状の第2領域とそれ以外の領域とにそれ
ぞれ分布する結像光束の位相を異ならせる位相差部材と
を備えたことを特徴とする位置検出装置。1. An illumination optical system for irradiating a position detection mark on a substrate with illumination light in a predetermined wavelength range, and light generated from the position detection mark is incident to form an image of the position detection mark on an image sensor. A device for detecting the position of the position detection mark based on an image signal output from the image pickup element, the device including an imaging optical system for forming, and a relationship of substantially optical Fourier transform with respect to the position detection mark. And a light flux limiting member for limiting the illumination light flux on the first surface in the illumination optical system to a substantially annular first region centered on the optical axis of the illumination optical system; On the second surface in the image forming optical system having substantially the relationship of optical Fourier transform, respectively, into a substantially annular zone second region having an image forming relationship with the first region and the other region. The degree to which the phase of the distributed image-forming light flux is changed Position detecting device characterized by comprising a differential member.
光する部材を有することを特徴とする請求項1に記載の
装置。2. The apparatus according to claim 1, further comprising a member for dimming an imaging light beam distributed in the second region.
第2面に配置され、前記第2領域とそれ以外の領域とに
それぞれ分布する結像光束の間にほぼ(2m+1)π/
2±π/4 [rad](mは整数)の位相差を与える光学フ
ィルターであることを特徴とする請求項1、又は2に記
載の装置。3. The phase difference member is disposed on the second surface in the image forming optical system, and is approximately (2m + 1) π / between the image forming light fluxes distributed in the second region and the other regions.
The device according to claim 1, wherein the device is an optical filter that gives a phase difference of 2 ± π / 4 [rad] (m is an integer).
寄与する光束の波長域中の最短波長をλ1、最長波長を
λ2、前記位置検出マークの周期をPとすると、前記輪
帯状の第1領域の外半径ro 、及び内半径ri は、 ri≧λ2/(2×P) ro−ri≦λ1/P の関係を満たすことを特徴とする請求項1〜3のいずれ
かに記載の装置。4. When the shortest wavelength in the wavelength range of the light flux of the illumination light that contributes to the formation of the image signal is λ1, the longest wavelength is λ2, and the period of the position detection mark is P, the ring-shaped first 4. The device according to claim 1, wherein the outer radius ro and the inner radius r i of one region satisfy the relationship of ri ≧ λ2 / (2 × P) ro-ri ≦ λ1 / P. .
前記位置検出マークの周期をP、前記照明光のうち前記
画像信号の形成に寄与する光束の波長域中の最長波長を
λ2とすると、前記結像光学系の開口数NAoは、 NAo≧ro+λ2/P の関係を満たすことを特徴とする請求項1〜4のいずれ
かに記載の装置。5. The outer radius of the ring-shaped first region is ro,
Assuming that the period of the position detection mark is P and the longest wavelength in the wavelength range of the light flux of the illumination light that contributes to the formation of the image signal is λ2, the numerical aperture NAo of the imaging optical system is NAo ≧ ro + λ2 / The device according to claim 1, wherein the relationship P 1 is satisfied.
差部材を挿脱可能に保持する部材を有することを特徴と
する請求項1〜5のいずれかに記載の装置。6. The apparatus according to claim 1, further comprising a member that holds the phase difference member so that it can be inserted into and removed from the optical path of the imaging optical system.
制限部材を挿脱可能に保持する部材を有することを特徴
とする請求項6に記載の装置。7. The apparatus according to claim 6, further comprising a member that holds the light flux limiting member in a removable manner with respect to an optical path of the illumination optical system.
する像形成手段を有し、前記撮像素子から出力される画
像信号に基づいて前記位置検出マークの像と前記指標マ
ークの像との位置ずれを検出することを特徴とする請求
項1〜7のいずれかに記載の装置。8. An image forming means for forming an image of the index mark on the image pickup device, wherein the image of the position detection mark and the image of the index mark are formed based on an image signal output from the image pickup device. The device according to any one of claims 1 to 7, which detects a positional deviation.
する指標板と、該指標板を前記照明光と異なる光ビーム
で照射する照明系と、前記指標マークから発生した光を
入射してその像を前記撮像素子上に形成する結像系とを
含むことを特徴とする請求項8に記載の装置。9. The image forming means includes an index plate having the index mark, an illumination system for irradiating the index plate with a light beam different from the illumination light, and the light generated from the index mark to enter the index plate. 9. An apparatus according to claim 8, including an imaging system for forming an image on the image sensor.
記基板と実質的に共役な面に配置され、前記結像光学系
は、前記位置検出マークの像を前記指標板上に形成する
とともに、該位置検出マークの像と前記指標マークの像
とを前記撮像素子上に形成することを特徴とする請求項
9に記載の装置。10. The index plate is disposed on a surface substantially conjugate with the substrate in the image forming optical system, and the image forming optical system forms an image of the position detection mark on the index plate. 10. The apparatus according to claim 9, further comprising forming an image of the position detection mark and an image of the index mark on the image sensor.
る、前記位置検出マークからの結像光束の光量変化に応
じて、前記指標マークを照明する光ビームの強度を調整
する部材を有することを特徴とする請求項9、又は10
に記載の装置。11. The illumination system includes a member that adjusts the intensity of a light beam that illuminates the index mark in accordance with a change in the amount of an image forming light beam from the position detection mark that is incident on the image pickup element. 11. The method according to claim 9 or 10, wherein
An apparatus according to claim 1.
性を持つ位置検出マークを照射する照明光学系と、該位
置検出マークから発生する光を入射して撮像素子上に該
位置検出マークの像を形成する結像光学系とを備え、前
記撮像素子から出力される画像信号に基づいて前記位置
検出マークの位置を検出する装置において、 前記位置検出マークに対して実質的に光学的フーリエ変
換の関係となる前記照明光学系中の第1面での照明光束
を、前記照明光学系の光軸を中心とするほぼ輪帯状の領
域内に制限する光束制限部材と;前記位置検出マークに
対して実質的に光学的フーリエ変換の関係となる前記結
像光学系中の第2面上に分布する前記位置検出マークか
らの0次光とそれ以外の光の位相を異ならせる位相差部
材とを備えたことを特徴とする位置検出装置。12. An illumination optical system for irradiating a position detection mark having a periodicity on a substrate with an illumination light of a predetermined wavelength range, and light generated from the position detection mark is incident to detect the position on an image sensor. A device for detecting the position of the position detection mark based on an image signal output from the image pickup device, the device including an imaging optical system that forms an image of the mark, wherein the position detection mark is substantially optically A light flux limiting member for limiting the illumination light flux on the first surface in the illumination optical system, which has a Fourier transform relationship, within a substantially annular zone centered on the optical axis of the illumination optical system; and the position detection mark. A phase difference member that makes the phases of the 0th-order light and the other light from the position detection mark distributed on the second surface in the imaging optical system that have a substantially optical Fourier transform relationship with respect to And is equipped with Position detector.
光する部材を有することを特徴とする請求項12に記載
の装置。13. The apparatus according to claim 12, further comprising a member that attenuates 0th order light from the position detection mark.
の第2面に配置され、前記位置検出マークからの0次光
とそれ以外の光との間にほぼ(2m+1)π/2±π/
4 [rad](mは整数)の位相差を与える光学フィルター
であることを特徴とする請求項12、又は13に記載の
装置。14. The phase difference member is disposed on the second surface in the image forming optical system, and is approximately (2m + 1) π / 2 between the 0th-order light from the position detection mark and other light. ± π /
14. The device according to claim 12, which is an optical filter that gives a phase difference of 4 [rad] (m is an integer).
に寄与する光束の波長域中の最短波長をλ1、最長波長
をλ2、前記位置検出マークの周期をPとすると、前記
輪帯状の領域の外半径ro 、及び内半径ri は、 ri≧λ2/(2×P) ro−ri≦λ1/P の関係を満たすことを特徴とする請求項12〜14のい
ずれかに記載の装置。15. The ring-shaped area, where λ1 is the shortest wavelength, λ2 is the longest wavelength in the wavelength range of the light flux of the illumination light that contributes to the formation of the image signal, and P is the period of the position detection mark. 15. The apparatus according to claim 12, wherein the outer radius ro and the inner radius ri of the above satisfy the relationship of ri ≧ λ2 / (2 × P) ro-ri ≦ λ1 / P.
記位置検出マークの周期をP、前記照明光のうち前記画
像信号の形成に寄与する光束の波長域中の最長波長をλ
2とすると、前記結像光学系の開口数NAoは、 NAo≧ro+λ2/P の関係を満たすことを特徴とする請求項12〜15のい
ずれかに記載の装置。16. The outer radius of the ring-shaped region is ro, the period of the position detection mark is P, and the longest wavelength in the wavelength region of the illumination light that contributes to the formation of the image signal is λ.
The numerical aperture NAo of the imaging optical system satisfies the following formula: NAo ≧ ro + λ2 / P.
検出マークを照射する照明光学系と、該位置検出マーク
から発生する光を入射して撮像素子上に該位置検出マー
クの像を形成する結像光学系とを備え、前記撮像素子か
ら出力される画像信号に基づいて前記位置検出マークの
位置を検出する装置において、 前記位置検出マークに対して実質的に光学的フーリエ変
換の関係となる前記照明光学系中の第1面上での前記照
明光の強度分布を、前記照明光学系の光軸を中心とする
ほぼ輪帯状の第1領域で他の領域よりも高める光学部材
と;前記位置検出マークに対して実質的に光学的フーリ
エ変換の関係となる前記結像光学系中の第2面上の、前
記第1領域と結像関係となるほぼ輪帯状の第2領域とそ
れ以外の領域とにそれぞれ分布する結像光束の位相を異
ならせる位相差部材とを備えたことを特徴とする位置検
出装置。17. An illumination optical system for irradiating a position detection mark on a substrate with illumination light in a predetermined wavelength range, and light generated from the position detection mark is incident to form an image of the position detection mark on an image sensor. A device for detecting the position of the position detection mark based on an image signal output from the image pickup element, the device including an imaging optical system for forming, and a relationship of substantially optical Fourier transform with respect to the position detection mark. And an optical member that enhances the intensity distribution of the illumination light on the first surface in the illumination optical system in a substantially annular first region around the optical axis of the illumination optical system as compared to other regions. A substantially annular second region having an image-forming relationship with the first region on the second surface of the image-forming optical system having a substantially optical Fourier transform relationship with the position detection mark; Imaging light distributed in other areas Position detecting device characterized by comprising a phase difference members to vary the phase of the.
減光する部材を有することを特徴とする請求項17に記
載の装置。18. The apparatus according to claim 17, further comprising a member for dimming an image forming light beam distributed in the second region.
の第2面に配置され、前記第2領域とそれ以外の領域と
にそれぞれ分布する結像光束の間にほぼ(2m+1)π
/2±π/4 [rad](mは整数)の位相差を与える光学
フィルターであることを特徴とする請求項17、又は1
8に記載の装置。19. The phase difference member is arranged on a second surface in the image forming optical system, and is approximately (2m + 1) π between image forming light fluxes distributed in the second region and the other regions.
18. An optical filter which gives a phase difference of / 2 ± π / 4 [rad] (m is an integer), 18.
8. The device according to item 8.
に寄与する光束の波長域中の最短波長をλ1、最長波長
をλ2、前記位置検出マークの周期をPとすると、前記
輪帯状の第1領域の外半径ro 、及び内半径ri は、 ri≧λ2/(2×P) ro−ri≦λ1/P の関係を満たすことを特徴とする請求項17〜19のい
ずれかに記載の装置。20. When the shortest wavelength in the wavelength range of the light flux of the illumination light that contributes to the formation of the image signal is λ1, the longest wavelength is λ2, and the period of the position detection mark is P, the ring-shaped first 20. The apparatus according to claim 17, wherein an outer radius ro and an inner radius r i of one region satisfy a relationship of ri ≧ λ2 / (2 × P) ro-ri ≦ λ1 / P. .
、前記位置検出マークの周期をP、前記照明光のうち
前記画像信号の形成に寄与する光束の波長域中の最長波
長をλ2とすると、前記結像光学系の開口数NAoは、 NAo≧ro+λ2/P の関係を満たすことを特徴とする請求項17〜20のい
ずれかに記載の装置。21. The outer radius of the ring-shaped first region is ro
, P is the period of the position detection mark, and λ2 is the longest wavelength in the wavelength range of the light flux that contributes to the formation of the image signal in the illumination light, the numerical aperture NAo of the imaging optical system is NAo ≧ ro + λ2 The apparatus according to any one of claims 17 to 20, wherein the relationship of / P is satisfied.
他の領域での光強度をほぼ零にするように、前記他の領
域をほぼ覆う遮光部を持つ絞り部材を有することを特徴
とする請求項17〜21のいずれかに記載の装置。22. The optical member includes a diaphragm member having a light-shielding portion that substantially covers the other area so that the light intensity in the other area on the first surface is substantially zero. The device according to any one of claims 17 to 21.
域の外半径と内半径の少なくとも一方を変化させる強度
分布変更部材を有することを特徴とする請求項17〜2
2のいずれかに記載の装置。23. The optical member includes a strength distribution changing member that changes at least one of an outer radius and an inner radius of the ring-shaped first region.
2. The device according to any one of 2.
口の外半径と内半径の少なくとも一方が異なる複数の絞
り部材と、該複数の絞り部材の1つを前記照明光学系の
光路中に配置するように該複数の絞り部材を保持する部
材とを有することを特徴とする請求項23に記載の装
置。24. The intensity distribution changing member includes a plurality of diaphragm members having at least one of an outer radius and an inner radius of a ring-shaped opening, and one of the plurality of diaphragm members disposed in an optical path of the illumination optical system. 24. A device according to claim 23, comprising a member for holding the plurality of diaphragm members for placement.
半径と内半径との少なくとも一方の変化に応じて、前記
輪帯状の第2領域の半径方向の幅と位置との少なくとも
一方を変化させることを特徴とする請求項17〜24の
いずれかに記載の装置。25. The retardation member sets at least one of a radial width and a position of the ring-shaped second region in accordance with a change in at least one of an outer radius and an inner radius of the first region. 25. The device according to any of claims 17-24, characterized in that it is varied.
検出マークを照射する照明光学系と、該位置検出マーク
から発生する光を入射して撮像素子上に該位置検出マー
クの像を形成する結像光学系とを備え、前記撮像素子か
ら出力される画像信号に基づいて前記位置検出マークの
位置を検出する装置において、 前記照明光学系の実質的な瞳面上の、前記照明光学系の
光軸を中心とするほぼ輪帯状の第1領域内に分布する照
明光束を透過せしめる絞り部材と;前記結像光学系の実
質的な瞳面上の、前記第1領域と結像関係となるほぼ輪
帯状の第2領域とそれ以外の領域とにそれぞれ分布する
結像光束の位相を異ならせる位相差部材とを備えたこと
を特徴とする位置検出装置。26. An illumination optical system for irradiating a position detection mark on a substrate with illumination light in a predetermined wavelength range, and light generated from the position detection mark is incident to form an image of the position detection mark on an image sensor. An image forming optical system for forming the image, and an apparatus for detecting the position of the position detection mark based on an image signal output from the image pickup element, wherein the illumination optical system is substantially on a pupil plane of the illumination optical system. A diaphragm member for transmitting an illumination light flux distributed in a first zone-shaped region centered on the optical axis of the system; and an image formation relationship with the first region on a substantial pupil plane of the image forming optical system. And a phase difference member that makes the phases of the image-forming light fluxes distributed respectively in the second region having a substantially annular shape and the other region that are different from each other.
検出マークを照射する照明光学系と、該位置検出マーク
から発生する光を入射して撮像素子上に該位置検出マー
クの像を形成する結像光学系とを備え、前記撮像素子か
ら出力される画像信号に基づいて前記位置検出マークの
位置を検出する装置において、 前記照明光学系の実質的な瞳面上に、前記照明光学系の
光軸を中心とするほぼ輪帯状の2次光源を形成する2次
光源形成部材と;前記結像光学系の実質的な瞳面上の、
前記2次光源と結像関係となるほぼ輪帯状の領域とそれ
以外の領域とにそれぞれ分布する結像光束の位相を異な
らせる位相差部材とを備えたことを特徴とする位置検出
装置。27. An illumination optical system for irradiating a position detection mark on a substrate with illumination light in a predetermined wavelength range, and light generated from the position detection mark is incident to form an image of the position detection mark on an image sensor. An image forming optical system for forming the image forming device, which detects the position of the position detection mark based on an image signal output from the image pickup device, wherein the illumination optical system is provided on a substantial pupil plane of the illumination optical system. A secondary light source forming member that forms a secondary light source in a substantially annular shape centered on the optical axis of the system; and on a substantial pupil plane of the imaging optical system,
A position detecting device comprising: a phase difference member that makes the phases of image-forming light fluxes distributed respectively in a substantially annular region having an image-forming relationship with the secondary light source and a region other than the region.
検出マークを照射する照明光学系と、該位置検出マーク
から発生する光を入射して撮像素子上に該位置検出マー
クの像を形成する結像光学系とを備え、前記撮像素子か
ら出力される画像信号に基づいて前記位置検出マークの
位置を検出する装置において、 前記照明光学系の実質的な瞳面上での光強度分布を、前
記照明光学系の光軸を中心とするほぼ輪帯状の領域でそ
の内側の領域よりも高める光学部材と;前記結像光学系
の実質的な瞳面上の、前記内側領域と結像関係となるほ
ぼ円形の領域とそれ以外の領域とにそれぞれ分布する結
像光束の位相を異ならせる位相差部材とを備えたことを
特徴とする位置検出装置。28. An illumination optical system for irradiating a position detection mark on a substrate with illumination light in a predetermined wavelength range, and light generated from the position detection mark is incident to form an image of the position detection mark on an image sensor. An image forming optical system for forming, which detects a position of the position detection mark based on an image signal output from the image pickup element, wherein a light intensity distribution substantially on a pupil plane of the illumination optical system. With an optical member for enhancing the optical axis of the illumination optical system in a substantially ring-shaped region as compared with an inner region thereof; forming an image with the inner region on a substantial pupil plane of the imaging optical system. 1. A position detecting device, comprising: a phase difference member that makes the phases of image-forming light fluxes distributed in a substantially circular region and a region other than the related region different from each other.
広帯域光、又は多波長光を射出する光源を含むことを特
徴とする請求項1〜28のいずれかに記載の装置。29. The apparatus according to claim 1, wherein the illumination optical system includes a light source that emits broadband light or multi-wavelength light as the illumination light.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13678395A JP3632241B2 (en) | 1995-06-02 | 1995-06-02 | Position detection device |
US08/639,099 US5706091A (en) | 1995-04-28 | 1996-04-26 | Apparatus for detecting a mark pattern on a substrate |
KR1019960014150A KR960038503A (en) | 1995-04-28 | 1996-04-27 | Position detecting device |
US08/937,523 US5903356A (en) | 1995-04-28 | 1997-09-25 | Position detecting apparatus |
US09/224,359 US6421123B1 (en) | 1995-02-06 | 1999-01-04 | Position detecting apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13678395A JP3632241B2 (en) | 1995-06-02 | 1995-06-02 | Position detection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08327318A true JPH08327318A (en) | 1996-12-13 |
JP3632241B2 JP3632241B2 (en) | 2005-03-23 |
Family
ID=15183422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13678395A Expired - Fee Related JP3632241B2 (en) | 1995-02-06 | 1995-06-02 | Position detection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3632241B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6335537B1 (en) | 1997-12-26 | 2002-01-01 | Nikon Corporation | Projection exposure apparatus and exposure method |
US6538740B1 (en) | 1998-02-09 | 2003-03-25 | Nikon Corporation | Adjusting method for position detecting apparatus |
JP2005326409A (en) * | 2004-05-12 | 2005-11-24 | Leica Microsystems Semiconductor Gmbh | Measuring instrument for inspecting object optically, and operation method for measuring instrument |
US7053991B2 (en) | 2000-10-03 | 2006-05-30 | Accent Optical Technologies, Inc. | Differential numerical aperture methods |
JP2006330093A (en) * | 2005-05-23 | 2006-12-07 | Mitsutoyo Corp | Filtering unit, lighting device, image processing device |
JP2009539109A (en) * | 2006-06-01 | 2009-11-12 | ケーエルエー−テンカー テクノロジィース コーポレイション | Order-selected overlay measurement |
JP2011191118A (en) * | 2010-03-12 | 2011-09-29 | Mitsutoyo Corp | Light interference measuring device |
JP2021182145A (en) * | 2016-05-31 | 2021-11-25 | 株式会社ニコン | Position detection device and position detection method, exposure device and exposing method, and production method of device |
CN114068379A (en) * | 2022-01-17 | 2022-02-18 | 广州粤芯半导体技术有限公司 | Alignment mark forming method and manufacturing method of semiconductor device |
-
1995
- 1995-06-02 JP JP13678395A patent/JP3632241B2/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6335537B1 (en) | 1997-12-26 | 2002-01-01 | Nikon Corporation | Projection exposure apparatus and exposure method |
US6538740B1 (en) | 1998-02-09 | 2003-03-25 | Nikon Corporation | Adjusting method for position detecting apparatus |
US7053991B2 (en) | 2000-10-03 | 2006-05-30 | Accent Optical Technologies, Inc. | Differential numerical aperture methods |
JP2005326409A (en) * | 2004-05-12 | 2005-11-24 | Leica Microsystems Semiconductor Gmbh | Measuring instrument for inspecting object optically, and operation method for measuring instrument |
JP2006330093A (en) * | 2005-05-23 | 2006-12-07 | Mitsutoyo Corp | Filtering unit, lighting device, image processing device |
JP2009539109A (en) * | 2006-06-01 | 2009-11-12 | ケーエルエー−テンカー テクノロジィース コーポレイション | Order-selected overlay measurement |
JP2011191118A (en) * | 2010-03-12 | 2011-09-29 | Mitsutoyo Corp | Light interference measuring device |
US8891090B2 (en) | 2010-03-12 | 2014-11-18 | Mitutoyo Corporation | Light-interference measuring apparatus |
JP2021182145A (en) * | 2016-05-31 | 2021-11-25 | 株式会社ニコン | Position detection device and position detection method, exposure device and exposing method, and production method of device |
CN114068379A (en) * | 2022-01-17 | 2022-02-18 | 广州粤芯半导体技术有限公司 | Alignment mark forming method and manufacturing method of semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP3632241B2 (en) | 2005-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5706091A (en) | Apparatus for detecting a mark pattern on a substrate | |
KR950003823B1 (en) | Exposure apparatus and method | |
JP2995820B2 (en) | Exposure method and method, and device manufacturing method | |
EP0526242B1 (en) | Image projection method and semiconductor device manufacturing method using the same | |
US6972836B2 (en) | Measuring method of illuminance unevenness of exposure apparatus, correcting method of illuminance unevenness, manufacturing method of semiconductor device, and exposure apparatus | |
KR20030014336A (en) | Focus monitoring method, focus monitoring system, and device fabricating method | |
JP3632241B2 (en) | Position detection device | |
US7676078B2 (en) | Inspection method, processor and method for manufacturing a semiconductor device | |
KR19980063768A (en) | Exposure apparatus provided with an observation apparatus, a position detection apparatus, and its position detection apparatus | |
JP3210123B2 (en) | Imaging method and device manufacturing method using the method | |
JP3647272B2 (en) | Exposure method and exposure apparatus | |
JP3600920B2 (en) | Position detecting apparatus, exposure apparatus using the same, and element manufacturing method using the exposure apparatus. | |
JP2579416B2 (en) | Optical system for lithography | |
JP3647270B2 (en) | Exposure method and exposure apparatus | |
JP2004327769A (en) | Observation device, position-detecting device, exposure device, and exposure method | |
JPH09189520A (en) | Position detection device | |
JP2000021762A (en) | Method of exposure and aligner | |
JP2004119663A (en) | Position detection device, position detection method, aligner and exposure method | |
JPH0547629A (en) | Manufacturing method of semiconductor device and projection aligner using the same | |
JPH0949784A (en) | Inspecting method for projection optical system and illumination optical system used for the inspection | |
JP3647271B2 (en) | Exposure method and exposure apparatus | |
JP3336622B2 (en) | Imaging characteristic measuring method and apparatus, and exposure apparatus | |
JP3102087B2 (en) | Projection exposure apparatus and method, and circuit element forming method | |
JP2001230204A (en) | Projection exposure method for semiconductor integrated circuit pattern | |
JP4182277B2 (en) | Mask, effective optical path measuring method, and exposure apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041130 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041213 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080107 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110107 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |