[go: up one dir, main page]

JPH08320003A - Fluid flow control device - Google Patents

Fluid flow control device

Info

Publication number
JPH08320003A
JPH08320003A JP2699596A JP2699596A JPH08320003A JP H08320003 A JPH08320003 A JP H08320003A JP 2699596 A JP2699596 A JP 2699596A JP 2699596 A JP2699596 A JP 2699596A JP H08320003 A JPH08320003 A JP H08320003A
Authority
JP
Japan
Prior art keywords
disc
disk
fluid
members
disc member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2699596A
Other languages
Japanese (ja)
Inventor
Joseph H Steinke
ヘンリー スタインク ジョーゼフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Control Components Inc
Original Assignee
Control Components Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Control Components Inc filed Critical Control Components Inc
Publication of JPH08320003A publication Critical patent/JPH08320003A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/08Means in valves for absorbing fluid energy for decreasing pressure or noise level and having a throttling member separate from the closure member, e.g. screens, slots, labyrinths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/36Valve members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86718Dividing into parallel flow paths with recombining
    • Y10T137/86759Reciprocating

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding Valves (AREA)
  • Details Of Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To generate energy loss in fluid of high pressure with no reaction of shock wave without raising speed in a fluid flow control device. SOLUTION: Pairs of annular disc members 32 having fluid flow passages together form radial flow passages for fluid between the interior of a stack 14 of the disc members and its radially outer circumference. This passages have a smaller cross-section at a midregion of the disc member 32 than at the radially inner or outer side of the disc member 32.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、流体流量制御装置
に関するものである。
TECHNICAL FIELD The present invention relates to a fluid flow rate control device.

【0002】[0002]

【従未の技術】流体流量制御装置は、液体もしくは気体
の流量制御に使用したり、例えば、高圧力流体の速度制
御を提供するために使用することもできる。この一般的
な型の装置は、可変流体絞り制御バルブとして時には知
られ、摩擦性流路を有するとする米国特許第3,45
1,404号と第3,514,074号、そして多数の
角度ターン流路を有するとする米国特許第3,451,
404号と第3,514,074号により例示されてい
る。
BACKGROUND OF THE INVENTION Fluid flow control devices can be used to control the flow of liquids or gases, or can be used, for example, to provide velocity control of high pressure fluids. This general type of device, sometimes known as a variable fluid throttle control valve, has a frictional flow path and is described in US Pat. No. 3,45.
1,404 and 3,514,074, and U.S. Pat. No. 3,451, with multiple angular turn channels.
No. 404 and No. 3,514,074.

【0003】高圧力の流体の流れの取り扱いにおいて
は、エネルギー損失または高圧力降下を成すために高速
短スロート部を有するオリフィス法を利用することが通
例であった。もし流体が、開放したオリフィスもしくは
バルブの下流側で、液体状態で気化しやすい、つまり、
蒸発したり、気体状態に変化すれば、内破的に圧縮さ
れ、有害な衝撃波、腐食などを引き起こす。また、バル
ブ内の流体速度がライン内の流体速度を超えると、多く
の不穏な反動を起こす。最も深刻な問題は,液体の直接
の衝突によってバルブ表面が急速に腐食することや外部
粒子が中に懸濁することである。さらに腐食するとキャ
ビテーションを引き起こす。キャビテーションとは流量
制御用バルブ(バルブトリム)の内部パーツとバルブ本
体に対する蒸気の高速内破として定義される。
In handling high pressure fluid streams, it has been customary to utilize the orifice method with a high speed short throat to achieve energy loss or high pressure drop. If the fluid is liable to vaporize in the liquid state downstream of the open orifice or valve,
If it vaporizes or changes to a gaseous state, it is implosively compressed, causing harmful shock waves and corrosion. Also, when the fluid velocity in the valve exceeds the fluid velocity in the line, many disturbing recoils occur. The most serious problems are the rapid corrosion of the valve surface and the suspension of external particles in it due to the direct impingement of the liquid. Further corrosion causes cavitation. Cavitation is defined as the high-speed implosion of steam against the internal parts of the flow control valve (valve trim) and the valve body.

【0004】腐食から生じる深刻な問題に加え、速度が
上昇するとまた、バルブの流量特性を予期しない不安定
なものとしてしまう。
In addition to the serious problems that result from corrosion, the increased speed also causes the flow characteristics of the valve to be unexpectedly unstable.

【0005】バルブ内の高流体速度によって生じる他の
問題としては、深刻な雑音の発生や、トリムの疲労、例
えばポリマーのような流体材料が退化する可能性がある
といったものがある。
Other problems caused by high fluid velocities in the valve include severe noise generation, trim fatigue, and possible degradation of fluid materials such as polymers.

【0006】制御バルブの下流側へと流体が運ぶ雑音は
しばしば大きい。パイプで処理したりまたは阻止しなけ
れば、この雑音は結果的にバルブ出口から3フィートで
音圧レベルが110dBから170dBとなることもあ
る.この大きさの音源は、人員に対して有害で、しばし
ばその土地の居住者から苦情がでることとなる。
The noise carried by the fluid downstream of the control valve is often large. If not piped or blocked, this noise can result in sound pressure levels of 110 to 170 dB 3 feet from the valve outlet. Sound sources of this magnitude are harmful to personnel and are often complained by residents of the land.

【0007】マフラーやサイレンサーは一般的には、流
体伝搬雑音を20dBから30dB程度しか減衰するこ
とができない。それゆえ、それらを用いても所望の音圧
レベルを得るのに部分的に成功を達成できたにすぎな
い。
Mufflers and silencers are generally capable of attenuating fluid propagation noise by only 20 dB to 30 dB. Therefore, they have been only partially successful in achieving the desired sound pressure level.

【0008】さらに、典型的な流路処埋システム、すな
わちマフラーや遅滞支持構造物などは非常に扱いにくく
て高価なものであり、しばしば、雑音の経路処埋の費用
はバルブの費用を超過することが頻繁である。
In addition, typical channel filling systems, such as mufflers and retarding support structures, are very cumbersome and expensive, and often the cost of noise path filling exceeds the cost of the valve. Often.

【0009】[0009]

【発明が解決しようとする課題】上記の問題を解決した
り改善するために、従来、流体中の摩擦や圧力降下を生
じさせるターン部を有する多数の小さくて長い流路に流
れを細分化することにより、速度を上げずに衝撃波の反
動もなく高圧力の流体中のエネルギー損失をもたらす装
置を導入し、このようにして装置のダメージや腐食を避
けてきた。そのような装置は例えば米国特許第3219
7号において公開されている。それには、流体をターン
させてスタックの出入口間の長さより十分に長い流路長
を与えるためスタックの出入口間に角度をなす多数の個
々の流路溝を囲む接触面を有する別々の部材の環状スタ
ック内に流路が与えられている。スタックはバルブハウ
ジングの流体流路内にマウントされ、環状構造物内を可
動なバルブプラグは流体が通過できるスタック内の流路
の数を制御する。
In order to solve or ameliorate the above problems, conventionally, the flow is subdivided into a large number of small and long flow paths having turn portions which cause friction and pressure drop in the fluid. This has led to the introduction of a device that does not increase the speed and recoils the shockwaves, resulting in energy loss in a high pressure fluid, thus avoiding damage and corrosion of the device. Such a device is described, for example, in US Pat.
Published in Issue 7. It includes a ring of separate members having contact surfaces surrounding a number of individual channel grooves angled between the inlets and outlets of the stack to turn the fluid to provide a channel length that is significantly longer than the length between the inlets and outlets of the stack. Flow paths are provided in the stack. The stack is mounted within the fluid flow path of the valve housing and the valve plug movable within the annular structure controls the number of flow paths within the stack through which fluid can pass.

【0010】この型の改良された装置がGB−A−22
73579に公開されており、それには、円盤部材のス
タック内の少なくとも一つの流路が、円盤部材の出入口
領域の間に空所を有し、この空所がエネルギー損失流路
の断面積を広げるとしたことが示されている。
An improved device of this type is GB-A-22.
73579, in which at least one channel in the stack of disc members has a void between the inlet and outlet regions of the disc member, which void widens the cross-sectional area of the energy loss channel. It has been shown that

【0011】エネルギー損失流路を有する円盤部材のス
タックを含む流量制御装置を組み込んだバルブは、商業
上非常に成功しており、本発明の目的は、この型の装置
の改良を提供することにある。
Valves incorporating flow control devices that include a stack of disc members having energy loss channels have been very successful commercially and it is an object of the present invention to provide an improvement of this type of device. is there.

【0012】[0012]

【課題を解決するための手段】第1の形態として本発明
の流量制御装置は、流体が流れるほぼ放射状に広がった
流路の列を組み込まれた剛体構造物を形成する多数の対
の環状円盤部材からなる流体流量制御装置において、前
記対の円盤部材の各々がその中に該円盤部材を通じて放
射方向に一部にのみ広がった流路を有し、前記対の円盤
部材を通して流体の流れを与えるために一方の円盤部材
の流路が対の他方の円盤部材の流路と連結するように前
記対の円盤部材が互いに配置されることを特徴とするも
のである。
According to a first aspect of the present invention, there is provided a flow control device according to the present invention, wherein a plurality of pairs of annular discs forming a rigid structure incorporating rows of substantially radially spread channels through which a fluid flows. In a fluid flow rate control device comprising members, each of the pair of disc members has a flow passage therein which is partially expanded in a radial direction through the disc members, and provides a fluid flow through the pair of disc members. Therefore, the pair of disk members are arranged so that the flow path of one disk member is connected to the flow path of the other disk member of the pair.

【0013】本発明の流量制御装置はさらに、多数の円
盤部材が、流体が流れる流路の列が組み込まれた剛体構
造物を形成し、前記円盤部材が係合面とその間に流体が
流れる流路を有し、入口部を与える手段が、前記剛体構
造物によって形成された前記流路の列へと流体を導くた
めの所定の入口領域を定めるため前記円盤部材内に形成
され、出口部を与える手段が、前記流路から流体を排出
するための開口部の列を与えるため前記入口部を与える
手段と連係し、少なくとも一つの流路は前記円盤部材の
それぞれの中央領域においてより小さな断面積を有し、
前記中央領域から前記円盤部材の前記入口部および前記
出口部に向かって断面積が大きくなることを特徴とする
ものである。
The flow control device of the present invention further comprises a large number of disc members forming a rigid structure in which rows of flow paths through which the fluid flows are incorporated, and the disc members have an engaging surface and a flow of the fluid flowing therebetween. Means for providing an inlet portion having a passage is formed in the disc member to define a predetermined inlet region for directing fluid to the row of channels formed by the rigid structure, A means for providing is associated with the means for providing the inlet to provide an array of openings for draining fluid from the flow passage, the at least one flow passage having a smaller cross-sectional area in a respective central region of the disc member. Have
The cross-sectional area increases from the central region toward the inlet and the outlet of the disc member.

【0014】本発明はまた、すぐ次の段落に定義される
ように、構造物に組み込まれた対の円盤部材を提供し、
その各々の円盤部材はその厚みを通して放射状に広がる
孔の列を有し、その孔の列は二つの円盤部材において異
なり、そのため円盤部材はそれらの孔が重なり合うよう
に重合され、重なり合った孔は重合した対の円盤部材を
通ずる放射状の流路を与え、その流路は円盤部材の中央
領域においてより小さな断面積を有し、該中央領域から
中心および円盤部材の外周に向かって断面積が大きくな
ることを提供する。
The present invention also provides a pair of disc members incorporated into a structure, as defined in the next paragraph,
Each of the disc members has a row of holes that radiate through its thickness, the row of holes being different in the two disc members, so that the disc members are overlapped such that they overlap, and the overlapped holes are overlapped. A radial flow path through the pair of disc members, the flow passage having a smaller cross-sectional area in the central region of the disc member, and the cross-sectional area increases from the central region toward the center and the outer periphery of the disc member. To provide that.

【0015】すなわち、本発明の流体流量制御装置は、
前記円盤部材が環状であり、前記流路が環状の中央領域
から内周および外周に向かって断面積が大きくなること
を特徴とするものである。
That is, the fluid flow rate control device of the present invention is
It is characterized in that the disk member is annular, and the flow passage has a cross-sectional area that increases from the annular central region toward the inner circumference and the outer circumference.

【0016】また本発明の流体流量制御装置は、各々の
円盤部材が少なくとも2つの異なった放射状に広がる孔
の列を有するように重合した対の円盤部材を同一のもの
とし、一方の円盤部材の第1の孔の列が他方の円盤部材
の第2の孔の列に重合し、また一方の円盤部材の第2の
孔の列が他方の円盤部材の第1の孔の列に重合するよう
に該円盤部材が互いに回転していることを特徴とするも
のである。
Also, in the fluid flow control device of the present invention, a pair of disc members that are superposed such that each disc member has at least two different rows of radially extending holes are made the same, and one disc member is So that the first row of holes overlaps with the second row of holes in the other disc member, and the second row of holes in one of the disc members overlaps with the first row of holes in the other disc member. In addition, the disk members are rotating with respect to each other.

【0017】円盤部材のスタックにおいて隣接した対の
円盤部材の各々が、中央領域においてより小さな断面積
を有する流路を提供し、望むなら本発明は構造物内の円
盤部材のみの部分に適用されるとしてもよい。
Each adjacent pair of disc members in the stack of disc members provides a channel having a smaller cross-sectional area in the central region, and if desired, the present invention applies to the disc member only portion within a structure. You may say.

【0018】この円盤部材は、剛体構造物もしくは円盤
部材から形成されるスタックが中央通路を有するために
環状であることが望ましく、その中央通路には往復バル
ブプラグが流体が通過できる流路の数を増減するために
移動するようになっている。流路への入口部は外周に出
口部を有する円盤部材の内周にあるか、もしくは代わり
に、出口部が内周にあり入口部が外周にあるとすること
もできる。
The disc member is preferably ring-shaped because the stack formed from the rigid structure or the disc member has a central passage, and the reciprocating valve plug has a number of passages through which fluid can pass. It is designed to move to increase or decrease. The inlet to the flow passage may be on the inner circumference of a disk member having an outlet on the outer circumference, or, alternatively, the outlet may be on the inner circumference and the inlet may be on the outer circumference.

【0019】第2の形態として、本発明の流体流量制御
装置は、剛体構造物を形成する多数の円盤部材に流体が
流れる流路の列が組み込まれ、該円盤部材が係合面とそ
の間に流体が流れる流路を有し、各々の円盤部材は、少
なくとも一つの第1の流路が、該円盤部材の全厚みを通
して形成され該円盤部材の外周端から該円盤部材の中央
領域にある端に向かって広がり、少なくとも一つの第2
の流路が、該円盤部材の全厚みを通して形成され該円盤
部材の内周端から該円盤部材の中央領域にある端に向か
って広がり、一方の円盤部材の各々の第1の流路が他方
の円盤部材の第2の流路と連結し、前記一方の円盤部材
の各々の第2の流路が他方の円盤部材の第1の流路と連
結するように隣接する対の円盤部材が位置づけられるこ
とを特徴とするものである。
As a second mode, in the fluid flow rate control device of the present invention, a row of flow paths through which a fluid flows is incorporated in a large number of disc members forming a rigid structure, and the disc members are provided with an engaging surface and between them. Each disk member has a flow path through which at least one first flow path is formed through the entire thickness of the disk member, and an end located in a central region of the disk member from an outer peripheral end of the disk member. Towards at least one second
Is formed through the entire thickness of the disc member and spreads from the inner peripheral end of the disc member toward the end in the central region of the disc member, and the first flow passage of each of the disc members is the other. Positioning a pair of adjacent disk members so that the second flow path of each disk member is connected to the first flow path of the other disk member. It is characterized by being.

【0020】本発明はまた、すぐ次の段落に示すよう
に、構造物への組み込みに適した円盤部材を提供し、そ
の円盤部材は該円盤部材の全厚みを通して形成され該円
盤部材の外周端から該円盤部材の中央領域にある端へと
広がる少なくとも一つの第1の流路と、該円盤部材の全
厚みを通して形成され該円盤部材の内周端から該円盤部
材の中央領域にある端へと広がる少なくとも一つの第2
の流路とを有することを特徴とするものである。
The present invention also provides a disc member suitable for incorporation into a structure, the disc member being formed through the entire thickness of the disc member, as set forth in the immediately following paragraph, the outer peripheral edge of the disc member. From at least one first flow path extending from the disk member to the end in the central region of the disk member, and from the inner peripheral edge of the disk member formed through the entire thickness of the disk member to the end in the central region of the disk member. And at least one second spread
And a flow path of.

【0021】スタック内の各々の対の円盤部材の位置を
適切にすることによって、各々の対の円盤部材は、スタ
ック内の他の対の円盤部材により与えられる流路から分
離された一つもしくは複数の流路を与える。
By proper positioning of each pair of disc members within the stack, each pair of disc members may be separated from the flow path provided by the other pair of disc members within the stack. Providing multiple channels.

【0022】そのように規定した流路は、流体中に抵抗
や圧力降下を生じる急ターンを有するようにすることも
ある。この流路は、本発明の第1の形態で定義したよう
に、円盤部材の中央領域において断面積がより小さいと
してもよい。二者択一的もしくは付加的に、この流路は
流路を通じて流体の流れに所望のエネルギー低減を与え
るために入口部から出口部へと拡張した体積を与えるた
め断面積が増加するとしてもよい。他の具体的形態とし
て、GB−A−2273579に公開されたように、こ
の流路は流路の断面積を広げるため入口部と出口部の間
に空間部を定めてもよい。
The flow path thus defined may have a sharp turn that causes resistance or pressure drop in the fluid. The channel may have a smaller cross-sectional area in the central region of the disc member, as defined in the first aspect of the invention. Alternatively or additionally, the channel may have an increased cross-sectional area to provide an expanded volume from the inlet to the outlet to provide the desired energy reduction to the fluid flow through the channel. . As another specific form, as disclosed in GB-A-2273579, the flow passage may define a space between the inlet portion and the outlet portion to increase the cross-sectional area of the flow passage.

【0023】[0023]

【発明の効果】第1の形態において本発明によれば、装
置を通じる両方向の流路を提供する。それゆえ、それは
例えば地下ガス貯蔵システムのような貯蔵システムなど
の入出力において流体流路を調整する際に特に使用され
る。本発明の第1の形態による流量制御装置を組み込ん
だバルブは、それゆえ従来使用された二つのバルブ、す
なわち一つが流体注入用で一つが流体排出用の、例えば
天然ガスの地下貯蔵の入出用に使用された二つのバルブ
を有利に取り替えることもできる。
In a first aspect, the present invention provides a bidirectional flow path through the device. Therefore, it is especially used in regulating the fluid flow path at the input and output of storage systems, such as underground gas storage systems. A valve incorporating a flow control device according to the first aspect of the invention therefore has two conventionally used valves, one for fluid injection and one for fluid discharge, for example for the entry and exit of underground storage of natural gas. It is also possible to advantageously replace the two valves used in the.

【0024】第2の形態において本発明によれば、それ
により定義された円盤部材は、流路をより容易に加工す
るために特に利点がある。このように、この円盤部材
は、円盤部材の厚みを通してワイヤーEDM機械加工も
しくは水射出機械加工されることもあり、カーバイドや
セラミック材料の円盤部材は特別なツールを必要とせず
に加工できる。
According to the invention in a second aspect, the disc member defined thereby has particular advantages for easier machining of the channels. As such, the disc member may be wire EDM machined or water injection machined through the thickness of the disc member, and the disc member of carbide or ceramic material can be machined without the need for special tools.

【0025】[0025]

【発明の実施の形態】以下図面を参照して本発明の実施
の形態について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0026】図1は、本発明の流量制御装置を利用した
バルブの縦方向断面図である。
FIG. 1 is a vertical cross-sectional view of a valve utilizing the flow control device of the present invention.

【0027】図1は、入口部16から大気12へと、例
えば蒸気の所定量を排出するための流体排出バルブ組立
体10を表す。流体は、可動バルブプラグ20によりス
タック組立体14を通じて流体の所定量をそこから排出
させるチャンバー18へと流れる。バルブプラグ20
は、スタック組立体14の入口部22の全てを完全にブ
ロックすることによりスタック組立体14に入り込む流
体を完全にブロックする第1の位置と、バルブ組立体1
0の上部枠部により形成された空間部24へ向かって上
部へ移動することにより入口部22の全てを開放する第
2の位置との間を移動できる。プラグ20は、公知の方
法でシステムの制御信号に応答するアクチュエータ(図
示なし)に連結した結合ロッド28によって移動する。
アクチュエータがプラグ20を両位置の間を動かすため
に行使する力を最小限にするため、チャンバーと空間部
24との間を流体が伝達するためにブラグ20を横切っ
て縦方向に広がる対の流路30を与えることによって、
プラグ20を横切って流体圧力のバランスがとられてい
る。
FIG. 1 illustrates a fluid discharge valve assembly 10 for discharging a predetermined amount of vapor, for example, from an inlet 16 to the atmosphere 12. The fluid flows through the stack assembly 14 by the moveable valve plug 20 into a chamber 18 through which a predetermined amount of fluid is expelled. Valve plug 20
Includes a first position that completely blocks all fluid entering the stack assembly 14 by completely blocking all of the inlet portions 22 of the stack assembly 14, and the valve assembly 1
By moving to the upper part toward the space part 24 formed by the upper frame part of 0, it is possible to move to and from the second position where all the entrance parts 22 are opened. The plug 20 is moved in a known manner by a connecting rod 28 connected to an actuator (not shown) which responds to system control signals.
In order to minimize the force that the actuator exerts to move the plug 20 between the two positions, a pair of longitudinal flows extending across the plug 20 for fluid transfer between the chamber and the space 24. By giving way 30,
Fluid pressure is balanced across the plug 20.

【0028】円盤部材のスタック組立体14は、個々の
円盤部材の列32を有し、それらの円盤部材は、プラグ
20に対し整列され、スタック組立体14を包括する底
部台板36との間を伸張棒34によりともにクランプさ
れ、スタック組立体の出口部42から大気中へと出てい
く流体を安全に導く。以下に述べるように、様々に形づ
くられる円盤部材32により入口部22から出口部42
へと伝搬する際に、円盤部材のスタック組立体は流体に
迷路を与える。
The disc member stack assembly 14 has an array of individual disc members 32 which are aligned with the plug 20 and between a bottom base plate 36 which encloses the stack assembly 14. Are clamped together by a stretch bar 34 to safely direct fluid exiting the stack assembly outlet 42 into the atmosphere. As will be described below, variously shaped disc members 32 allow the inlet 22 to the outlet 42.
The disk member stack assembly provides a maze for the fluid as it propagates to.

【0029】図2aは、例えば図1の流量制御装置内に
使用される本発明の第1の形態に従った円盤部材の一形
態の部分平面図である。
FIG. 2a is a partial plan view of one form of a disk member according to the first form of the present invention for use in the flow control device of FIG. 1, for example.

【0030】図2aにおいて、環状円盤部材32Aは、
それを貫通する通常は矩形の孔の放射状に広がった2つ
の反復列を有する。列33は、外周部34にあるスロッ
ト33A、スロット33Aより横方向の寸法が小さな中
間孔33Bと円盤部材の内周部35にあるスロット33
Cからなる。スロット33Cはスロット33Aとほぼ同
等の寸法を有する。第2の孔の列は第1の列に対し放射
方向に45°で位置されている。第2の列は、またも通
常矩形の二つの孔36Aと36Bからなる。孔36Aと
36Bの横方向の寸法は、一方のスロット33Aおよび
33Cと、もう一方の孔33Bとの中間の大きさであ
る。それらもまた、第1の列の二つの孔の放射方向に対
し中心と中心の間に位置するように放射方向に中心を置
くように位置される。二つの列(一つのみ図示)は、円
盤部材の回りを45°の間隔で互い違いに配置される。
In FIG. 2a, the annular disc member 32A is
It has two repeating rows of radially extending through it, usually rectangular holes. The row 33 includes slots 33A on the outer peripheral portion 34, an intermediate hole 33B having a lateral dimension smaller than the slot 33A, and a slot 33 on the inner peripheral portion 35 of the disc member.
It consists of C. The slot 33C has substantially the same size as the slot 33A. The second row of holes is located at 45 ° radially with respect to the first row. The second row consists of two holes 36A and 36B, again generally rectangular. The lateral dimensions of the holes 36A and 36B are intermediate between the slots 33A and 33C on the one hand and the holes 33B on the other hand. They are also positioned to be radially centered so as to lie between and in the radial direction of the two holes of the first row. The two rows (only one shown) are staggered around the disc member at 45 ° intervals.

【0031】図2bは一方が他方に対し45°回転した
図2aに従った二つの円盤部材を示しており、上部円盤
部材の孔36Aが流路37Aと37Bを形成するために
底部円盤部材のスロット33Aと孔33Bと一部重なり
合い、そして上部円盤部材の孔36Bが流路37Cと3
7Dを形成するために底部円盤部材の孔33Bとスロッ
ト33Cと一部重なり合うように、二つの円盤部材は重
合されている。
FIG. 2b shows two disc members according to FIG. 2a, one rotated by 45 ° with respect to the other, with holes 36A in the upper disc member forming the bottom disc member to form channels 37A and 37B. The slots 33A and the holes 33B partially overlap with each other, and the holes 36B of the upper disk member form the flow paths 37C and 3C.
The two disc members are overlapped so that they partially overlap the holes 33B and slots 33C of the bottom disc member to form 7D.

【0032】下部円盤部材にある孔36Aと36Bによ
って形成される互い違いの流路の列とともに、同様の重
なりが45°の間隔で生じる。
Similar overlap occurs at 45 ° intervals with alternating rows of channels formed by holes 36A and 36B in the lower disk member.

【0033】円盤部材の外周側に位置する流路37Aが
円盤部材の中部に位置する流路37Bと37Cの流路よ
り大きい断面積を有し、また、円盤部材の内周側に位置
する流路37Dが流路37Bと37Cの流路より大きい
断面積を有することがわかるであろう。
The flow path 37A located on the outer peripheral side of the disk member has a larger cross-sectional area than the flow paths 37B and 37C located in the middle part of the disk member, and the flow path located on the inner peripheral side of the disk member. It will be appreciated that channel 37D has a larger cross-sectional area than channels 37B and 37C.

【0034】図2cと図2dは、図2bに示したような
2つの円盤部材32Aが重なり合った様子を、流路の上
部および底部をそれぞれ閉じ込めて制限する分離円盤部
材38および39とともに示している。矢印に示すよう
に、流体は、内周から外周に向かって流れるか(図2
c)、もしくは外周から内周に向かって流れる(図2
d)。
FIGS. 2c and 2d show the overlapping of two disc members 32A as shown in FIG. 2b, with separate disc members 38 and 39 for confining and limiting the top and bottom of the channel, respectively. . As shown by the arrow, does the fluid flow from the inner circumference to the outer circumference?
c) or flowing from the outer circumference to the inner circumference (Fig. 2
d).

【0035】図3aは、本発明の第2の形態に従った円
盤部材の平面図である。
FIG. 3a is a plan view of a disk member according to the second aspect of the present invention.

【0036】図3aにおいては、円盤部材32Bは4つ
の等間隔に配置された流路62を有し、各々は円盤部材
の全厚みを通して切り込まれ、円盤部材の外周端64か
ら円盤部材の中央領域66にある端に向かって広がって
いる。この円盤部材はまた4つの等間隔に配置された流
路68を有し、その各々もまた円盤部材の全厚みを通し
て切り込まれ、円盤部材の内周端70から円盤部材の中
央領域66に向かって広がっている。流路62の各々
は、隣接する対の流路68の間に位置され、また逆に、
流路68の各々は、隣接する対の流路62の間に位置さ
れる。
In FIG. 3a, disc member 32B has four equally spaced channels 62, each cut through the entire thickness of the disc member, from the outer edge 64 of the disc member to the center of the disc member. It widens toward the edge at region 66. The disc member also has four equally spaced channels 68, each of which is also cut through the entire thickness of the disc member and extends from the inner peripheral edge 70 of the disc member toward the central region 66 of the disc member. Is spreading. Each of the flow channels 62 is located between an adjacent pair of flow channels 68 and vice versa.
Each of the flow channels 68 is located between an adjacent pair of flow channels 62.

【0037】図3bにおいて、円盤部材32Bに対して
45°回転している類似の円盤部材32B’を示してい
る。円盤部材32B’は円盤部材32Bが有するような
流路62’と68’の同様の配列を有し、同様のパーツ
が同じ番号のプライムで示されている。
In FIG. 3b, a similar disc member 32B 'is shown rotated 45 ° with respect to the disc member 32B. Disc member 32B 'has a similar arrangement of channels 62' and 68 'as disc member 32B has, with similar parts being designated by the same prime numbers.

【0038】円盤部材32Bと32B’の対は、お互い
が45°回転して面と面を係合しており、この様子が図
3cに示されている。円盤部材32Bの流路62のそれ
ぞれの中央領域にある端部は他方の円盤部材32B’の
流路68’のそれぞれの中央領域にある端部と重なり合
い、同様に流路62’と68が重なり合い、それによっ
て対の円盤部材の外周端64,64’と内周端70,7
0’との間に8つの流路が形成される。
The pair of disc members 32B and 32B 'are rotated 45 ° to each other and are engaged face to face, as shown in FIG. 3c. The ends of the disk member 32B in the respective central regions of the flow paths 62 overlap the ends of the other disk member 32B 'in the respective central regions of the flow paths 68', and similarly the flow paths 62 'and 68 overlap. , Thereby the outer peripheral ends 64, 64 'and the inner peripheral ends 70, 7 of the pair of disc members.
Eight channels are formed between 0 'and 0'.

【0039】図示するように、流路62,68’および
62’,68はそれぞれ、流路を通じて流れる流体に摩
擦やエネルギー損失を与えるための多数の直角ターン6
9を有する。
As shown, the channels 62, 68 'and 62', 68 are each a number of right-angled turns 6 for imparting friction and energy loss to the fluid flowing through the channels.
Have 9.

【0040】図3dでは、2つの対の円盤部材のスタッ
クが平面図として示されており、円盤部材の各々の対は
図3cに示したような方法でお互い重合しており、各々
の対は他方に対し22.5°回転して配置される。この
方法により、上部の対の流路72,72’は、下部の対
の流路62,62’との間に定められる。円盤部材の外
周から内周へと向かう各々の流路は、円盤部材の間に入
った領域により円盤部材のその対の円盤部材上にある隣
接する流路から分離され、一方の対の円盤部材の各々の
流路は、隣接する円盤部材の係合面により隣接する他方
の対の円盤部材の各々の流路から分離されるといったこ
とが認識されるであろう。
In FIG. 3d, a stack of two pairs of disc members is shown in plan view, with each pair of disc members being superposed on one another in the manner shown in FIG. 3c. It is arranged rotated by 22.5 ° with respect to the other. By this method, the upper pair of channels 72, 72 'are defined between the lower pair of channels 62, 62'. Each flow path from the outer circumference to the inner circumference of the disk member is separated from the adjacent flow path on the pair of disk members of the disk member by the area between the disk members, and one pair of disk members is provided. It will be appreciated that each flow path of each of the two is separated from the flow path of each of the other pair of adjacent disk members by the engagement surfaces of the adjacent disk members.

【0041】図4aは本発明の第2の形態に従った他の
円盤部材の平面図である。
FIG. 4a is a plan view of another disk member according to the second embodiment of the present invention.

【0042】図4aにおいて、円盤部材32Cは8つの
等間隔に配置された流路82を有し、各々は円盤部材の
全厚みを通して切り込まれ、円盤部材の外周端84から
円盤部材の中央領域86にある端に向かって広がってい
る。円盤部材はまた8つの等間隔に配置された流路88
を有し、その各々もまた円盤部材の全厚みを通して切り
込まれ、円盤部材の内周端90から円盤部材の中央領域
86に向かって広がっている。流路82の各々は、隣接
する対の流路88の間に位置され、また逆に、流路88
の各々は、隣接する対の流路82の間に位置される。
In FIG. 4a, the disc member 32C has eight equally spaced channels 82, each cut through the entire thickness of the disc member, from the outer edge 84 of the disc member to the central region of the disc member. It widens toward the edge at 86. The disk member also has eight equally spaced channels 88.
Each of which is also cut through the entire thickness of the disc member and extends from the inner peripheral edge 90 of the disc member toward the central region 86 of the disc member. Each of the channels 82 is located between an adjacent pair of channels 88, and vice versa.
Are located between adjacent pairs of channels 82.

【0043】図4bにおいて、円盤部材32Cに対して
22.5°回転している類似の円盤部材32C’を示し
ている。円盤部材32C’は円盤部材32Cが有するよ
うな流路82’と88’の同様の配列を有し、同様のパ
ーツが同じ番号のプライムで示されている。
In FIG. 4b, a similar disc member 32C 'is shown rotated 22.5 ° with respect to the disc member 32C. Disc member 32C 'has a similar arrangement of channels 82' and 88 'as disc member 32C has, with similar parts being designated by the same prime number.

【0044】円盤部材32Cと32C’の対は、お互い
が22.5°回転して面と面とを係合しており、この様
子が図4cに示されている。円盤部材32Cの流路82
のそれぞれの中央領域にある端部は他方の円盤部材32
C’の流路88’のそれぞれの中央領域にある端部と重
なり合い、同様に流路82’と88が重なり合い、それ
によって対の円盤部材の外周端84,84’と内周端9
0,90’との間に16の流路が形成される。
The pair of disc members 32C and 32C 'rotate face to face by 22.5 ° with respect to each other and this is shown in FIG. 4c. Flow path 82 of disk member 32C
Of the other disk member 32 is
The flow passages 88 'of C'overlap with the ends in their respective central regions, and the flow passages 82' and 88 also overlap, thereby causing the outer peripheral ends 84, 84 'and the inner peripheral end 9 of the pair of disk members to overlap.
Sixteen channels are formed between 0 and 90 '.

【0045】図示するように、流踏82,88’および
82’,88はそれぞれ、上述したような理由で、多数
の直角ターン69を有する。
As shown, each of the walkways 82, 88 'and 82', 88 has a number of right angle turns 69 for the reasons set forth above.

【0046】図4dに環状分離円盤部材100の平面図
を示す。一つの円盤部材100はそれぞれの対の円盤部
材の間に流路を維持するため、そのような対のスタック
内の重合した円盤部材32Cと32C’の各々の対の間
に配置されうる。
FIG. 4d shows a plan view of the annular separating disk member 100. One disc member 100 may be disposed between each pair of superposed disc members 32C and 32C 'in a stack of such pairs to maintain a flow path between each pair of disc members.

【0047】本発明は、上述した具体例に限らないこと
か認識されるであろう。例えば図3と図4に示した具体
例においては、流路の数は多かれ少なかれ所望の数にな
り得る。流路は上述したように空所を含んでもよい。
It will be appreciated that the invention is not limited to the embodiments described above. For example, in the embodiment shown in FIGS. 3 and 4, the number of channels can be more or less as desired. The flow path may include voids as described above.

【0048】図1のバルブの組立は、逆方向に流体が伝
搬する、すなわち42を流体の入口部とし、22と16
を出口部とするように、変えてもよい。
The assembly of the valve of FIG. 1 allows the fluid to propagate in opposite directions, ie with 42 as the fluid inlet, and 22 and 16
May be changed so as to be the outlet.

【0049】この装置は、流体貯蔵システムの出入りを
制御するためにバルブの組立に利用することもできる。
This device can also be used in the assembly of valves to control the entry and exit of fluid storage systems.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の流量制御装置を利用したバルブの縦方
向断面図
FIG. 1 is a vertical cross-sectional view of a valve using a flow control device of the present invention.

【図2a】例えば図1の流量制御装置内に使用される本
発明の第1の形態に従った円盤部材の一形態の部分平面
2a is a partial plan view of one form of a disk member according to the first form of the invention, for example used in the flow control device of FIG. 1. FIG.

【図2b】図2aに示した型の一方をもう一方に重ねた
対の円盤部材の部分平面図
FIG. 2b is a partial plan view of a pair of disc members in which one of the molds shown in FIG. 2a is overlaid on the other.

【図2c】分離板を加えて一方向の流れを示した図2b
の線A−Aに沿った部分断面図
Figure 2c Figure 2b showing the flow in one direction with the addition of a separator plate.
Sectional view taken along the line A-A of FIG.

【図2d】分離板を加えて図2cの逆方向の流れを示し
た図2bの線A−Aに沿った部分断面図
2d is a partial cross-sectional view along line AA of FIG. 2b showing the reverse flow of FIG. 2c with the addition of a separator plate.

【図3a】本発明の第2の形態に従った円盤部材の平面
FIG. 3a is a plan view of a disk member according to a second embodiment of the present invention.

【図3b】図3aに示したものと類似の45°回転した
他方の円盤部材の平面図
FIG. 3b is a plan view of the other disc member rotated 45 ° similar to that shown in FIG. 3a.

【図3c】図3aと図3bの2つの円盤部材を重なり合
わせた平面透視図
FIG. 3c is a perspective plan view of the two disc members of FIGS. 3a and 3b, superimposed on each other.

【図3d】図3aに示した型の4つの円盤部材を重なり
合わせた平面透視図
FIG. 3d is a top perspective view of four disc members of the type shown in FIG.

【図4a】本発明の第2の形態に従った他の円盤部材の
平面図
FIG. 4a is a plan view of another disc member according to the second embodiment of the present invention.

【図4b】図3aに示したものと類似の22.5°回転
した他方の円盤部材の平面図
FIG. 4b is a plan view of the other disc member rotated by 22.5 ° similar to that shown in FIG. 3a.

【図4c】図4aと図4bの2つの円盤部材を重なり合
わせた平面透視図
FIG. 4c is a top perspective view of the two disc members of FIGS. 4a and 4b superimposed on each other.

【図4d】図4cの2つの積み重なった円盤部材に結合
する分離板の平面図
FIG. 4d is a plan view of a separator plate joining the two stacked disc members of FIG. 4c.

【符号の説明】[Explanation of symbols]

10 流体排出バルブ組立体 14 スタック組立体 16 入口部 20 可動バルブプラグ 22 スタック入口部 32A,32B,32B’,32C,32C’ 環状
円盤部材 33A,33C スロット 33B,36A,36B 孔 36 底部台板 37A,37B,37C,37D 流路 38,39 分離板 42 スタック出口部 62,62’,68,68’,72,72’,82,8
2’,88,88’ 流路 71 スタック 100 環状分離板
10 Fluid Discharge Valve Assembly 14 Stack Assembly 16 Inlet 20 Mobile Valve Plug 22 Stack Inlet 32A, 32B, 32B ', 32C, 32C' Annular Disc Member 33A, 33C Slot 33B, 36A, 36B Hole 36 Bottom Base 37A , 37B, 37C, 37D Flow path 38, 39 Separation plate 42 Stack outlet 62, 62 ', 68, 68', 72, 72 ', 82, 8
2 ', 88, 88' flow path 71 stack 100 annular separation plate

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 流体が流れるほぼ放射状に広がった流路
の列が組み込まれた剛体構造物を形成する多数の対の環
状円盤部材からなる流体流量制御装置において、 前記対の円盤部材の各々がその中に該円盤部材を通して
放射方向に一部にのみ広がった流路を有し、 前記対の円盤部材を通して流体の流れを形成するために
一方の円盤部材の流路が対の他方の円盤部材の流路と連
結するように前記対の円盤部材が互いに配置されること
を特徴とする流体流量制御装置。
1. A fluid flow control device comprising a number of pairs of annular disc members forming a rigid structure incorporating rows of substantially radially spread channels through which fluid flows, each of said pair of disc members. There is a channel in the disk member that spreads only partially in the radial direction through the disk member, and the channel of one disk member is the other disk member of the pair in order to form a fluid flow through the disk member of the pair. 2. The fluid flow rate control device, wherein the pair of disk members are arranged so as to be connected to the flow path.
【請求項2】 多数の円盤部材が、流体が流れる流路の
列が組み込まれた剛体構造物を形成し、前記円盤部材が
係合面とその間に流体が流れる流路を有し、 入口部を与える手段が、前記剛体構造物によって形成さ
れた前記流路の列へと流体を導くための所定の入口領域
を定めるため前記円盤部材に形成され、 出口部を与える手段が、前記流路から流体を排出するた
めの開口部の列を与えるため前記入口部を与える手段と
連係し、 少なくとも一つの流路は前記円盤部材のそれぞれの中央
領域においてより小さな断面積を有し、前記中央領域か
ら前記円盤部材の前記入口部および前記出口部に向かっ
て断面積が大きくなることを特徴とする請求項1記載の
流体流量制御装置。
2. A plurality of disc members form a rigid structure in which rows of channels through which fluid flows are incorporated, said disc members having engagement surfaces and channels through which fluid flows, and an inlet portion. Means for providing an outlet is formed in the disc member to define a predetermined inlet region for guiding fluid to the row of channels formed by the rigid structure, and means for providing an outlet is provided from the channel. Cooperating with means for providing said inlet to provide a row of openings for draining fluid, at least one flow path having a smaller cross-sectional area in each central region of said disc member, The fluid flow rate control device according to claim 1, wherein a cross-sectional area increases toward the inlet portion and the outlet portion of the disk member.
【請求項3】 前記円盤部材が環状であり前記流路が環
状の中央領域から内周および外周に向かって断面積が大
きくなることを特徴とする請求項2記載の流体流量制御
装置。
3. The fluid flow rate control device according to claim 2, wherein the disc member has an annular shape, and the flow passage has a cross-sectional area increasing from an annular central region toward an inner circumference and an outer circumference.
【請求項4】 各々の円盤部材が少なくとも2つの異な
った放射状に広がる孔の列を有するように重合した対の
円盤部材を同一のものとし、一方の円盤部材の第1の孔
の列が他方の円盤部材の第2の孔の列に重合し、また一
方の円盤部材の第2の孔の列が他方の円盤部材の第1の
孔の列に重合するように該円盤部材が互いに回転してい
ることを特徴とする請求項3記載の流体流量制御装置。
4. A pair of disc members superposed so that each disc member has at least two different rows of radially extending holes, one disc member having the first row of holes being the other. The disk members rotate relative to each other such that they overlap with the second row of holes in the disk member and the second row of holes in one disk member overlap with the first row of holes in the other disk member. The fluid flow rate control device according to claim 3, wherein
【請求項5】 前記円盤部材が環状であり、流体が通過
できる流路の数を増減するための可動である往複バルブ
プラグを収納するよう、形成された剛体環状スタックが
適合されることを特徴とする請求項2記載の流体流量制
御装置。
5. The rigid annular stack adapted to house a forward compound valve plug that is movable to increase or decrease the number of passages through which the disc member can be annular. The fluid flow rate control device according to claim 2.
【請求項6】 剛体構造物を形成する多数の円盤部材に
流体が流れる流路の列が組み込まれ、該円盤部材が係合
面とその間に流体が流れる流路を有し、 各々の円盤部材は、少なくとも一つの第1の流路が、該
円盤部材の全厚みを通して形成され該円盤部材の外周端
から該円盤部材の中央領域にある端に向かって広がり、
少なくとも一つの第2の流路が、該円盤部材の全厚みを
通して形成され該円盤部材の内周端から該円盤部材の中
央領域にある端に向かって広がり、一方の円盤部材の各
々の第1の流路が他方の円盤部材の第2の流路と連結
し、前記一方の円盤部材の各々の第2の流路が前記他方
の円盤部材の第1の流路と連結するように隣接する対の
円盤部材が位置づけられることを特徴とする請求項1記
載の流体流量制御装置。
6. A plurality of disc members forming a rigid structure are incorporated with rows of flow passages through which a fluid flows, the disc members having engaging surfaces and flow passages between which fluid flows, each disc member. Is at least one first flow path is formed through the entire thickness of the disk member and spreads from the outer peripheral end of the disk member toward the end in the central region of the disk member,
At least one second flow path is formed through the entire thickness of the disc member and extends from the inner peripheral end of the disc member toward the end in the central region of the disc member, and the first flow path of each of the first disc member Is connected to the second flow path of the other disk member, and the second flow path of each of the one disk member is adjacent to be connected to the first flow path of the other disk member. The fluid flow control device according to claim 1, wherein a pair of disk members are positioned.
【請求項7】 前記円盤部材が該円盤部材の全厚みを通
して形成され該円盤部材の外周端から該円盤部材の中央
領域にある端へと広がる少なくとも一つの第1の流路
と、該円盤部材の全厚みを通して形成され該円盤部材の
内周端から該円盤部材の中央領域にある端へと広がる少
なくとも一つの第2の流路とを有することを特徴とする
請求項6記載の流体流量制御装置内への組み込みに適し
た円盤部材。
7. The disc member, wherein the disc member is formed through the entire thickness of the disc member and extends from an outer peripheral end of the disc member to an end in a central region of the disc member, and the disc member. 7. The fluid flow rate control device according to claim 6, further comprising at least one second flow channel formed through the entire thickness of the disc member and extending from an inner peripheral end of the disc member to an end located in a central region of the disc member. Disk member suitable for incorporation into equipment.
【請求項8】 対で形成される多数の円盤部材があり、
各々の対の円盤部材が、スタック内の他方の対の円盤部
材によって与えられる流路から分離された一つもしくは
複数の流路を与えることを特徴とする請求項6記載の流
体流量制御装置。
8. There are a number of disc members formed in pairs,
7. The fluid flow control device of claim 6, wherein each pair of disc members provides one or more channels separated from the channels provided by the other pair of disc members in the stack.
JP2699596A 1995-02-14 1996-02-14 Fluid flow control device Pending JPH08320003A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9502836.1 1995-02-14
GB9502836A GB9502836D0 (en) 1995-02-14 1995-02-14 Fluid flow control device

Publications (1)

Publication Number Publication Date
JPH08320003A true JPH08320003A (en) 1996-12-03

Family

ID=10769556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2699596A Pending JPH08320003A (en) 1995-02-14 1996-02-14 Fluid flow control device

Country Status (6)

Country Link
US (2) US5687763A (en)
EP (1) EP0727605B1 (en)
JP (1) JPH08320003A (en)
KR (1) KR960031861A (en)
DE (1) DE69614585T2 (en)
GB (1) GB9502836D0 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005090555A (en) * 2003-09-12 2005-04-07 Tokyo Kousou Kk Pressure reducing control valve
JP2008534883A (en) * 2005-03-30 2008-08-28 ドレッサ、インク Noise reduction module using Herschel-Kink tube
WO2009046429A3 (en) * 2007-10-05 2009-05-28 Energy Recovery Inc Rotary pressure transfer device with improved flow
JP2011514483A (en) * 2008-01-22 2011-05-06 コントロール コンポーネンツ インコーポレイテッド Direct metal laser sintered flow control element
JP2015533409A (en) * 2012-11-02 2015-11-24 フィッシャー コントロールズ インターナショナル リミテッド ライアビリティー カンパニー Valve cage with no dead band between the noise reduction section and the high volume flow section

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2322433B (en) * 1997-02-25 2001-08-08 Control Components Valve filter
CN1102717C (en) * 1998-01-28 2003-03-05 费希尔控制产品国际公司 fluid pressure reduction device with linear flow characteristic
KR100280893B1 (en) 1998-07-14 2001-11-02 권갑주 Valve's Fluid Flow Control
US6244297B1 (en) 1999-03-23 2001-06-12 Fisher Controls International, Inc. Fluid pressure reduction device
US6095196A (en) * 1999-05-18 2000-08-01 Fisher Controls International, Inc. Tortuous path fluid pressure reduction device
KR20010038853A (en) * 1999-10-28 2001-05-15 권갑주 A Resistance Device for Controlling Fluid Velocity and Reducing Fluid Pressure
GB0006337D0 (en) * 2000-03-16 2000-05-03 Hopkinsons Ltd Fluid energy reduction valve
GB0010627D0 (en) 2000-05-04 2000-06-21 Control Components Fluid flow control device
US6701957B2 (en) * 2001-08-16 2004-03-09 Fisher Controls International Llc Fluid pressure reduction device
US6615874B2 (en) 2002-01-22 2003-09-09 Flowserve Management Company Stacked disk valve trim
DE10332262A1 (en) * 2002-07-23 2004-02-12 Daume Regelarmaturen Gmbh Valve has support component for inlet side housing section and upon it are wear and/or sound reducing means formed by packet of several discs which has at least one flow passage connecting inlet side and outlet side housing sections
US7431045B2 (en) * 2002-08-28 2008-10-07 Horiba Stec, Co., Ltd. Flow restrictor
US6718633B1 (en) * 2003-03-14 2004-04-13 Flowserve Management Company Process for manufacturing valve trim assemblies
US8376312B2 (en) 2003-08-28 2013-02-19 Horiba, Ltd. Flow restrictor
US20050150261A1 (en) * 2004-01-14 2005-07-14 Conair Corporation Garment steamer with improved heater and variable steam output
US20050199298A1 (en) * 2004-03-10 2005-09-15 Fisher Controls International, Llc Contiguously formed valve cage with a multidirectional fluid path
US7320340B2 (en) * 2004-03-26 2008-01-22 Fisher Controls International Llc Fluid pressure reduction devices
US7261276B1 (en) 2004-07-14 2007-08-28 Taylor Innovations, L.L.C. Flow regulator valve
KR100477004B1 (en) * 2004-08-12 2005-03-17 시스템디엔디(주) Fluid resistance device and fluid control device using it
US7044437B1 (en) * 2004-11-12 2006-05-16 Fisher Controls International Llc. Flexible size sparger for air cooled condensors
US7690400B2 (en) * 2005-02-28 2010-04-06 Flowserve Management Company Noise reducing fluid passageways for fluid control devices
US7234488B2 (en) * 2005-08-09 2007-06-26 Spx Corporation Valve assembly and method with slotted plates and spherical ball plug
US7802592B2 (en) 2006-04-18 2010-09-28 Fisher Controls International, Llc Fluid pressure reduction devices
BRPI0719957B1 (en) * 2006-10-04 2022-01-18 Fluor Technologies Corporation SUBSEA PRODUCTION SET FOR HIGH PRESSURE WELLS AND METHOD FOR CONTROLLING A FLOW OF HYDROCARBONS PRODUCT FROM A HIGH PRESSURE WELL
GB0716363D0 (en) * 2007-08-22 2007-10-03 Ct For Sustainable Engineering Fluid control device
BRPI0815815B1 (en) * 2007-08-31 2020-03-24 Cameron Technologies Limited FLUID HANDLING SYSTEM, DEVICE AND APPLIANCE
US8312893B2 (en) * 2008-05-02 2012-11-20 Control Components, Inc. Axial drag valve with internal hub actuator
US8393355B2 (en) * 2009-05-28 2013-03-12 Control Components, Inc. Short stroke control valve
US8245727B2 (en) 2009-06-26 2012-08-21 Pamela Mooney, legal representative Flow control valve and method of use
US8434421B2 (en) * 2009-09-22 2013-05-07 Janet L. Fagan Manually settable tamper resistant indicator device
CA2837706C (en) 2011-06-01 2017-10-31 Transco Products Inc. High capacity suction strainer for an emergency core cooling system in a nuclear power plant
KR101233653B1 (en) * 2012-06-27 2013-02-21 시스템디엔디(주) A device for reducing pressure and velocity of flowing fluid
US20140069737A1 (en) * 2012-09-10 2014-03-13 Dresser Inc. Noise attenuation device and fluid coupling comprised thereof
US9222624B2 (en) * 2013-03-15 2015-12-29 Fisher Controls International Llc Stacked disk noise abatement device and control valve comprising same
US9528632B2 (en) 2014-10-14 2016-12-27 General Electric Company Tortuous path control valve trim
CA2966174A1 (en) 2014-10-29 2016-05-06 Elliptic Works LLC Flow control devices and related systems
WO2017150331A1 (en) * 2016-02-29 2017-09-08 株式会社フジキン Flow rate control device
CN108223901B (en) * 2016-12-15 2019-09-24 黎转群 A kind of second depressurized disk and pressure reducing valve
WO2019220153A2 (en) 2018-05-14 2019-11-21 Hydromat D.O.O. Axial valve of the modular concept of construction
GB2587398B (en) * 2019-09-27 2024-01-31 Severn Glocon Uk Valves Ltd Flow control device
US12203493B2 (en) * 2022-01-10 2025-01-21 Horiba Stec, Co., Ltd. Flow restrictor for fluid flow device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3514074A (en) * 1968-05-06 1970-05-26 Richard E Self High energy loss fluid control
US3529628A (en) * 1968-05-10 1970-09-22 Samuel A Cummins Variable fluid restrictor
FR2076812A5 (en) * 1970-01-29 1971-10-15 Gratzmuller J
US3978891A (en) * 1972-10-02 1976-09-07 The Bendix Corporation Quieting means for a fluid flow control device
US3780767A (en) * 1972-12-18 1973-12-25 Masoneilan Int Inc Control valve trim having high resistance vortex chamber passages
US3894716A (en) * 1973-12-26 1975-07-15 Acf Ind Inc Fluid control means having plurality discs
US3899001A (en) * 1974-06-06 1975-08-12 Bendix Corp Multi-path valve structure
AU515165B2 (en) * 1975-09-09 1981-03-19 Babcock & Wilcox Co., The High energy loss device
DE2728697C3 (en) * 1977-06-25 1984-03-29 Gulde-Regelarmaturen-Kg, 6700 Ludwigshafen Relief valve
US4221037A (en) * 1977-09-29 1980-09-09 Copes-Vulcan, Inc. Method for manufacturing a fluid control device with disc-type flow restrictor
US4267045A (en) * 1978-10-26 1981-05-12 The Babcock & Wilcox Company Labyrinth disk stack having disks with integral filter screens
US4352373A (en) * 1980-08-21 1982-10-05 Vacco Industries Disc-reel sound suppressor
JPS5942192B2 (en) * 1982-04-23 1984-10-13 株式会社中北製作所 control valve
US4938450A (en) * 1989-05-31 1990-07-03 Target Rock Corporation Programmable pressure reducing apparatus for throttling fluids under high pressure
JP2779434B2 (en) * 1994-03-24 1998-07-23 株式会社本山製作所 Control valve cage and control valve

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005090555A (en) * 2003-09-12 2005-04-07 Tokyo Kousou Kk Pressure reducing control valve
JP2008534883A (en) * 2005-03-30 2008-08-28 ドレッサ、インク Noise reduction module using Herschel-Kink tube
JP4854730B2 (en) * 2005-03-30 2012-01-18 ドレッサ、インク Noise reduction module using Herschel-Kink tube
WO2009046429A3 (en) * 2007-10-05 2009-05-28 Energy Recovery Inc Rotary pressure transfer device with improved flow
KR101501979B1 (en) * 2007-10-05 2015-03-12 에너지 리커버리 인코포레이티드 Rotary pressure transfer device with improved flow
JP2011514483A (en) * 2008-01-22 2011-05-06 コントロール コンポーネンツ インコーポレイテッド Direct metal laser sintered flow control element
JP2015533409A (en) * 2012-11-02 2015-11-24 フィッシャー コントロールズ インターナショナル リミテッド ライアビリティー カンパニー Valve cage with no dead band between the noise reduction section and the high volume flow section

Also Published As

Publication number Publication date
GB9502836D0 (en) 1995-04-05
EP0727605A1 (en) 1996-08-21
DE69614585T2 (en) 2002-06-27
KR960031861A (en) 1996-09-17
DE69614585D1 (en) 2001-09-27
USRE36984E (en) 2000-12-12
EP0727605B1 (en) 2001-08-22
US5687763A (en) 1997-11-18

Similar Documents

Publication Publication Date Title
JPH08320003A (en) Fluid flow control device
US4105048A (en) High energy loss device
US5390896A (en) Energy loss device
KR101233653B1 (en) A device for reducing pressure and velocity of flowing fluid
CA2526737C (en) Control valve with vortex chambers
RU2403485C2 (en) Unit and device for control of fluid medium flow
KR100800413B1 (en) Fluid energy reduction device
JP4994332B2 (en) Fluid pressure reduction device
JP4854730B2 (en) Noise reduction module using Herschel-Kink tube
EP1746320B1 (en) Fluid trim apparatus and method
JP2005521014A (en) Noise reduction device for fluid flow system
JPH03163204A (en) Pressure reducing assembly capable of multi-stage programming for high energy fluid
US6615874B2 (en) Stacked disk valve trim
WO2001031242A1 (en) Flow resistance device
US4221037A (en) Method for manufacturing a fluid control device with disc-type flow restrictor
US11060635B2 (en) Additively manufactured control valve flow element
USRE31105E (en) Controlled pressure drop valve
US3511257A (en) Vortex type throttling valve apparatus
US3977435A (en) Controlled pressure drop valve
KR100477005B1 (en) Pressure reduction device typed disk stack and apparatus using it
KR200176124Y1 (en) A Resistance Device for Controlling Fluid Velocity and Reducing Fluid Pressure
KR100477004B1 (en) Fluid resistance device and fluid control device using it
US20080210326A1 (en) Control Valve with Vortex Chambers

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051004