JPH08320353A - Leakage current detection device of zinc oxide type lightning arrester - Google Patents
Leakage current detection device of zinc oxide type lightning arresterInfo
- Publication number
- JPH08320353A JPH08320353A JP7125282A JP12528295A JPH08320353A JP H08320353 A JPH08320353 A JP H08320353A JP 7125282 A JP7125282 A JP 7125282A JP 12528295 A JP12528295 A JP 12528295A JP H08320353 A JPH08320353 A JP H08320353A
- Authority
- JP
- Japan
- Prior art keywords
- leakage current
- current
- zinc oxide
- resistance
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 16
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 title claims description 140
- 239000011787 zinc oxide Substances 0.000 title claims description 70
- 230000006866 deterioration Effects 0.000 claims description 14
- 238000010586 diagram Methods 0.000 description 20
- 230000000694 effects Effects 0.000 description 12
- 238000004364 calculation method Methods 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 230000003321 amplification Effects 0.000 description 5
- 238000003199 nucleic acid amplification method Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000013523 data management Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Landscapes
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Testing Electric Properties And Detecting Electric Faults (AREA)
- Emergency Protection Circuit Devices (AREA)
- Protection Of Static Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、酸化亜鉛形避雷器の
抵抗分電流を検出する漏れ電流検出装置に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a leakage current detecting device for detecting a resistance component current of a zinc oxide type arrester.
【0002】[0002]
【従来の技術】図14は、例えば特開昭59−9272
0号公報に示された従来の避雷器の漏れ電流検出装置を
示すブロック図であり、図において、1は酸化亜鉛素子
で構成された避雷器、2は避雷器1の接地線、3はロゴ
スキー型の変流器、4は変流器3の出力のうち第3高調
波のみを通す第3高調波フィルタ、5は増幅器、6は抵
抗分電流を表示する表示器、7は後述する動作を実行す
るための演算器、8は定数入力器である。2. Description of the Prior Art FIG.
FIG. 3 is a block diagram showing a conventional leakage current detection device for a lightning arrester disclosed in Japanese Patent Laid-Open No. 0-58, wherein 1 is a lightning arrester composed of a zinc oxide element, 2 is a ground wire of the lightning arrester 1, and 3 is a Rogowski type. Current transformer 4, 4 is a third harmonic filter that passes only the third harmonic of the output of the current transformer 3, 5 is an amplifier, 6 is a display for displaying the resistance current, and 7 is for executing the operation described later. Is a constant input device.
【0003】従来の酸化亜鉛形避雷器の漏れ電流検出装
置は、検出する漏れ電流のうち、その第3調波成分から
抵抗分電流を検出する方式としている。A conventional leakage current detecting device for a zinc oxide type arrester employs a method of detecting a resistance component current from the third harmonic component of the leakage current to be detected.
【0004】次に、従来技術の概要とともに、図15を
用いて動作について説明する。従来の漏れ電流検出装置
は、非線形性をもつ抵抗分電流−電圧特性のために、正
弦波電圧が加わったとき抵抗分電流に第3高調波が発生
することに注目したものである。抵抗分電流−電圧特性
を電圧の奇数次の関数で近似し、各次数の比例係数がわ
かれば第3高調波電流から抵抗分電流を計算できるとい
うことが解析により明らかになり構築されたものであ
る。Next, the operation will be described with reference to FIG. 15 together with the outline of the conventional technique. The conventional leakage current detection device is focused on that a third harmonic is generated in the resistance current when a sinusoidal voltage is applied due to the resistance current-voltage characteristic having nonlinearity. The analysis revealed that the resistance current-voltage characteristic can be approximated by an odd-order function of the voltage, and the resistance current can be calculated from the third harmonic current if the proportional coefficient of each order is known. is there.
【0005】すなわち酸化亜鉛アレスタに正弦波電圧が
印加されると、その接地線を流れる抵抗分漏れ電流は図
15に示される歪波形になる。時間をtとして抵抗分漏
れ電流をIR(t)で表すと、IR(t)=−IR(−
t)となり周期的な対象波になる。これは、図16に示
す非線形性をもつ抵抗分電流IR−電圧V特性から説明
できる。すなわち、VINの電圧が印加されると、IR−
V特性に応じてVINが電流に変換され歪んだIOUTにな
って出力される。これは、丁度、トランジスタの電流増
幅作用に似ている。抵抗分漏れ電流IRの電圧Vに対す
る変化は、That is, when a sinusoidal voltage is applied to the zinc oxide arrester, the resistance leakage current flowing through the ground wire has a distorted waveform shown in FIG. If the resistance leakage current is represented by I R (t) with time as t, I R (t) = − I R (−
t) and becomes a periodic target wave. This resistive component current I R with a nonlinearity as shown in FIG 16 - can be explained from the voltage V characteristics. That is, when the voltage of V IN is applied, I R −
According to the V characteristic, V IN is converted into a current, which is distorted I OUT and is output. This is just like the current amplification effect of a transistor. The change of the resistance leakage current I R with respect to the voltage V is
【0006】 IR(V)=−IR(−V) (1)I R (V) = − I R (−V) (1)
【0007】であるため、IRはVの奇数次の関数で表
され(2)式になる。Therefore, I R is expressed by an odd-order function of V and is given by the equation (2).
【0008】 IR=A1V+A3V3+A5V5+・・・・・ (2)I R = A 1 V + A 3 V 3 + A 5 V 5 + ... (2)
【0009】(2)式を5次迄の項で近似し、かつ、V
を正弦波電圧Equation (2) is approximated by terms up to the fifth order, and V
The sine wave voltage
【0010】 V=V0 sinωt (3)V = V 0 sinωt (3)
【0011】で表すと(2)式は(4)式になる。When expressed by, the equation (2) becomes the equation (4).
【0012】 IR=(A1+3/4A3 V0 2+5/8A5 V0 4)V0 sinωt +(−1/4A3V0 2+11/16A5V0 4)V0 sin3ωt +1/16A5V0 5sin5ωt (4)I R = (A 1 + 3 / 4A 3 V 0 2 + 5 / 8A 5 V 0 4 ) V 0 sinωt + (-1 / 4A 3 V 0 2 + 11 / 16A 5 V 0 4 ) V 0 sin 3ωt + 1 / 16A 5 V 0 5 sin5ωt (4)
【0013】(4)式の右辺第1項は基本波を第2、第
3項はそれぞれ第3、第5高調波を表す。いま、第3高
調波が測定可能な量であり、その測定値をIR3 sin3ω
tとすると(5)式になる。The first term on the right side of the equation (4) represents the fundamental wave, and the second and third terms represent the third and fifth harmonics, respectively. Now, the third harmonic is a measurable quantity, and the measured value is I R3 sin3ω
If t, then equation (5) is obtained.
【0014】 (−1/4A3V0 2+11/16A5V0 4)V0=IR3 (5)(-1 / 4A 3 V 0 2 + 11 / 16A 5 V 0 4 ) V 0 = IR 3 (5)
【0015】A3,A5は既知であるので、不明な量は、
V0のみであり(5)式から計算により求まる。求まっ
たV0を(4)式に代入すれば、基本波、第5高調波の
大きさ、および、抵抗分電流IRが求まる。特に、
(2)式を3次迄の項で近似すると(4),(5)式は
簡単になり(4−1),(5−1)式になる。Since A 3 and A 5 are known, the unknown quantity is
There is only V 0 , and it can be calculated by the equation (5). By substituting the obtained V 0 into the equation (4), the magnitudes of the fundamental wave, the fifth harmonic, and the resistance current I R can be obtained. In particular,
When equation (2) is approximated by terms up to the third order, equations (4) and (5) are simplified to equations (4-1) and (5-1).
【0016】 IR=(A1+3/4A3V0 2)V0 sinωt −1/4A3V0 3 sin3ωt (4−1) −1/4A3V0 3=IR3 (5−1)[0016] I R = (A 1 + 3 / 4A 3 V 0 2) V 0 sinωt -1 / 4A 3 V 0 3 sin3ωt (4-1) -1 / 4A 3 V 0 3 = I R3 (5-1)
【0017】(4−1)式に(5−1)式を代入して、Substituting equation (5-1) into equation (4-1),
【0018】 IR=〔A1×(−4IR3/A3)1/3−3IR3〕sinωt +IR3 sin3ωt (6)I R = [A 1 × (-4I R3 / A 3 ) 1/3 -3I R3 ] sinωt + I R3 sin3ωt (6)
【0019】になり、IRはIR3からより一層簡単に計
算される。そして、従来の酸化亜鉛形避雷器の漏れ電流
検出装置は、図14に示されるように、酸化亜鉛素子で
構成された避雷器1の接地線2にロゴウスキー型の変流
器3を装置し、その出力端が第3高調波のみを通す第3
高調波フィルタ4に接続されている。このフィルタ4に
より、接続線2を流れる抵抗分電流の中の第3高調波の
みが抽出され、増幅器5に入力される。増幅器5は演算
器7に接続されている。演算器7には定数入力器8によ
り前述の(2)式の比例定数A1,A3,A5,・・・・が入
力される。演算器7の中で、この入力された定数と増幅
器5から入力される第3高調波電流の大きさとから、
(4)式と(5)式あるいは(6)式に従って計算が行
われ、第3高調波電流の大きさを抵抗分電流の大きさに
変換される。その、変換された値を表示器6で表示し直
読する。なお、比例定数A1,A3,A5,・・・・は
対象とする避雷器ごとにその都度変更し入力可能であ
り、演算器7にはそのためのソフトウェアも組み込まれ
ている。And I R is calculated from I R3 much easier. As shown in FIG. 14, a conventional leakage current detecting device for a zinc oxide type lightning arrester has a Rogowski current transformer 3 mounted on a ground wire 2 of a lightning arrester 1 composed of a zinc oxide element, and outputs the same. The 3rd end only passes the 3rd harmonic
It is connected to the harmonic filter 4. The filter 4 extracts only the third harmonic of the resistance current flowing through the connection line 2 and inputs it to the amplifier 5. The amplifier 5 is connected to the calculator 7. Calculator described above by the constant input device 8 to 7 (2) of the proportional constant A 1, A 3, A 5 , ···· is input. In the calculator 7, from the input constant and the magnitude of the third harmonic current input from the amplifier 5,
Calculation is performed according to the equations (4) and (5) or (6), and the magnitude of the third harmonic current is converted into the magnitude of the resistance component current. The converted value is displayed on the display 6 and directly read. It should be noted that the proportional constants A 1 , A 3 , A 5 , ... Can be changed and input for each target lightning arrestor each time, and the calculator 7 also has software for that purpose.
【0020】[0020]
【発明が解決しようとする課題】従来の避雷器の漏れ電
流検出回路は、以上のように構成されているので、避雷
器の印加電圧に第3や第5高調波成分の電圧が含まれて
いる時、抵抗分電流IRm axの測定結果に誤差の発生が避
けられず、また(6)式では立方根を求める項などがあ
り演算が複雑になるなどの問題点があった。Since the conventional leakage current detecting circuit for the lightning arrester is constructed as described above, when the voltage applied to the lightning arrester includes the voltage of the third or fifth harmonic component. , resistance of the current I Rm ax measurement results without occurrence of the error is avoided, and also (6) by the formula has a problem such operations include term for obtaining the cube root is complex.
【0021】この発明は、上記のような問題点を解消す
るためになされたもので、避雷器の印加電圧に第3や第
5高調波成分の電圧が含まれている時にも、簡単な演算
を用いるだけで正確に抵抗分電流IRmaxを測定できる酸
化亜鉛形避雷器の漏れ電流検出装置を得ることを目的と
している。The present invention has been made in order to solve the above problems, and a simple calculation can be performed even when the voltage applied to the arrester includes the voltages of the third and fifth harmonic components. It is an object of the present invention to obtain a leakage current detecting device for a zinc oxide type arrester, which can accurately measure the resistance current I Rmax just by using it.
【0022】[0022]
【課題を解決するための手段】この発明の請求項1に係
る酸化亜鉛形避雷器は、基本周波数成分の漏れ電流を抽
出するフィルタと、上記フィルタにより抽出された上記
基本周波数成分の漏れ電流と抵抗分電流間の特性を1つ
以上近似する演算器とを備えたものである。A zinc oxide surge arrester according to claim 1 of the present invention is a filter for extracting a leakage current of a fundamental frequency component, and a leakage current and a resistance of the fundamental frequency component extracted by the filter. And a calculator that approximates one or more characteristics between the split currents.
【0023】この発明の請求項2に係る酸化亜鉛形避雷
器は、請求項1の酸化亜鉛形避雷器の漏れ電流検出装置
において、上記演算器が上記基本周波数成分の漏れ電流
と上記抵抗分電流間の特性の近似を直線近似にて行うも
のである。According to a second aspect of the present invention, there is provided a zinc oxide lightning arrester according to the first aspect, wherein in the leakage current detecting device for the zinc oxide lightning arrester according to the first aspect, the arithmetic unit operates between the leakage current of the fundamental frequency component and the resistance component current. The approximation of the characteristics is performed by linear approximation.
【0024】この発明の請求項3に係る酸化亜鉛形避雷
器は、請求項1の酸化亜鉛形避雷器の漏れ電流検出装置
において、上記基本周波数波成分の漏れ電流値に相当す
る抵抗分電流値を記憶する記憶装置を備え、上記演算器
は、上記基本周波数波成分の漏れ電流の計測値に応じて
該当する記憶領域より抵抗分電流値を読み出し、抵抗分
電流を求めるものである。A zinc oxide surge arrester according to a third aspect of the present invention is the leakage current detecting device for a zinc oxide surge arrester according to the first aspect, which stores a resistance component current value corresponding to the leakage current value of the fundamental frequency wave component. According to the measured value of the leakage current of the fundamental frequency wave component, the arithmetic unit reads the resistance current value from the corresponding storage area and obtains the resistance current.
【0025】この発明の請求項4に係る酸化亜鉛形避雷
器は、請求項1の酸化亜鉛形避雷器の漏れ電流検出装置
において、上記演算器は、上記漏れ電流とその容量分電
流の各基本波周波数成分間の位相差δの正弦値(sin
δ)と上記基本周波数成分の漏れ電流値を乗算するもの
である。A zinc oxide surge arrester according to claim 4 of the present invention is the leakage current detecting device for a zinc oxide surge arrester according to claim 1, in which the arithmetic unit is configured to have the fundamental frequency of each of the leakage current and its capacitive component current. The sine value of the phase difference δ between the components (sin
δ) is multiplied by the leakage current value of the fundamental frequency component.
【0026】この発明の請求項5に係る酸化亜鉛形避雷
器は、請求項1乃至請求項4のいずれかの酸化亜鉛形避
雷器の漏れ電流検出装置において、上記酸化亜鉛形避雷
器の周辺の温度を計測する温度検出器を備え、上記演算
器は、検出された温度値をもとに上記漏れ電流の基本周
波数成分と抵抗分電流間の特性を切換えるものである。A zinc oxide surge arrester according to a fifth aspect of the present invention is the leakage current detecting device for a zinc oxide arrester according to any one of the first to fourth aspects, in which the temperature around the zinc oxide arrester is measured. The operating unit switches the characteristic between the fundamental frequency component of the leakage current and the resistance component current based on the detected temperature value.
【0027】この発明の請求項6に係る酸化亜鉛形避雷
器は、請求項1乃至請求項4のいずれかの酸化亜鉛形避
雷器の漏れ電流検出装置において、上記酸化亜鉛形避雷
器の劣化状態を検出する劣化検出器を備え、上記演算器
が、検出された劣化状態をもとに上記基本周波数成分の
漏れ電流と抵抗分電流間の特性を切換えるものである。A zinc oxide surge arrester according to a sixth aspect of the present invention is the leakage current detecting device for a zinc oxide surge arrester according to any one of the first to fourth aspects, and detects a deteriorated state of the zinc oxide arrester. A deterioration detector is provided, and the arithmetic unit switches the characteristic between the leakage current and the resistance component current of the fundamental frequency component based on the detected deterioration state.
【0028】[0028]
【作用】この発明の請求項1に係る酸化亜鉛形避雷器
は、フィルタが基本周波数成分の漏れ電流を抽出し、演
算器が上記フィルタにより抽出された上記基本周波数成
分の漏れ電流と抵抗分電流間の特性を1つ以上近似す
る。In the zinc oxide type arrester according to claim 1 of the present invention, the filter extracts the leakage current of the fundamental frequency component, and the arithmetic unit between the leakage current of the fundamental frequency component and the resistance component current extracted by the filter. One or more of the above characteristics are approximated.
【0029】この発明の請求項2に係る酸化亜鉛形避雷
器は、上記演算器が上記基本周波数成分の漏れ電流と上
記抵抗分電流間の特性の近似を直線近似にて行う。In the zinc oxide surge arrester according to claim 2 of the present invention, the arithmetic unit performs linear approximation to approximate the characteristic between the leakage current of the fundamental frequency component and the resistance component current.
【0030】この発明の請求項3に係る酸化亜鉛形避雷
器は、記憶装置が上記基本周波数波成分の漏れ電流値に
相当する抵抗分電流値を記憶し、上記演算器が上記基本
周波数波成分の漏れ電流の計測値に応じて該当する記憶
領域より抵抗分電流値を読み出し、抵抗分電流を求め
る。In the zinc oxide type arrester according to claim 3 of the present invention, the memory device stores the resistance current value corresponding to the leakage current value of the fundamental frequency wave component, and the arithmetic unit stores the fundamental frequency wave component. The resistance current value is read from the corresponding storage area according to the leakage current measurement value to obtain the resistance current.
【0031】この発明の請求項4に係る酸化亜鉛形避雷
器は、上記演算器が上記漏れ電流とその容量分電流の各
基本波周波数成分間の位相差δの正弦値(sin δ)と上
記基本周波数成分の漏れ電流値を乗算する。In a zinc oxide type arrester according to a fourth aspect of the present invention, the arithmetic unit has the sine value (sin δ) of the phase difference δ between the fundamental wave frequency components of the leakage current and its capacitive component current and the basic The leakage current value of the frequency component is multiplied.
【0032】この発明の請求項5に係る酸化亜鉛形避雷
器は、温度検出器が上記酸化亜鉛形避雷器の周辺の温度
を計測し、上記演算器が検出された温度値をもとに上記
漏れ電流の基本周波数成分と抵抗分電流間の特性を切換
える。In the zinc oxide arrester according to claim 5 of the present invention, the temperature detector measures the temperature around the zinc oxide arrester, and the leakage current is detected based on the temperature value detected by the calculator. Switches the characteristics between the fundamental frequency component and the resistance component current.
【0033】この発明の請求項6に係る酸化亜鉛形避雷
器は、劣化検出器が上記酸化亜鉛形避雷器の劣化状態を
検出し、演算器が検出された劣化状態をもとに上記基本
周波数成分の漏れ電流と抵抗分電流間の特性を切換え
る。In the zinc oxide type arrester according to claim 6 of the present invention, the deterioration detector detects the deterioration state of the zinc oxide type arrester, and the arithmetic unit detects the deterioration state of the fundamental frequency component. Switches the characteristics between leakage current and resistance current.
【0034】[0034]
実施例1.以下、この発明の一実施例を図について説明
する。図1において、20は、漏れ電流のうち基本周波
数(商用周波数)成分のみを通過させるフィルタ、21
は、この発明の実施例1による演算器を示している。な
お、図14と同一符号は図14の対象と同一の対象を示
している。図2は、酸化亜鉛形避雷器が正常なときの抵
抗分電流と漏れ電流の基本周波数(商用周波数)成分の
特性曲線を示している。Example 1. An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, reference numeral 20 is a filter that passes only a fundamental frequency (commercial frequency) component of the leakage current, and 21
Shows a computing unit according to the first embodiment of the present invention. The same reference numerals as those in FIG. 14 indicate the same objects as those in FIG. FIG. 2 shows characteristic curves of the basic frequency (commercial frequency) components of the resistance current and the leakage current when the zinc oxide type arrester is normal.
【0035】酸化亜鉛形避雷器が正常な時の漏れ電流
は、ほとんどが容量分電流で占められており、抵抗分電
流はほとんど無視できるものであることが知られてい
る。酸化亜鉛形避雷器の静電容量は、電圧によってもほ
とんど変化されないことが知られており、容量分電流は
避雷器の印加電圧に比例してその大きさが変化すること
になる。It is known that the leakage current when the zinc oxide type arrester is normal is mostly occupied by the capacity current, and the resistance current is almost negligible. It is known that the electrostatic capacity of a zinc oxide type arrester is hardly changed by voltage, and the capacity current changes its magnitude in proportion to the applied voltage of the arrester.
【0036】基本周波数(商用周波数)成分から高調波
成分までの各次成分の容量分電流Icnは(7)式で表さ
れる。The capacitive component current I cn of each order component from the fundamental frequency (commercial frequency) component to the harmonic component is expressed by equation (7).
【0037】 Icn=n・ωCVn (7)I cn = n · ωCV n (7)
【0038】 但し、n:高調波次数(n=1,2,3 ) ω:角周波数(=2πf、fは商用周波数) C:避雷器の静電容量 Vn:各次成分の印加電圧Here, n: harmonic order (n = 1, 2, 3) ω: angular frequency (= 2πf, f is commercial frequency) C: electrostatic arrester capacitance V n : applied voltage of each component
【0039】(7)式から明らかなように高調波成分の
容量分電流Icnは、その成分の印加電圧Vnの変動に対
してn倍の影響を受ける。一方、基本周波数成分はn=
1であるから印加電圧Vnに比例する。As is apparent from the equation (7), the capacitive component current I cn of the harmonic component is affected n times as much as the variation of the applied voltage V n of the component. On the other hand, the fundamental frequency component is n =
Since it is 1, it is proportional to the applied voltage V n .
【0040】上述したように、漏れ電流とその容量分電
流はほぼ等しくなる。このことから漏れ電流の基本波成
分を選択すれば、それが印加電圧に比例した信号になる
ことがわかる。つまり抵抗分電流−電圧特性の電圧の代
わりに漏れ電流の基本周波数成分I01を置き換えても同
様の特性曲線(図2)が得られることが分かる。この抵
抗分電流IR−漏れ電流の基本周波数成分I01の特性曲
線から抵抗分電流を求めるのが本発明の方式である。以
上のように本発明方式では原理的に印加電圧の高調波分
による検出誤差もなく簡単に抵抗分電流を検出できる。As described above, the leakage current and the current corresponding to its capacitance are substantially equal. From this, it can be seen that if the fundamental wave component of the leakage current is selected, it becomes a signal proportional to the applied voltage. That is, it can be seen that a similar characteristic curve (FIG. 2) can be obtained even if the fundamental frequency component I 01 of the leakage current is replaced instead of the voltage of the resistance current-voltage characteristic. According to the method of the present invention, the resistance component current is obtained from the characteristic curve of the resistance component current I R- the basic frequency component I 01 of the leakage current. As described above, according to the method of the present invention, in principle, the resistance component current can be easily detected without a detection error due to the harmonic component of the applied voltage.
【0041】次に図1、2を用いて動作説明をする。な
お、図2は従来技術として説明した図16に対応するも
のである。避雷器1に流れる漏れ電流を変流器3で検出
する。その漏れ電流は、フィルタ20を通過後基本波成
分I01のみとなる。I01が入力される演算器21は、図
2のIR−I01の特性曲線を模擬しており、その出力信
号は抵抗分電流IRとなる。そのIR信号を表示器6に入
力し抵抗分電流を検出する。Next, the operation will be described with reference to FIGS. Note that FIG. 2 corresponds to FIG. 16 described as the conventional technique. The current transformer 3 detects the leakage current flowing through the lightning arrester 1. The leakage current becomes only the fundamental wave component I 01 after passing through the filter 20. The arithmetic unit 21 to which I 01 is input imitates the characteristic curve of I R -I 01 of FIG. 2, and the output signal thereof becomes the resistance current I R. The I R signal is input to the display 6 to detect the resistance current.
【0042】実施例2.以下に、この発明の実施例2に
ついて説明する。図3は、実施例2の演算器を示す回路
図である。図3に示される演算器21aは、“OPアン
プ回路の設計”(岡村廸夫著)昭和52年11月1日第
10版)のP174の図10−7の回路を一部変更し
て、避雷器のIR−I01特性を直線近似する。図におい
て100〜104,107,109,110は抵抗でそ
の抵抗値は、図に示している。105,106はダイオ
ード、108,111は演算増幅器である。Vsは全漏
れ電流の基本周波数成分I01を適度な電圧レベルに変換
した信号である。Example 2. The second embodiment of the present invention will be described below. FIG. 3 is a circuit diagram showing an arithmetic unit according to the second embodiment. The arithmetic unit 21a shown in FIG. 3 is a lightning arrester by partially modifying the circuit of FIG. 10-7 of P174 of "Design of OP Amplifier Circuit" (Takuo Okamura, 10th edition, November 1, 1977). The I R -I 01 characteristic of is linearly approximated. In the figure, 100 to 104, 107, 109 and 110 are resistors, and their resistance values are shown in the figure. Reference numerals 105 and 106 are diodes, and 108 and 111 are operational amplifiers. V s is a signal obtained by converting the fundamental frequency component I 01 of the total leakage current into an appropriate voltage level.
【0043】前段の演算増幅器108の動作を説明す
る。ダイオード105のアノード、ダイオード106の
カソード側は、演算増幅器の入力端子に接続されてお
り、アースへイマジナルショートになっている。故にダ
イオード105及び106に加わる電圧がゼロになるの
は、Vs=R1/R2VB及びVs=+R1/R2VBのときで
ある。ダイオードの順方向電圧は無視できる値であるの
でVs≦−R1/R2 VBのときダイオード105が導通
し、抵抗102に並列に抵抗101が入った形になり、
この時の増幅度AFNは、次式で表せる。The operation of the operational amplifier 108 in the preceding stage will be described. The anode side of the diode 105 and the cathode side of the diode 106 are connected to the input terminal of the operational amplifier and are in an imaginary short-circuit to ground. Therefore, the voltage applied to the diodes 105 and 106 becomes zero when V s = R 1 / R 2 V B and V s = + R 1 / R 2 V B. Since the forward voltage of the diode is a negligible value, when V s ≦ −R 1 / R 2 V B , the diode 105 conducts and the resistor 102 is connected in parallel with the resistor 102.
The amplification degree A FN at this time can be expressed by the following equation.
【0044】 AFN=−Rf/(1/(1/Rs+1/R1)=−Rf・(1/Rs+1/Rf)A FN = −Rf / (1 / (1 / R s + 1 / R 1 ) = − Rf · (1 / R s + 1 / Rf)
【0045】ここで、R1/R2 VB>Vs>−R2/R2
VBのとき、ダイオード105及び106が非導通とな
る。この時の増幅度AFNは次式で表せる。Here, R 1 / R 2 V B > V s > −R 2 / R 2
At V B , diodes 105 and 106 are non-conducting. The amplification degree A FN at this time can be expressed by the following equation.
【0046】AFN=−Rf/Rs A FN = -R f / R s
【0047】Vs≧R1/R2VBのとき、ダイオード10
6が導通するので抵抗102に並列に抵抗103が入っ
た形になる。この時の増幅度AFNは次式で表せる。When V s ≧ R 1 / R 2 V B , the diode 10
Since 6 is conductive, the resistor 103 is in parallel with the resistor 102. The amplification degree A FN at this time can be expressed by the following equation.
【0048】AFN=−Rf(1/Rs+1/Rf)A FN = -R f (1 / R s + 1 / R f )
【0049】これらの関係をグラフにすると図4のよう
になる。増幅器108の出力電圧V0は増幅器111、
抵抗109,110からなる反転増幅回路を通過するこ
とにより、増幅度−R4/R3された出力電圧V0’とな
る。このV0’とVsの信号の関係は、図5の破線で示し
たIR−I01の特性曲線を直線近似したものとなってい
る。また、必要に応じて直線近似の区分を細分化するこ
とができる。A graph of these relationships is shown in FIG. The output voltage V 0 of the amplifier 108 is the amplifier 111,
By passing through the inverting amplifier circuit composed of the resistors 109 and 110, the output voltage V 0 ′ having the amplification degree −R 4 / R 3 is obtained. The relationship between the V 0 'and V s signals is obtained by linearly approximating the characteristic curve of I R -I 01 shown by the broken line in FIG. In addition, it is possible to subdivide the linear approximation section as necessary.
【0050】この実施例2によれば、アナログ回路にて
構成することができるので、演算用ソフトウェアや高価
なデジタル素子が不要となり、低コストに回路を構成で
きるという効果がある。According to the second embodiment, since the circuit can be configured by an analog circuit, there is an effect that the software for calculation and an expensive digital element are not required and the circuit can be configured at low cost.
【0051】実施例3.次に、この発明の実施例3につ
いて説明する。実施例2では演算をアナログ的に処理し
たが、実施例3では演算をデジタル的に演算する場合に
ついて説明する。この場合の演算器21b内の回路構成
を図6に示す。Example 3. Next, a third embodiment of the present invention will be described. In the second embodiment, the calculation is processed in an analog manner, but in the third embodiment, a case in which the calculation is digitally calculated will be described. FIG. 6 shows a circuit configuration in the arithmetic unit 21b in this case.
【0052】図6において、200は、アナログ信号を
デジタル信号に変換するA/D変換回路、201はRO
Mであり、被検出の酸化亜鉛形避雷器1の抵抗分電流−
電圧模擬信号の特性を記憶している。202は演算器2
1bの中枢をなすCPU、203はデジタル信号をアナ
ログ信号に変換するD/A変換回路であり、D/A変換
回路203の出力は図1に示した表示器6に接続されて
いる。In FIG. 6, 200 is an A / D conversion circuit for converting an analog signal into a digital signal, and 201 is an RO.
M, the resistance component current of the zinc oxide type arrester 1 to be detected-
The characteristics of the voltage simulation signal are stored. 202 is a computing unit 2
A central CPU 1b, 203 is a D / A conversion circuit for converting a digital signal into an analog signal, and the output of the D / A conversion circuit 203 is connected to the display 6 shown in FIG.
【0053】次に、実施例3の動作について説明する。
漏れ電流の基本周波数成分の信号I01がA/D変換回路
200に入力され、それに応じたデジタル出力がA/D
変換回路200からCPU202に入力される。Next, the operation of the third embodiment will be described.
The signal I 01 of the fundamental frequency component of the leakage current is input to the A / D conversion circuit 200, and the digital output corresponding to the signal is input to the A / D.
Input from the conversion circuit 200 to the CPU 202.
【0054】CPU202ではそのデジタル信号値に相
当する抵抗分電流値をROM201から読み出し、その
デジタル値をD/A変換回路203へ入力する。D/A
変換回路203では、そのデジタル値をアナログ値に変
換して表示器6に送る。この一連の動作を順時実行して
いくことにより、抵抗分電流が求まる。The CPU 202 reads out the resistance current value corresponding to the digital signal value from the ROM 201 and inputs the digital value to the D / A conversion circuit 203. D / A
The conversion circuit 203 converts the digital value into an analog value and sends it to the display 6. By sequentially executing this series of operations, the resistance current is obtained.
【0055】実施例3では上述したように、デジタル処
理を行うので、設定やデータ管理がし易くなる。また、
温度ドリフト等による演算誤差がないなどの効果があ
る。Since the digital processing is performed in the third embodiment as described above, setting and data management are facilitated. Also,
There is an effect that there is no calculation error due to temperature drift or the like.
【0056】実施例4.実施例1乃至実施例3では、高
調波成分も含んだ形態で抵抗分電流を検出していたが、
基本周波数成分の抵抗分電流の検出が要求されるとき
は、図7のような回路を演算器21cに用いることがで
きる。Example 4. In the first to third embodiments, the resistance current is detected in the form including the harmonic component.
When the detection of the resistance current of the fundamental frequency component is required, the circuit as shown in FIG. 7 can be used for the calculator 21c.
【0057】ここでは、まず図8、図9について説明す
る。図8は酸化亜鉛形避雷器の電気的等価回路であり、
非線形抵抗とコンデンサが並列接続された回路を示す。
酸化亜鉛形避雷器に電圧Vが印加されると、酸化亜鉛形
避雷器には抵抗分電流IRと容量分電流ICとの合成であ
る漏れ電流I0が流れる。図9はそのときの印加電圧、
各電流の商用周波のベクトル図である。First, FIGS. 8 and 9 will be described. Figure 8 shows the electrical equivalent circuit of a zinc oxide type arrester,
A circuit in which a nonlinear resistance and a capacitor are connected in parallel is shown.
When a voltage V is applied to the zinc oxide arrester, a leakage current I 0 that is a combination of the resistance component current I R and the capacitance component current I C flows in the zinc oxide arrester. Figure 9 shows the applied voltage at that time,
It is a vector diagram of the commercial frequency of each electric current.
【0058】以上を用いて、図7の動作を説明する。漏
れ電流の基本周波数成分のピーク値をピーク値検出器3
00で求める。その値をsinδ決定回路301に入力す
る。sinδ決定回路301では、入力値に応じてsinδ値
を決定する。δは、図9に示すベクトル図のδに相当す
る。乗算回路302の出力には、(全漏れ電流の基本波
のピーク値×sinδ)の結果が出力される。この結果
は、図9のベクトルの抵抗分電流のピーク値に相当す
る。The operation of FIG. 7 will be described using the above. The peak value of the fundamental frequency component of the leakage current is detected by the peak value detector 3
00 is required. The value is input to the sinδ determination circuit 301. The sinδ determination circuit 301 determines the sinδ value according to the input value. δ corresponds to δ in the vector diagram shown in FIG. 9. The result of (peak value of fundamental wave of total leakage current × sin δ) is output to the output of the multiplication circuit 302. This result corresponds to the peak value of the resistance current of the vector of FIG.
【0059】このピーク値を接続する表示器6に見合う
信号形態に変換するのが変換回路303である。実施例
4は、抵抗分電流の基本周波数成分を求める仕様のとき
に適するという効果がある。The conversion circuit 303 converts the peak value into a signal form suitable for the connected display unit 6. The fourth embodiment has an effect that it is suitable for the specification of obtaining the fundamental frequency component of the resistance component current.
【0060】実施例5.上述した各実施例では、抵抗分
電流と印加電圧特性が一定として考えてきたが、この特
性は、例えば、電気学会技術報告(II部)第474号
「酸化亜鉛形避雷器の特性と評価試験法」(1993年
12月発行)第11頁に掲載された酸化亜鉛素子の電圧
電流特性として、図11に示されるように素子の周囲温
度により変化することが知られている。Example 5. In each of the above-mentioned embodiments, the resistance current and the applied voltage characteristic have been considered to be constant. It is known that the voltage-current characteristics of the zinc oxide element described on page 11 (issued in December 1993) change depending on the ambient temperature of the element as shown in FIG.
【0061】このようなときにも精度よく抵抗分電流ピ
ークを測定するためには、図10に示すように酸化亜鉛
形避雷器の周辺もしくはそれに準ずる所に温度検出器4
00を設け、その出力信号に応じてIR−I01特性を選
択する選択回路401を演算器21dに設ける構成とす
ればよい。In order to accurately measure the resistance current peak even in such a case, as shown in FIG. 10, the temperature detector 4 is provided around the zinc oxide type arrester or at a place corresponding thereto.
00 and the selection circuit 401 for selecting the I R -I 01 characteristic according to the output signal thereof is provided in the arithmetic unit 21d.
【0062】例えば、実施例2のアナログ式の特性近似
回路に適用すると、切換える温度点数に応じて近似回路
を持ちその出力を選択回路401により切換えればよ
い。実施例3に適用すれば、切換える温度点数に応じて
データを記憶しておき、選択回路401の出力信号に応
じ必要な特性データを引き出すように構成すればよい。
実施例5によれば、周囲温度が変化する場合でも精度よ
く抵抗分電流ピークを検出できるという効果がある。For example, when applied to the analog type characteristic approximation circuit of the second embodiment, the approximation circuit may be provided and the output thereof may be switched by the selection circuit 401 in accordance with the number of temperature points to be switched. If it is applied to the third embodiment, the data may be stored according to the number of temperature points to be switched, and necessary characteristic data may be extracted according to the output signal of the selection circuit 401.
According to the fifth embodiment, there is an effect that the resistance current peak can be accurately detected even when the ambient temperature changes.
【0063】実施例6.周囲温度以外にも、避雷器の劣
化状態によって、例えば実施例5の文献の第37頁に掲
載された酸化亜鉛素子のV−I特性として、図13に示す
ように素子の劣化により特性が変化する。この場合にも
精度よく抵抗分電流ピークを測定するためには、図10
に示した温度検出器400の代わりに、劣化検出器50
0を設け、その出力信号に応じて実施例5と同様の選択
回路401aを演算器に設ければよい。Example 6. In addition to the ambient temperature, depending on the deterioration state of the lightning arrester, for example, as the VI characteristics of the zinc oxide element disclosed on page 37 of the document of Example 5, the characteristics change due to the element deterioration as shown in FIG. . In this case as well, in order to accurately measure the resistance current peak, FIG.
Instead of the temperature detector 400 shown in FIG.
0 may be provided, and the selection circuit 401a similar to that of the fifth embodiment may be provided in the arithmetic unit according to the output signal.
【0064】このようにして、実施例5によれば、劣化
状態がある場合でも精度よく抵抗分電流を検出できると
いう効果がある。As described above, according to the fifth embodiment, there is an effect that the resistance component current can be accurately detected even when there is a deterioration state.
【0065】[0065]
【発明の効果】この発明の請求項1に係る酸化亜鉛形避
雷器は、基本周波数成分の漏れ電流を抽出するフィルタ
と、上記フィルタにより抽出された上記基本周波数成分
の漏れ電流と抵抗分電流間の特性を1つ以上近似する演
算器とを備えたため、複雑な演算式を用いることなく、
また、高調波成分による検出誤差を生じることなく、簡
単な演算により抵抗分電流を検出することができるとい
う効果を奏する。The zinc oxide surge arrester according to claim 1 of the present invention has a filter for extracting the leakage current of the fundamental frequency component, and the leakage current and the resistance component current of the fundamental frequency component extracted by the filter. Since it has an arithmetic unit that approximates one or more characteristics, without using a complicated arithmetic expression,
Further, there is an effect that the resistance component current can be detected by a simple calculation without causing a detection error due to the harmonic component.
【0066】この発明の請求項2に係る酸化亜鉛形避雷
器は、請求項1の酸化亜鉛形避雷器の漏れ電流検出装置
において、上記演算器が上記基本周波数成分の漏れ電流
と上記抵抗分電流間の特性の近似を直線近似にて行うよ
うにしたため、演算用のソフトウエアや高価なデジタル
素子が不要となり、もって低コスト化を実現することが
できるという効果を奏する。According to a second aspect of the present invention, in the zinc oxide type arrester of the present invention, in the leakage current detecting device for the zinc oxide type arrester of the first aspect, the arithmetic unit operates between the leakage current of the fundamental frequency component and the resistance component current. Since the approximation of the characteristics is performed by the linear approximation, the calculation software and the expensive digital element are not required, so that the cost can be reduced.
【0067】この発明の請求項3に係る酸化亜鉛形避雷
器は、請求項1の酸化亜鉛形避雷器の漏れ電流検出装置
において、上記基本周波数波成分の漏れ電流値に相当す
る抵抗分電流値を記憶する記憶装置を備え、上記演算器
は、上記基本周波数波成分の漏れ電流の計測値に応じて
該当する記憶領域より抵抗分電流値を読み出し、抵抗分
電流を求めるようにしたため、データ管理や演算精度が
優れるという効果を奏する。また、温度変化による演算
誤差が生じないという効果も奏する。A zinc oxide surge arrester according to a third aspect of the present invention is the leakage current detecting device for a zinc oxide surge arrester according to the first aspect, in which a resistance component current value corresponding to the leakage current value of the fundamental frequency wave component is stored. Since the arithmetic unit is configured to read the resistance current value from the corresponding storage area according to the measurement value of the leakage current of the fundamental frequency wave component and obtain the resistance current, data management and calculation are performed. The effect is excellent in accuracy. Further, there is an effect that a calculation error due to a temperature change does not occur.
【0068】この発明の請求項4に係る酸化亜鉛形避雷
器は、請求項1の酸化亜鉛形避雷器の漏れ電流検出装置
において、上記演算器は、上記漏れ電流とその容量分電
流の各基本波周波数成分間の位相差δの正弦値(sin
δ)と上記基本周波数成分の漏れ電流値を乗算するよう
にしたため、抵抗分電流の基本周波数成分を求める仕様
に適するという効果を奏する。The zinc oxide surge arrester according to claim 4 of the present invention is the leakage current detecting device for a zinc oxide surge arrester according to claim 1, in which the arithmetic unit is configured to have the fundamental frequency of each of the leakage current and the current corresponding to its capacitance. The sine value of the phase difference δ between the components (sin
Since δ) is multiplied by the leakage current value of the fundamental frequency component, there is an effect that it is suitable for specifications for obtaining the fundamental frequency component of the resistance component current.
【0069】この発明の請求項5に係る酸化亜鉛形避雷
器は、請求項1乃至請求項4のいずれかの酸化亜鉛形避
雷器の漏れ電流検出装置において、上記酸化亜鉛形避雷
器の周辺の温度を計測する温度検出器を備え、上記演算
器は、検出された温度値をもとに上記漏れ電流の基本周
波数成分と抵抗分電流間の特性を切換えるようにしたた
め、周囲温度が変化しても、精度良く抵抗分電流を検出
することができるという効果を奏する。The zinc oxide type arrester according to claim 5 of the present invention is the leakage current detecting device for a zinc oxide type arrester according to any one of claims 1 to 4, wherein the temperature around the zinc oxide type arrester is measured. Since the arithmetic unit is equipped with a temperature detector that switches the characteristics between the fundamental frequency component of the leakage current and the resistance component current based on the detected temperature value, the accuracy is improved even if the ambient temperature changes. The effect is that the resistance current can be detected well.
【0070】この発明の請求項6に係る酸化亜鉛形避雷
器は、請求項1乃至請求項4のいずれかの酸化亜鉛形避
雷器の漏れ電流検出装置において、上記酸化亜鉛形避雷
器の劣化状態を検出する劣化検出器を備え、上記演算器
が、検出された劣化状態をもとに上記基本周波数成分の
漏れ電流と抵抗分電流間の特性を切換えるようにしたた
め、素子が劣化しても精度良く抵抗分電流を検出するこ
とができるという効果を奏する。A zinc oxide arrester according to claim 6 of the present invention is the zinc oxide arrester leakage current detecting device according to any one of claims 1 to 4, wherein the deterioration state of the zinc oxide arrester is detected. Since the arithmetic unit is equipped with a deterioration detector and switches the characteristics between the leakage current and the resistance current of the fundamental frequency component based on the detected deterioration state, the resistance component can be accurately measured even if the element deteriorates. This has the effect of being able to detect a current.
【図1】 実施例1を示す酸化亜鉛形避雷器の漏れ電流
検出装置の回路図である。FIG. 1 is a circuit diagram of a leakage current detection device for a zinc oxide surge arrester showing a first embodiment.
【図2】 実施例1の動作説明図である。FIG. 2 is an operation explanatory diagram of the first embodiment.
【図3】 この発明の実施例2の演算器の回路図であ
る。FIG. 3 is a circuit diagram of an arithmetic unit according to a second embodiment of the present invention.
【図4】 図3の動作説明図である。FIG. 4 is an operation explanatory diagram of FIG. 3;
【図5】 図3の動作説明図である。5 is an operation explanatory diagram of FIG. 3;
【図6】 この発明の実施例3の演算器の回路図であ
る。FIG. 6 is a circuit diagram of an arithmetic unit according to a third embodiment of the present invention.
【図7】 この発明の実施例4の演算器の回路図であ
る。FIG. 7 is a circuit diagram of an arithmetic unit according to a fourth embodiment of the present invention.
【図8】 図7の動作説明図である。8 is an explanatory diagram of the operation of FIG. 7.
【図9】 図7の動作説明図である。FIG. 9 is an operation explanatory diagram of FIG. 7;
【図10】 この発明の実施例5を示す酸化亜鉛形避雷
器の漏れ電流検出装置の回路図である。FIG. 10 is a circuit diagram of a leakage current detecting device for a zinc oxide type arrester showing a fifth embodiment of the present invention.
【図11】 図10、図12の動作説明図である。FIG. 11 is an operation explanatory diagram of FIGS. 10 and 12;
【図12】 この発明の実施例6を示す酸化亜鉛形避雷
器の漏れ電流検出装置の回路図である。FIG. 12 is a circuit diagram of a leakage current detecting device for a zinc oxide type arrester showing a sixth embodiment of the present invention.
【図13】 図10、図12の動作説明図である。FIG. 13 is an operation explanatory diagram of FIGS. 10 and 12;
【図14】 従来の酸化亜鉛形避雷器の漏れ電流検出装
置の回路図である。FIG. 14 is a circuit diagram of a leakage current detection device for a conventional zinc oxide surge arrester.
【図15】 図14の動作説明図である。15 is an explanatory diagram of the operation of FIG.
【図16】 図14の動作説明図である。16 is an explanatory diagram of the operation of FIG.
1 避雷器、2 接地線、3 変流器、5 増幅器、6
表示器、20 フィルタ、21、21a〜e 演算
器、400 温度検出器、401、401a 選択回
路、500 劣化検出器。1 lightning arrester, 2 ground wire, 3 current transformer, 5 amplifier, 6
Display, 20 filter, 21, 21a-e arithmetic unit, 400 temperature detector, 401, 401a selection circuit, 500 deterioration detector.
Claims (6)
て、その抵抗分電流を演算する酸化亜鉛形避雷器の漏れ
電流検出装置において、 基本周波数成分の漏れ電流を抽出するフィルタと、 上記フィルタにより抽出された上記基本周波数成分の漏
れ電流と抵抗分電流間の特性を1つ以上近似する演算器
と、 を備えてなる酸化亜鉛形避雷器の漏れ電流検出装置。1. A leak current detection device for a zinc oxide surge arrester, which detects a leak current of a zinc oxide surge arrester and calculates a resistance current thereof, and a filter for extracting a leak current of a fundamental frequency component, and the above filter. A leakage current detection device for a zinc oxide surge arrester, comprising: a calculator that approximates one or more characteristics between the extracted leakage current of the fundamental frequency component and the resistance current.
検出装置において、 上記演算器は、上記基本周波数成分の漏れ電流と上記抵
抗分電流間の特性の近似を直線近似にて行う酸化亜鉛形
避雷器の漏れ電流検出装置。2. The leakage current detection device for a zinc oxide surge arrester according to claim 1, wherein the arithmetic unit performs linear approximation to approximate the characteristic between the leakage current of the fundamental frequency component and the resistance component current. Leakage current detector for surge arrester.
検出装置において、 上記基本周波数波成分の漏れ電流値に相当する抵抗分電
流値を記憶する記憶装置を備え、 上記演算器は、上記基本周波数波成分の漏れ電流の計測
値に応じて該当する記憶領域より抵抗分電流値を読み出
し、抵抗分電流を求める酸化亜鉛形避雷器の漏れ電流検
出装置。3. The leakage current detection device for a zinc oxide surge arrester according to claim 1, further comprising a storage device for storing a resistance current value corresponding to the leakage current value of the fundamental frequency wave component, wherein the computing unit is the A leakage current detector for a zinc oxide surge arrester, which reads the resistance current value from the corresponding storage area according to the measured leakage current of the fundamental frequency wave component and obtains the resistance current.
検出装置において、 上記演算器は、上記漏れ電流とその容量分電流の各基本
波周波数成分間の位相差δの正弦値(sin δ)と上記基
本周波数成分の漏れ電流値を乗算する請求項1の酸化亜
鉛形避雷器の漏れ電流検出装置。。4. The leakage current detecting device for a zinc oxide surge arrester according to claim 1, wherein the arithmetic unit is a sine value (sin δ) of a phase difference δ between the fundamental current frequency components of the leakage current and its capacitive component current. ) And the leakage current value of the fundamental frequency component are multiplied, the leakage current detecting device of the zinc oxide surge arrester according to claim 1. .
亜鉛形避雷器の漏れ電流検出装置において、 上記酸化亜鉛形避雷器の周辺の温度を計測する温度検出
器を備え、 上記演算器は、検出された温度値をもとに上記漏れ電流
の基本周波数成分と抵抗分電流間の特性を切換える酸化
亜鉛形避雷器の漏れ電流検出装置。5. The leakage current detecting device for a zinc oxide type arrester according to claim 1, further comprising a temperature detector for measuring a temperature around the zinc oxide type arrester, wherein the computing unit comprises: A leakage current detection device for a zinc oxide surge arrester, which switches the characteristic between the fundamental frequency component of the leakage current and the resistance component current based on the detected temperature value.
亜鉛形避雷器の漏れ電流検出装置において、 上記酸化亜鉛形避雷器の劣化状態を検出する劣化検出器
を備え、 上記演算器は、検出された劣化状態をもとに上記基本周
波数成分の漏れ電流と抵抗分電流間の特性を切換える酸
化亜鉛形避雷器の漏れ電流検出装置。6. The leakage current detection device for a zinc oxide surge arrester according to claim 1, further comprising a deterioration detector for detecting a deterioration state of the zinc oxide surge arrester, wherein the arithmetic unit detects A leakage current detection device for a zinc oxide surge arrester that switches the characteristics between the leakage current of the fundamental frequency component and the resistance component current based on the deteriorated state.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7125282A JPH08320353A (en) | 1995-05-24 | 1995-05-24 | Leakage current detection device of zinc oxide type lightning arrester |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7125282A JPH08320353A (en) | 1995-05-24 | 1995-05-24 | Leakage current detection device of zinc oxide type lightning arrester |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08320353A true JPH08320353A (en) | 1996-12-03 |
Family
ID=14906226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7125282A Pending JPH08320353A (en) | 1995-05-24 | 1995-05-24 | Leakage current detection device of zinc oxide type lightning arrester |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08320353A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100359280B1 (en) * | 2001-01-10 | 2002-11-07 | 한국산업안전공단 | Earth detector |
CN100460883C (en) * | 2004-12-29 | 2009-02-11 | 上海电气自动化设计研究所有限公司 | Detection method of arrester resistive current test |
JP2010190645A (en) * | 2009-02-17 | 2010-09-02 | Fuji Electric Fa Components & Systems Co Ltd | Method for detecting leakage current, leakage current detector, and system monitor |
KR101040112B1 (en) * | 2009-06-30 | 2011-06-09 | 한국전력공사 | Voltage control device for lightning protection |
CN106841904A (en) * | 2017-04-14 | 2017-06-13 | 云南电网有限责任公司电力科学研究院 | A kind of metal oxide arrester leakage current live testing device and method |
-
1995
- 1995-05-24 JP JP7125282A patent/JPH08320353A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100359280B1 (en) * | 2001-01-10 | 2002-11-07 | 한국산업안전공단 | Earth detector |
CN100460883C (en) * | 2004-12-29 | 2009-02-11 | 上海电气自动化设计研究所有限公司 | Detection method of arrester resistive current test |
JP2010190645A (en) * | 2009-02-17 | 2010-09-02 | Fuji Electric Fa Components & Systems Co Ltd | Method for detecting leakage current, leakage current detector, and system monitor |
KR101040112B1 (en) * | 2009-06-30 | 2011-06-09 | 한국전력공사 | Voltage control device for lightning protection |
CN106841904A (en) * | 2017-04-14 | 2017-06-13 | 云南电网有限责任公司电力科学研究院 | A kind of metal oxide arrester leakage current live testing device and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3069346B1 (en) | Method and apparatus for measuring Laplace transform impedance | |
KR920020216A (en) | How to measure electrical energy usage | |
US4473796A (en) | Resistance and capacitance measuring device | |
JP3158063B2 (en) | Non-contact voltage measurement method and device | |
JPH04248472A (en) | Method of measuring resistance value | |
Cutkosky | An automatic high-precision audiofrequency capacitance bridge | |
JPH08320353A (en) | Leakage current detection device of zinc oxide type lightning arrester | |
US6581016B1 (en) | Apparatus for accurately measuring impedance and method used therein | |
US6803776B2 (en) | Current-comparator-based four-terminal resistance bridge for power frequencies | |
US3448378A (en) | Impedance measuring instrument having a voltage divider comprising a pair of amplifiers | |
JPH09145759A (en) | Leakage current detector for zinc oxide type arrester | |
US6748344B2 (en) | Method and apparatus employing a scaling factor for measuring and displaying an electrical parameter of an electrical system | |
JP2560772B2 (en) | Deterioration detection device for lightning arrester | |
US6777959B2 (en) | Method of determining a resistive current | |
So et al. | A computer-controlled current-comparator-based four-terminal resistance bridge for power frequencies | |
JPH065407A (en) | Deterioration monitor of arrester | |
Nakagawa et al. | A digital-to-resistance converter with an automatic offset calibration method for evaluating dynamic performance of resistive sensor readout circuits | |
JPH04328472A (en) | Detecting apparatus for deterioration of arrester | |
RU2149414C1 (en) | Device for measuring resistance of insulation in high-voltage circuits | |
JPH0527830B2 (en) | ||
KR20010092960A (en) | Power factor discriminator | |
KR100335136B1 (en) | Apparatus of signal transformation | |
RU95106080A (en) | Device for conversion of non-electric parameter to electric signal | |
JPH01272075A (en) | Deterioration detecting device for lightning arrestor | |
Cronhjort | A time coding analog-to-digital converter |