[go: up one dir, main page]

JPH08319530A - 高耐摩耗耐食性複合材料 - Google Patents

高耐摩耗耐食性複合材料

Info

Publication number
JPH08319530A
JPH08319530A JP14840895A JP14840895A JPH08319530A JP H08319530 A JPH08319530 A JP H08319530A JP 14840895 A JP14840895 A JP 14840895A JP 14840895 A JP14840895 A JP 14840895A JP H08319530 A JPH08319530 A JP H08319530A
Authority
JP
Japan
Prior art keywords
composite material
corrosion resistance
matrix
wear
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14840895A
Other languages
English (en)
Inventor
Tei Chimura
禎 千村
Shinji Morita
真司 森田
Kenjirou Chikara
健二郎 力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP14840895A priority Critical patent/JPH08319530A/ja
Publication of JPH08319530A publication Critical patent/JPH08319530A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

(57)【要約】 【目的】 シリンダ母材の内面に均質で、かつ優れた
耐摩耗、耐食性を有するライニング層を形成する。 【構成】 マトリクスに炭化物強化粒子を分散させた
シリンダ内面ライニング用の複合材料であり、マトリク
スがB:2〜4%、Cr:10〜20%、Fe:2〜5
%、Si:3〜6%、C:0.1〜1%、所望によりM
o:2〜3%、Cu:1〜3%を含有し、残部がNi及
び不可避的不純物からなるNi基自溶性合金からなり、
炭化物強化粒子が複合材料に対し重量%で10〜30%
含まれるNbCからなる。 【効果】 シリンダの内面に、優れた耐摩耗性、耐食
性を有し、しかもこれら特性が位置によるバラツキがな
いライニング層を形成できる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】この発明は、高耐食性、高耐摩耗
性を有する炭化物、硼化物を主体とする硬質相を、高耐
食性を有するNi基自溶性合金マトリクスで結合した高
耐摩耗耐食性複合材料に関するものである。例えば、ガ
ラスファイバー等の摩耗性の強化材を混合するプラスチ
ックや腐食性のあるプラスチック等の可塑物を対象とす
る樹脂加工機械用のシリンダ材等に好適である。
【0002】
【従来の技術】樹脂加工機械における押出機や射出機の
シリンダ材は、加工対象物による摩耗を受けたり、金属
間の接触により凝着摩耗を受け易いので、耐摩耗性に優
れた材料で構成する必要がある。このため従来は、Cr
等の硼可物粒子や炭化物粒子の晶出により耐摩耗性を向
上させた自溶性耐摩耗Ni基合金や、Ni基自溶性合金
にWCのような硬質粒子を添加した複合材料を鋼製シリ
ンダ母材の内面にライニングしたシリンダが用いられて
おり、これら複合材料のライニング方法としては、鋳造
あるいは遠心鋳造法が一般的に採用されている。
【0003】
【発明が解決しようとする課題】しかし、上記の複合材
料では、マトリクスであるNi基合金に比較してCr硼
化物粒子等は比重が小さいため、ライニング層を形成す
る際に、Cr硼化物粒子が比重差によりNi基合金溶湯
中を浮上し、遠心鋳造法による場合にはライニング層の
内周側に密集することになる。このため、Cr硼化物粒
子が密集したライニング層の表層部分では良い耐摩耗性
を示すが、ライニング層が次第に摩耗すると、Cr硼化
物粒子が殆どないか、全くない層が露呈して耐摩耗性が
急激に劣化するという問題がある。また、Cr硼化物粒
子等が密集した層と殆どない層に二層分離すると、殆ど
ない層ではザクが生じ易くなり、製品の機械的性質を劣
化させることがある。またシリンダを縦にして、その内
周面にライニング層を形成する鋳造法においても、遠心
鋳造法ほど顕著ではないものの上記した比重差によって
シリンダの上下方向でCr硼化物粒子の分布に差が生じ
ライニング層の耐摩耗性能が軸方向において不均一にな
ってしまう。
【0004】一方、WC粒子を添加した複合材料をライ
ニングする場合には、逆に、Ni基合金に比較してWC
粒子の比重が大きいため比重差によりWC粒子がNi基
合金溶湯中を沈降し、WC粒子が密集した層とWC粒子
が存在しない層に分離してしまう。遠心鋳造法によれ
ば、WCが存在しない層はライニング層の表層側に形成
されることになるが、WCのない層は硬度が低いため十
分な耐摩耗性が得られず、またこれが相手材へ付着し凝
着摩耗の要因となるため、機械加工により除去する作業
が必要であり、生産性を低下させる一因となっている。
また、従来から用いられているNi基自溶性合金マトリ
クスは耐食性に優れているが、最近は樹脂の高機能化に
よりさらに腐食性の強いものが多くなっており、これら
の材料に対しては耐食性が十分ではなくなってきてい
る。本願発明は上記問題点を解決することを基本的な目
的とし、耐摩耗性、耐食性ともに優れ、しかもこれら特
性について部位によるバラツキがなく均質なライニング
層を形成することが可能な複合材料を提供することを目
的とする。
【0005】
【課題を解決するための手段】上記課題を解決するため
本願発明のうち第1の発明の高耐摩耗耐食性複合材料
は、マトリクス中に炭化物強化粒子を分散させシリンダ
母材の内面にライニングする複合材料であって、前記マ
トリクスは、重量%で、B:2〜4%、Cr:10〜2
0%、Fe:2〜5%、Si:3〜6%、C:0.1〜
1%を含有し、残部がNi及び不可避的不純物からなる
Ni基自溶性合金からなり、前記炭化物強化粒子は、複
合材料に対し、重量%で10〜30%含まれるNbCか
らなることを特徴とする。
【0006】第2の発明の高耐摩耗耐食性複合材料は、
マトリクス中に炭化物強化粒子を分散させシリンダ母材
の内面にライニングする複合材料であって、前記マトリ
クスは、重量%で、B:2〜4%、Cr:10〜20
%、Fe:2〜5%、Si:3〜6%、C:0.1〜1
%、Mo:2〜3%、Cu:1〜3%を含有し、残部が
Ni及び不可避的不純物からなるNi基自溶性合金から
なり、炭化物強化粒子は、複合材料に対し、重量%で1
0〜30%含まれるNbCからなることを特徴とする。
本願発明の複合材料をシリンダ母材内面にライニングす
る方法は特に限定されないが、以下の作用で説明するよ
うに、特に鋳造法、遠心鋳造法によってライニング層を
形成する場合に好適である。
【0007】
【作用】本願発明の複合材料では、Ni基自溶性合金マ
トリクスと、炭化物強化粒子であるNbCとがほぼ同等
な比重(約7.8)を有しており、これを鋳造あるいは
遠心鋳造によってシリンダ母材内面にライニングする際
に、炭化物強化粒子であるNbCがマトリックス中で偏
在することなく、ライニング層の全域においてマトリク
ス中に均一に分散する。 そのため位置によって耐摩耗
性能にバラツキが生ずるということが無く、またライニ
ング層が二層分離することにより生じるザクを防止する
ことができる、さらに機械加工によって所定の寸法に加
工すれば強化物粒子が均一に分散したライニングシリン
ダを得ることができ、ライニング層の余肉部も小さくす
ることが可能である。得られたライニング層には、硬質
(Hv約2200)の炭化物強化粒子NbCが均一に分
散しており、耐アブレシブ摩耗性を向上させる。また、
マトリクス中には、NbCの他にNi基自溶性合金の組
成により晶出した自己潤滑性を有するCr硼化物(Cr
B)が混在しており、自己の耐摩耗性に優れ、また相手
材への攻撃性も炭化物強化粒子のみの場合に比べ小さ
い。また、Ni基自溶性合金は優れた耐食性を有してお
り、通常の腐食性樹脂に対し有効であり、さらにMo、
Cuの添加によって、より腐食性の強い樹脂に対しても
良好な耐食性を示す。次いで、本願発明の複合材料の成
分の作用および含有量の限定理由を述べる。なお、炭化
物粒子の含有量は複合材料全体に対する重量%で示し、
Ni基自溶性合金の成分は、マトリックス全体に対する
重量%で示されている。
【0008】(炭化物強化粒子)NbCは、炭化物強化
粒子として耐摩耗性を向上させるが、複合材料に対し、
重量%で、10%未満ではその効果が不十分であり、一
方、30%を越えると炭化物量が過多となり、相手材へ
の攻撃性を増すとともに、合金の機械的性質を低下させ
るため10〜30%に限定する。また、自身の耐摩耗性
及び相手材への攻撃性を考慮すると、好ましくは、さら
に下限を15%、上限を25%とするの適当である。
【0009】(Ni基自溶性合金)Bは、Ni基合金に
自溶性を与えるために添加する他、マトリクス中のCr
と結合し自己潤滑性を有し耐摩耗性に寄与するCrBを
形成するために、必要不可欠な元素である。ただし、B
含有量が2%未満になるとそれらの作用が不十分であ
り、一方、4%を越えると靱性が著しく低下するため、
含有量を2〜4%に限定する。
【0010】Crは、自己潤滑性を有する硼化物として
硬質相を構成するだけでなく、結合相にも固溶して、耐
食性、耐摩耗性、耐熱性、耐酸化性を向上させる働きを
持つ。その含有量が10%未満では、耐摩耗性及び耐食
性が不十分であり、また、20%を越えると、含有量に
見合った耐食性の向上が認められず、また、靱性も低下
するため10〜20%に限定する必要がある。また、十
分な耐摩耗性を得るため、好ましくは15〜20%の範
囲が適当である。
【0011】Siは、Bと同様にNi基合金に自溶性を
与えるために添加されるが、3%未満ではその作用が不
十分であり、また6%を越えると靱性が著しく低下する
ため3〜6%に限定する。なお、同様の理由で、下限を
3.5%、上限を5%とするのが望ましい。
【0012】Cは、Ni基合金の融点を下げるとともに
Crと反応して炭化物を形成し、NbCと同様に耐摩耗
性の向上に寄与する。その含有量は、0.1%未満では
耐摩耗性向上が不十分であり、1%を越えると機械的特
性を損なうので、0.1〜1%に限定する。
【0013】Feは、低温における強度を向上させるた
めに添加する。ただし、2%未満では、その作用は不十
分であり、また、5%を越えると、耐食性が低下するの
で、2〜5%に限定する。なお、同様の理由で、さらに
上限を3.5%とするのが望ましい。
【0014】Moは、弗化水素酸などの還元性雰囲気に
対する腐食抵抗を増大させる作用があり、より高い耐食
性が必要とされる場合に含有させる。ただし、2%未満
ではあまり効果が得られず、また添加量が多くなるとN
i基自溶性合金マトリクスの融点が上昇し、遠心鋳造へ
の適用が困難になるため2〜3%に限定する。Cuは、
Ni−Cu合金であるモネル合金(商標名)に代表され
るように、Ni基合金の耐食性の向上に寄与するので、
より高い耐食性が必要とされる場合に含有させる。ただ
し、十分な耐食性を得るためには1%以上の含有が望ま
しい。一方、添加量が多くなると合金が軟化して耐摩耗
性が悪くなる他、Ni基自溶性合金マトリクスの融点を
上昇させるため、含有量は1〜3%とした。
【0015】Niは、耐食性の向上に効果のある元素で
あり、Bとともに硬質のほう化物を形成して耐摩耗性を
向上させる効果があるので、残部をNiとした。なお、
残部のNiには不可避的不純物が存在するが、それら
は、本発明の効果を損なわない範囲内で許容される。
【0016】
【実施例】以下に、この発明の実施例を、比較例(従来
例)と比較しつつ説明する。まず、表1に示すNi基自
溶性合金(合金A〜D)を原料粉末の一部として用意
し、さらに、一部を除いて表2に示す混合比でこの合金
粉末と、NbC粒子またはWC粒子、CrB粒子を秤量
して混合し、試験用混合粉末をそれぞれ調製した。次
に、この各混合粉末を、加熱炉においてそれぞれ120
0℃で30分保持した後、炉冷し、本発明の溶製材を得
た。さらに、この溶製材を切断加工して、所定形状の試
験片(実施例1〜5、比較例1〜4)を製作した。な
お、NbCを含まない比較例1,2は市販のNi基自溶
性合金からなる従来材に相当する。参考のため各試験片
の成分の総量を表3に示す。
【0017】
【表1】
【0018】
【表2】
【0019】
【表3】
【0020】上記試験片について、比較例1,2を除い
て金属組織観察を行ったところ、実施例の試験片ではN
bCが均一に分散しているのに対し(図1)、比較例
3,4(図2,3)では、強化粒子が明らかに下部また
は上部に偏在していることが認められた。これは、比較
例3ではWCがマトリクスより比重が大きく、また、比
較例4ではCrBがマトリクスよりも比重が小さいこと
に起因している。なお、図1は、実施例中No.4の試
験片の金属組織写真である。次に、上記比較例3,4を
除いて、各試験片の特性評価を行うために腐食試験およ
び摩耗試験を行った。腐食試験は、A:室温で5%弗化
水素酸に30時間浸漬、B:1%塩酸で5時間煮沸、の
2方法について行い、それぞれ腐食減量を測定して耐食
性を評価した。また、摩耗試験は、金属同士の凝着摩耗
をシミュレートするため、大越式迅速摩耗試験機を用
い、相手材にSKD11相当材(HRC61)を使用
し、最終荷重18.9kgf、摩擦速度2.37m/
s、摩擦距離200m、室温、無潤滑の条件下で試験を
行い、試験片(固定試験片)および相手材(回転試験
片)の摩耗量をそれぞれ測定して耐摩耗性を評価した。
さらに、樹脂中の硬質添加剤による摩耗をシミュレート
するためにアブレシブ摩耗試験を行った。具体的には、
相手材に320番のSiC研磨紙を用いて荷重2kg
f、速度3.6m/s(60往復/分)で試験を行っ
た。なお摩耗量は、400回毎の摩耗減量の平均値とし
た。
【0021】これらの試験結果を表4に示す。その結
果、比較例1,2(Ni基自溶性合金)はある程度の耐
食性は確保しているものの、耐摩耗性に劣っており、例
えば、樹脂にガラス繊維などを添加した複合材料の成形
に対しては好適な材料ではない。また、特に大越式摩耗
試験結果において摩耗量が著しく大きくなっており、凝
着摩耗を生じているため固定試験片の材料が回転試験片
に付着し、回転試験片の重量増加(摩耗量を負の値で示
している)が見られる。
【0022】一方、実施例1〜5の試験片は、Nb炭化
物粒子によって耐アブレシブ摩耗性が向上しており、例
えば、樹脂中の硬質添加剤による摩耗を防止する。ま
た、Cr硼化物が潤滑剤としての効力を発揮しており、
大越式摩耗試験では、自身(固定試験片)および相手材
(回転試験片)のいずれの摩耗量も小さく、構成部材の
金属同士の接触により生じる摩耗において、相手材に対
する攻撃性をやわらげ、かつ金属同士の凝着摩耗をやわ
らげている。また、実施例1と実施例3を比較した場
合、Cr硼化物の量はNi基自溶性合金成分の差により
実施例3の方が多く、そのため相手材への攻撃性低減の
効果が大きい。また、NbCの含有量を増加させた実施
例4,5では、それ自身の耐摩耗性はNbC含有量の増
加量に応じ向上しているが、大越式摩耗試験結果におい
て相手材への攻撃性も、やや増している。また、Mo,
Cuを添加した実施例3では腐食試験における腐食量も
少なく、例えば、樹脂中から発生するガスによる高腐食
環境下でも、高CrでMo,Cuを含むNiマトリクス
が高い耐食性を示す。以上のように、本発明の複合材料
は、比較例と異なり、耐摩耗性および耐食性のいずれに
おいても優れた結果が得られた。
【0023】
【表4】
【0024】
【発明の効果】以上説明したように、本願発明の複合材
料によれば、硬質物であるNbCを耐食性に優れるNi
基自溶性合金中に分散させたので、高耐食性だけでな
く、耐凝着、耐アブレシブ摩耗の両特性具備する耐摩耗
材料として優れた特性が得られる効果がある。したがっ
て、過酷な成形条件下で使用される樹脂加工機械用のシ
リンダ部材等の構成摺動材料として最適な複合材料が得
られる効果がある。
【図面の簡単な説明】
【図1】 実施例No.4の金属組織写真(倍率50
倍)である。
【図2】 比較例3(WCを硬質物とする)の金属組織
写真(倍率50倍)である。
【図3】 比較例4(CrBを硬質物とする)の金属組
織写真(倍率50倍)である。

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】 マトリクス中に炭化物強化粒子を分散さ
    せシリンダ母材の内面にライニングする複合材料であっ
    て、前記マトリクスは、重量%で、B:2〜4%、C
    r:10〜20%、Fe:2〜5%、Si:3〜6%、
    C:0.1〜1%を含有し、残部がNi及び不可避的不
    純物からなるNi基自溶性合金からなり、前記炭化物強
    化粒子は、複合材料に対し重量%で10〜30%含まれ
    るNbCからなることを特徴とする高耐摩耗耐食性複合
    材料
  2. 【請求項2】 マトリクス中に炭化物強化粒子を分散さ
    せシリンダ母材の内面にライニングする複合材料であっ
    て、前記マトリクスは、重量%で、B:2〜4%、C
    r:10〜20%、Fe:2〜5%、Si:3〜6%、
    C:0.1〜1%、Mo:2〜3%、Cu:1〜3%を
    含有し、残部がNi及び不可避的不純物からなるNi基
    自溶性合金からなり、炭化物強化粒子は、複合材料に対
    し重量%で10〜30%含まれるNbCからなることを
    特徴とする高耐摩耗耐食性複合材料
JP14840895A 1995-05-24 1995-05-24 高耐摩耗耐食性複合材料 Pending JPH08319530A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14840895A JPH08319530A (ja) 1995-05-24 1995-05-24 高耐摩耗耐食性複合材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14840895A JPH08319530A (ja) 1995-05-24 1995-05-24 高耐摩耗耐食性複合材料

Publications (1)

Publication Number Publication Date
JPH08319530A true JPH08319530A (ja) 1996-12-03

Family

ID=15452128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14840895A Pending JPH08319530A (ja) 1995-05-24 1995-05-24 高耐摩耗耐食性複合材料

Country Status (1)

Country Link
JP (1) JPH08319530A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104388757A (zh) * 2014-09-30 2015-03-04 株洲西迪硬质合金科技有限公司 一种耐磨材料及耐磨叶轮、其制备方法
CN113278899A (zh) * 2021-04-29 2021-08-20 西安理工大学 一种耐磨碳化物复合材料及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104388757A (zh) * 2014-09-30 2015-03-04 株洲西迪硬质合金科技有限公司 一种耐磨材料及耐磨叶轮、其制备方法
US10107300B2 (en) 2014-09-30 2018-10-23 Zhu Zhou Seed Cemented Carbide Technology Co., Ltd. Wear resistant material, wear resistant impeller and preparation method of wear resistant impeller
CN113278899A (zh) * 2021-04-29 2021-08-20 西安理工大学 一种耐磨碳化物复合材料及其制备方法

Similar Documents

Publication Publication Date Title
US3885959A (en) Composite metal bodies
US4029000A (en) Injection pump for injecting molten metal
WO2002088406A1 (en) Intermetallic wear-resistant material for piston rings
JPS5952944B2 (ja) 強靭性および耐摩耗性を有するMn−Si系金属間化合物分散型高力黄銅
JPH0351776B2 (ja)
US4851191A (en) High strength and wear resistance copper alloys
US4427446A (en) Corrosion-resistant and abrasive wear-resistant composite material for centrifugally cast linings
US5023145A (en) Multi carbide alloy for bimetallic cylinders
WO2005090625A1 (ja) 耐摩耗性に優れたアルミニウム合金及び同合金を用いた摺動部材
EP1430160B1 (en) Metal matrix composites of aluminum, magnesium and titanium using calcium hexaboride
JPH08319530A (ja) 高耐摩耗耐食性複合材料
US3929427A (en) Wear-resistant surface composite materials and method for producing same
US5246056A (en) Multi carbide alloy for bimetallic cylinders
US5912073A (en) Bearing made of abrasion-resistant aluminum alloy
JP3487935B2 (ja) 高耐食耐摩耗性複合材料
US5551995A (en) Spheroidal graphite cast iron for crank shafts and a crank shaft manufactured from such cast iron
JPS6326295A (ja) 耐食耐摩耗合金及びその複合シリンダ
US20140245863A1 (en) Corrosion-resistant and wear-resistant ni-based alloy
CN115341127A (zh) 一种自润滑高熵合金及其制备方法和应用
JPH0860278A (ja) 耐キャビテーションエロージョン性に優れた耐食耐摩耗性材料
JPH07268524A (ja) 高耐食耐摩耗性複合材料
JP2001279369A (ja) 耐摩耗耐食合金および成形機用シリンダ
JPH05132734A (ja) 耐摩耗耐食性複合材料
JPH0564706B2 (ja)
Adıyaman Investigation of Mechanical Properties of Composite Al6061/Ni-Al2O3 Produced by Stir Casting Process