JPH08318144A - Diffuser - Google Patents
DiffuserInfo
- Publication number
- JPH08318144A JPH08318144A JP7127908A JP12790895A JPH08318144A JP H08318144 A JPH08318144 A JP H08318144A JP 7127908 A JP7127908 A JP 7127908A JP 12790895 A JP12790895 A JP 12790895A JP H08318144 A JPH08318144 A JP H08318144A
- Authority
- JP
- Japan
- Prior art keywords
- air diffuser
- powder
- metal
- treatment
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Treatment Of Biological Wastes In General (AREA)
- Activated Sludge Processes (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えば、浄化槽内の膜
分離装置の下部に配設されて使用されたり、池等の水中
で、空気、酸素等を噴出させるのに使用される散気装置
に関するものであり、さらに詳細には、気体源側から散
気装置本体内に散気対象の気体を導く気体流路を備える
とともに、この散気装置本体の特定部位に備えられる散
気部を介して気体流路から散気対象の液中に、気体を散
気する構成の散気装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air diffuser which is used, for example, in the lower part of a membrane separation device in a septic tank or for ejecting air, oxygen or the like in water such as a pond. More specifically, the present invention relates to an apparatus, and more specifically, includes a gas flow path that guides a gas to be diffused from a gas source side into an air diffuser body, and an air diffuser provided at a specific portion of the air diffuser body. The present invention relates to an air diffuser configured to diffuse gas from a gas flow path into a liquid to be diffused.
【0002】[0002]
【従来の技術】このような散気装置においては、散気部
を介して散気対象の気体が、散気装置本体内から散気対
象の液中へ分散放出される。この散気部を構成する場
合、従来、多孔のセラミックや合成樹脂を使用してい
た。2. Description of the Related Art In such an air diffuser, the gas to be diffused is dispersedly discharged from the inside of the air diffuser into the liquid to be diffused through an air diffuser. Conventionally, porous ceramics or synthetic resins have been used to form the air diffuser.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、散気部
を構成するにセラミックを使用する場合は、比較的耐圧
強度は高いものの、通気性が得にくいため散気に大きな
動力を要するとともに、散気操作に伴って発生する振動
により、セラミックに割れ、欠け等が発生し易いという
問題があった。さらに、セラミックにあっては、その気
孔径を均一化しにくいため、散気を均一な気泡でおこな
うことが難しかった。さらに、一般に金属で構成される
散気装置本体に対して、セラミック製の散気部を気密接
続する必要があるが、この場合、この接続部を比較的複
雑な構造で構成する必要があるという問題があった。一
方、合成樹脂を使用する場合は、耐圧強度が低いため、
水深の深い部位では使用し難く、その寿命も紫外線によ
る酸化等に起因して短いものであった。従って、本発明
の目的は、耐圧強度、通気性の点で共に優れているとと
もに、靱性の点でも優れ、散気装置本体との間で、簡単
な連結をおこなうことができる散気装置を得ることにあ
る。However, when ceramic is used to form the air diffuser, although the pressure resistance strength is relatively high, it is difficult to obtain air permeability, so a large amount of power is required for the air diffuser and the air diffuser is used. There is a problem in that the ceramic is likely to be cracked or chipped due to the vibration generated during the operation. Further, in the case of ceramics, since it is difficult to make the pore diameters uniform, it is difficult to diffuse air with uniform bubbles. Further, it is necessary to hermetically connect the ceramic air diffuser to the air diffuser main body that is generally made of metal. In this case, it is necessary to configure this connection with a relatively complicated structure. There was a problem. On the other hand, when using synthetic resin, the pressure resistance is low, so
It was difficult to use in deep water and its life was short due to oxidation by ultraviolet rays. Therefore, an object of the present invention is to obtain an air diffuser which is excellent in both pressure resistance and air permeability and is also excellent in toughness, and which can be easily connected to the air diffuser body. Especially.
【0004】[0004]
【課題を解決するための手段】上記の目的を達成するた
めの請求項1に係わる散気装置の特徴構成は、加熱状態
で、静水圧加圧下に金属粉末材料の焼結を行う熱間静水
圧加圧焼結処理を含む成形処理過程を経て得られ、且つ
その処理過程で生じ、表裏面間を貫通する孔を多数備え
た金属多孔体にて、散気部を構成することにある。さら
に、請求項1に係わる散気装置において、前記金属多孔
体が、前記金属粉末を加圧成形して粉末予備成形体を得
る第1工程と、前記第1工程で得られる前記粉末予備成
形体に対して前記熱間静水圧加圧焼結処理を行う第2工
程を経て得られるものであり、前記第2工程において、
前記粉末予備成形体内に存し、且つ粉末予備成形体の表
裏を貫通する孔内に、前記熱間静水圧加圧焼結処理で使
用される静水圧媒体の侵入を許容して処理を行って得ら
れるものであることが好ましい。これが、請求項2に係
わる散気装置の特徴構成である。さらに、請求項1に係
わる散気装置において、前記金属多孔体が、前記金属粉
末を軟鋼製カプセルに充填、脱気密封して前記熱間静水
圧加圧焼結処理を行い、処理後、前記軟鋼製カプセルに
収納したまま、加熱処理を行って得られるものであるこ
とが好ましい。これが、請求項3に係わる散気装置の特
徴構成である。そして、その作用・効果は次の通りであ
る。To achieve the above object, the air diffuser according to the present invention is characterized in that the metal powder material is sintered in a heated state under hydrostatic pressure. The diffuser is composed of a porous metal body having a large number of holes which are obtained through a forming process including a hydraulic pressure sintering process and which are generated in the forming process and penetrate between the front and back surfaces. Further, in the air diffuser according to claim 1, the metal porous body has a first step of pressure-molding the metal powder to obtain a powder preform, and the powder preform obtained in the first step. Is obtained through a second step of carrying out the hot isostatic pressing sintering treatment to the above, and in the second step,
In the hole existing in the powder preform and penetrating the front and back of the powder preform, the hydrostatic pressure medium used in the hot isostatic pressing process is allowed to enter, and the treatment is performed. What is obtained is preferable. This is a characteristic configuration of the air diffuser according to claim 2. Further, in the air diffuser according to claim 1, the metal porous body is filled with the metal powder in a mild steel capsule, degassed and sealed, and subjected to the hot isostatic pressing sintering treatment. It is preferably obtained by heat treatment while being stored in a mild steel capsule. This is a characteristic configuration of the air diffuser according to claim 3. The action and effect are as follows.
【0005】[0005]
【作用】請求項1に係わる散気装置にあっては、散気部
に、所謂、HIP焼結法(熱間静水圧加圧焼結処理)を
含む処理で得られる金属多孔体で構成される部材が使用
される。このような金属多孔体は、例えば、従来の合成
樹脂製の多孔体より強度的に優れているため、形状保
持、耐久性の点で優れたものとなっている。さらに、こ
のようなHIP焼結処理を経て得られる金属多孔体にあ
っては、従来の一般的な焼結体と比較して成形体の表裏
面間で連通した孔が形成されやすい。この理由は、例え
ば、従来の焼結処理においては、焼結に伴って所定の強
度を得るためには、粒子形状が不揃いで、且つ球形状か
らは程遠い形状の金属粉末を使用する必要があったのに
対して、HIP焼結処理においては、その焼結が効果的
であるため、比較的粒子形状が一定で、且つ球形に近い
粒子を焼結して所定の強度を得ることができ、粒子間に
形成される孔が、材料表裏間で連続して形成されるため
である。従って、このような金属多孔体においては、開
気孔率が高い(材料の外表面に連通され、例えば散気用
の流通孔として使用できる孔の割合が高い)ものを容易
に得ることが可能であるとともに、形成される孔の径も
均一化できるため、散気の用途に適した孔を有する散気
部とできる。さらに、この散気部は、HIP焼結処理を
経て得られる金属多孔体であるため、これを金属性の散
気装置本体と溶接により連結することができる。従っ
て、比較的高い気密性を備え、さらに、強固な連結構造
を有して、例えば、振動にも強い散気装置を得ることが
できる。In the air diffuser according to the first aspect of the present invention, the air diffuser is composed of a metal porous body obtained by a process including a so-called HIP sintering method (hot isostatic pressing process). Parts are used. Since such a porous metal body is superior in strength to, for example, a conventional synthetic resin porous body, it is excellent in shape retention and durability. Further, in the metal porous body obtained through such HIP sintering treatment, pores communicating between the front and back surfaces of the molded body are more likely to be formed than in the conventional general sintered body. The reason for this is that, for example, in the conventional sintering process, in order to obtain a predetermined strength along with the sintering, it is necessary to use a metal powder having a nonuniform particle shape and a shape far from a spherical shape. On the other hand, in the HIP sintering process, since the sintering is effective, it is possible to obtain a predetermined strength by sintering particles having a relatively constant particle shape and a nearly spherical shape. This is because the pores formed between the particles are continuously formed between the front and back surfaces of the material. Therefore, it is possible to easily obtain such a porous metal body having a high open porosity (a high proportion of pores which are communicated with the outer surface of the material and can be used as, for example, a circulation pore for air diffusion). In addition, since the diameters of the formed holes can be made uniform, an air diffuser having holes suitable for the purpose of air diffusion can be obtained. Furthermore, since this air diffuser is a porous metal body obtained through the HIP sintering process, it can be connected to the metallic air diffuser body by welding. Therefore, it is possible to obtain, for example, an air diffuser having a relatively high airtightness and a strong connection structure, which is strong against vibration.
【0006】次に、請求項2に係わる散気装置について
説明する。このような金属多孔体を得るにあたっては、
これが、第1工程と第2工程を経て形成される。第1工
程においては、金属多孔体を得るための材料である金属
粉末から粉末予備成形体を得、この粉末予備成形体に対
して、HIP焼結処理をおこなう。処理にあたっては、
粉末予備成形体内に存する表裏を貫通する孔内にも静水
圧媒体が侵入するのを許容した状態(例えば、粉末予備
成形体を内部を真空排気された軟鋼カプセルに収納する
ことなく)で、そのまま、静水圧媒体内に投入して、処
理をおこなう。このようにすると、所謂、開気孔(外表
面に連なった孔)はその孔状態を保持したままで、処理
が進み、開気孔率が高く、比較的強度のある金属多孔体
を得ることができる。従って、この物においては、通気
性能(少ない散気圧力で十分な散気を行える)、耐久性
の点で好ましい散気装置を得ることができる。Next, an air diffuser according to claim 2 will be described. To obtain such a metal porous body,
This is formed through the first step and the second step. In the first step, a powder preform is obtained from a metal powder that is a material for obtaining a metal porous body, and the powder preform is subjected to HIP sintering treatment. In processing,
In the state where the hydrostatic medium is allowed to enter the holes penetrating the front and back of the powder preform as well (for example, without storing the powder preform in the evacuated mild steel capsule) Then, it is put into a hydrostatic medium and treated. By doing so, the so-called open pores (holes connected to the outer surface) can be processed while maintaining the pore state, and a metal porous body having a high open porosity and relatively high strength can be obtained. . Therefore, with this product, it is possible to obtain an air diffuser which is preferable in terms of ventilation performance (sufficient air diffusion can be performed with a small air pressure) and durability.
【0007】次に、請求項3に係わる散気装置について
説明する。このような金属多孔体を得るにあたっては、
金属粉末を真空排気された軟鋼製カプセルに収納して、
先ず、HIP焼結処理を行う。そして、処理後、軟鋼製
カプセルに入った状態にある処理物を加熱処理する。H
IP焼結処理物は、上記のように、開気孔率が高い特性
を有するが、この状態を維持したままで、加熱処理によ
り比較的強度を有するものを得ることができる。結果、
開気孔率が高く、比較的強度のある金属多孔体を得るこ
とができる。従って、この物においては、通気性能(少
ない散気圧力で十分な散気を行える)、耐久性の点で好
ましい散気装置を得ることができる。Next, an air diffuser according to claim 3 will be described. To obtain such a metal porous body,
Store the metal powder in a vacuum-evacuated mild steel capsule,
First, a HIP sintering process is performed. Then, after the treatment, the processed product in a state of being contained in the mild steel capsule is heat-treated. H
As described above, the IP-sintered product has characteristics of high open porosity, but it is possible to obtain a product having relatively high strength by heat treatment while maintaining this state. result,
A metal porous body having a high open porosity and relatively high strength can be obtained. Therefore, with this product, it is possible to obtain an air diffuser which is preferable in terms of ventilation performance (sufficient air diffusion can be performed with a small air pressure) and durability.
【0008】[0008]
【発明の効果】請求項1に係わる散気装置にあっては、
耐圧強度、通気性の点で共に優れているとともに、靱性
の点でも優れ、散気装置本体との間で、簡単な連結構造
を得ることができる。さらに、請求項2に係わる散気装
置にあっては、金属多孔体を得る場合に、確実に材料表
裏間を貫通する孔を得て、その散気流体の流通性能を確
実に確保しながら、強度的に優れた散気装置を得ること
ができるようになった。さらに、請求項3に係わる散気
装置にあっては、その散気流体の流通性能を確実に確保
しながら、強度的に優れた散気装置を得ることができる
ようになった。According to the air diffuser of the first aspect,
Both the pressure resistance and air permeability are excellent, and the toughness is also excellent, so that a simple connection structure can be obtained with the air diffuser body. Furthermore, in the air diffuser according to claim 2, when a metal porous body is obtained, holes that penetrate through the front and back of the material are surely obtained, and while ensuring the flow performance of the diffused fluid, It has become possible to obtain an air diffuser excellent in strength. Further, in the air diffuser according to the third aspect, it is possible to obtain the air diffuser excellent in strength while ensuring the flow performance of the air diffused fluid.
【0009】[0009]
【実施例】以下に本願の散気装置Dを浄化槽100に適
応した実施例を、図面に基づいて説明する。浄化槽10
0は、図1に示すように、被処理水が上流側から沈殿分
離槽N、流量調整槽B、膜分離槽Eを記載順に移流する
ように構成されており、各槽間は隔壁Wで仕切られてい
る。EXAMPLE An example in which the air diffuser D of the present application is applied to the septic tank 100 will be described below with reference to the drawings. Septic tank 10
As shown in FIG. 1, 0 is configured so that the water to be treated is advected from the upstream side to the precipitation separation tank N, the flow rate adjustment tank B, and the membrane separation tank E in the order listed, and a partition W is provided between the tanks. It is partitioned.
【0010】前記沈殿分離槽Nは、流入口Iから流入し
た原水を被処理水として受け、その被処理水から沈殿す
る固形物および液面に発生するスカム等の固体成分を分
離しつつ、主に前記原水の液体成分を流量調整槽Bへ自
然移流自在に構成し、内部には被処理水を嫌気分解する
嫌気性菌を育成してある。尚、図中Fは、原水から主に
液体成分のみを流量調整槽Bへ移流させるべく沈殿分離
槽Nの幅方向中央部に開口部F1を設けた移流管であ
る。The sedimentation separation tank N receives the raw water flowing in from the inflow port I as water to be treated, and separates solid matters such as solid matter precipitated from the treated water and scum generated on the liquid surface while In addition, the liquid component of the raw water is naturally admitted to the flow rate adjusting tank B, and anaerobic bacteria that anaerobically decompose the water to be treated are grown inside. In addition, F in the figure is an advection pipe in which an opening F1 is provided in the center portion in the width direction of the precipitation separation tank N so that mainly liquid components are admitted to the flow rate adjusting tank B from raw water.
【0011】前記流量調整槽Bは、計量装置1aおよび
移送用ポンプ1bを備えてなり、前記沈殿分離槽Nから
自然移流してきた被処理水の前記液体成分を一時貯留し
て、前記膜分離槽Eへ移送管1cを介してほぼ定量的に
移送可能に形成してある。The flow rate adjusting tank B comprises a metering device 1a and a transfer pump 1b, and temporarily stores the liquid component of the water to be treated, which has naturally advected from the precipitation separating tank N, and the membrane separating tank. It is formed so that it can be transferred to E substantially quantitatively via the transfer pipe 1c.
【0012】前記膜分離槽Eは、被処理水を複数の濾過
膜としての平膜Mにより濾過して浄化するものであり、
この膜分離槽E内では被処理水の有機成分を好気分解す
る好気性菌が育成されている。さらに、槽内に平膜Mを
取り付けた状態で、その平膜Mの下方に、気泡を供給し
て、平膜M表面に汚泥等が付着するのを防止する散気装
置Dを設けてある。従って、この散気装置Dより、散気
操作することで前記好気性菌に酸素を供給し、かつ、前
記平膜の表面を洗浄して、平膜Mの膜分離処理性能を高
く維持できる。The membrane separation tank E is for purifying the water to be treated by filtering it with a plurality of flat membranes M as filtration membranes.
In the membrane separation tank E, aerobic bacteria that aerobically decompose the organic components of the water to be treated are grown. Further, with the flat membrane M installed in the tank, an air diffuser D is provided below the flat membrane M to supply bubbles to prevent sludge and the like from adhering to the surface of the flat membrane M. . Therefore, by performing an air diffusion operation from the air diffusion device D, oxygen can be supplied to the aerobic bacteria and the surface of the flat membrane can be washed to maintain the membrane separation performance of the flat membrane M at a high level.
【0013】濾過膜としての前記平膜Mは、図3、図4
に示すように、被処理水導通部3を内方に有するABS
樹脂製の支持板5の両表面にポリエチレン製の濾過膜部
材6を接着形成するとともに、前記被処理水導通部3に
連通するノズル4を連設してなり、前記平膜Mを被処理
水に浸漬した状態で、前記ノズル4から吸引操作するこ
とにより、被処理水が前記濾過膜部材6を通過して、そ
の濾過膜部材6によって被処理水中の汚泥等が除去さ
れ、高度に浄水された被処理水を取り出すことが出来
る。ここで、この濾過膜部材6は、孔径0.3 μm以
下の限界濾過膜であり、このような孔径のものを選択す
ることにより、長期間の使用に対して、膜内汚染を防止
でき、長期メンテナンスフリーの運転が可能となる。The flat membrane M as a filtration membrane is shown in FIGS.
As shown in FIG.
The filtration membrane member 6 made of polyethylene is adhered and formed on both surfaces of the resin-made support plate 5, and the nozzle 4 communicating with the treated water conducting portion 3 is continuously provided. By suctioning from the nozzle 4 in the state of being immersed in the water, the water to be treated passes through the filtration membrane member 6, and sludge and the like in the water to be treated are removed by the filtration membrane member 6 to highly purify the water. The treated water can be taken out. Here, the filtration membrane member 6 is an ultrafiltration membrane having a pore size of 0.3 μm or less, and by selecting a membrane having such a pore size, it is possible to prevent intra-membrane contamination for long-term use, It enables long-term maintenance-free operation.
【0014】前記ノズル4は、吸引ポンプPに集水管8
を介して連通接続され、この吸引ポンプPを運転操作す
る事で前記平膜Mで膜分離処理された被処理水(膜透過
被処理水と称する)を、浄化槽外部側へ送りだす。The nozzle 4 includes a suction pump P and a water collecting pipe 8
The water to be treated (referred to as membrane-permeable water) subjected to the membrane separation by the flat membrane M is sent to the outside of the septic tank by operating the suction pump P.
【0015】前記散気装置Dは、図2に示す様に、気体
源である大気から散気装置本体101内に散気対象の気
体を導くポンプ9を備えた気体流路102を備えるとと
もに、この散気装置本体101の特定部位(本体上面部
位)に備えられる散気部103を介して前記気体流路1
02から散気対象の液(膜分離槽E内の被処理水)中
に、気体(具体的には空気)を散気する構成となってい
る。この散気部103は、加熱状態で、静水圧加圧下に
金属粉末材料の焼結を行う熱間静水圧加圧焼結処理(H
IP焼結処理)を含む成形処理過程を経て得られ、且つ
その処理過程で生じ、表裏面間を貫通する孔を多数備え
た金属多孔体にて構成されている。前述の散気部103
と散気装置本体101は、溶接によって気密連結されて
いる。さて、散気部103は、図示するように平板状の
部材であり、これを構成する金属多孔体は、金属粉末を
加圧成形して粉末予備成形体を得る第1工程と、第1工
程で得られる粉末予備成形体に対して熱間静水圧加圧焼
結処理を行う第2工程を経て得られるものであり、第2
工程において、粉末予備成形体内に存し、且つ粉末予備
成形体の表裏を貫通する孔内に、熱間静水圧加圧焼結処
理で使用される静水圧媒体の侵入を許容して処理を行っ
て得られる。この製造工程は、以下に説明する第1群に
属する供試体1〜5を得る場合の工程と同一である。As shown in FIG. 2, the air diffuser D is provided with a gas passage 102 having a pump 9 for introducing a gas to be diffused into the air diffuser body 101 from the atmosphere which is a gas source. The gas passage 1 is provided through an air diffuser 103 provided at a specific portion (upper surface portion of the main body) of the air diffuser body 101.
From 02, gas (specifically, air) is diffused into the liquid to be diffused (water to be treated in the membrane separation tank E). This air diffuser 103 is a hot isostatic pressing sintering process (H) in which a metal powder material is sintered under a hydrostatic pressure in a heated state.
It is composed of a metal porous body which is obtained through a molding treatment process including an IP sintering treatment) and which is formed in the treatment process and has a large number of holes penetrating between the front and back surfaces. The air diffuser 103 described above
The air diffuser body 101 is hermetically connected by welding. The air diffuser 103 is a flat plate-shaped member as shown in the drawing. The metal porous body that constitutes the air diffuser 103 has a first step of obtaining a powder preform by press forming a metal powder, and a first step. It is obtained through a second step of performing hot isostatic pressing treatment on the powder preform obtained in step 1.
In the process, the processing is performed by allowing the intrusion of the hydrostatic medium used in the hot isostatic pressing process into the holes existing in the powder preform and penetrating the front and back of the powder preform. Obtained. This manufacturing process is the same as the process for obtaining the specimens 1 to 5 belonging to the first group described below.
【0016】散気装置Dに備えられる散気部103は、
所謂、熱間静水圧加圧焼結処理(HIP焼結処理)を経
て得られる。従って、散気部103は、従来の金属焼結
手法より強度的に強く、同一の強度のものにおいては、
材料の表面間に渡って連通した開気孔の多い、散気部と
しての良好な特性を有する。以下、散気部103として
構成した供試体について説明する。供試体は、その形成
方法において、二つの群に分けることができる。以下、
第1群と第2群、夫々について別個に説明する。 1 第1群 この群に属する供試体は、2工程を経て製造される。製
造にあたっては、所謂、CIPと呼ばれる手法で代表さ
れる工程である、金属粉末材料を加圧成形して粉末予備
成形体を得る第1工程と、第1工程で得られる粉末予備
成形体に対して熱間静水圧加圧焼結処理を行う第2工程
を経て製造する。そして、この第2工程においては、粉
末予備成形体を裸のままで静水圧媒体の中に投入して処
理をおこなう。従って、この工程においては、粉末予備
成形体内に存し、且つ粉末予備成形体の表裏を貫通する
孔内に、静水圧媒体の侵入が許容され、処理が進む。こ
のような孔は、その開口状態を維持でき、結果的に開気
孔率の高い金属焼結体を得ることができる。この群に属
する供試体の製造条件及び物性を表1に示した。各供試
体について以下に説明する。下記の金属粉末を原料と
し、ゴム型に封入してCIP成形により、粉末予備成形
体を形成する(第1工程)。ついで、粉末予備成形体を
HIP装置に装入し、焼結処理を行って(第2工程)金
属多孔質体No. 1〜5を得た。The air diffuser 103 provided in the air diffuser D is
It is obtained through so-called hot isostatic pressing sintering (HIP sintering). Therefore, the air diffuser 103 is stronger in strength than the conventional metal sintering method.
It has good characteristics as an air diffuser with many open pores communicating between the surfaces of the material. Hereinafter, the sample configured as the air diffuser 103 will be described. Specimens can be divided into two groups according to their forming method. Less than,
The first group and the second group will be described separately. 1 First group Specimens belonging to this group are manufactured through two steps. In manufacturing, the first step, which is a step typified by a so-called CIP method, for pressure-molding a metal powder material to obtain a powder preform, and the powder preform obtained in the first step It is manufactured through a second step in which hot isostatic pressing is performed. Then, in this second step, the powder preform is left naked and placed in the hydrostatic medium for treatment. Therefore, in this step, the hydrostatic medium is allowed to enter the holes existing in the powder preform and penetrating the front and back of the powder preform, and the process proceeds. Such a hole can maintain its open state, and as a result, a metal sintered body having a high open porosity can be obtained. Table 1 shows the production conditions and physical properties of the specimens belonging to this group. Each sample will be described below. Using the following metal powder as a raw material, it is enclosed in a rubber mold and CIP-molded to form a powder preform (first step). Then, the powder preform was placed in a HIP device and subjected to a sintering treatment (second step) to obtain metal porous bodies No. 1 to 5.
【0017】 ステンレス鋼粉末:SUS 310S相当、アトマイズ粉末(C:
0.02,Si:1.0,Mn:0.1,Cr:18.3,Ni:10.8.%) 合金工具鋼粉末:SKD 61相当、アトマイズ粉末(C:0.3
8,Si:0.9,Mn:0.01,Cr:5.25,Ni:1.20,V:1.0.%)Stainless steel powder: SUS 310S equivalent, atomized powder (C:
0.02, Si: 1.0, Mn: 0.1, Cr: 18.3, Ni: 10.8.%) Alloy tool steel powder: SKD 61 equivalent, atomized powder (C: 0.3
8, Si: 0.9, Mn: 0.01, Cr: 5.25, Ni: 1.20, V: 1.0.%)
【0018】供試体No. 1〜5は発明例であり、No. 1
1は粉末予備成形体を真空雰囲気中で加熱焼結してして
得られた比較例である。表中、「孔径分布」欄の数値は
最大気孔径(μm)、「ガス抜き性」欄の数値は、エア
の透過に必要な圧力(Kgf/cm2)であり、「曲げ強度」欄
は、JIS B 1601の曲げ試験法(スパン距離:30mm)に
よる3点曲げ強度(Kgf/mm2)の測定結果を示してい
る。粉末予備成形体をHIP処理して得られる金属多孔
質体は、No. 1〜3に示されるように、比較例の金属多
孔質体No. 11に比べ、高いガス抜き性を有するととも
に、No. 11を大きく凌ぐ強度を備えている。特にNo.
2は格段の高強度化を達成している。No. 4は、比較例
No. 11と同等の強度を維持しながら、大孔径、高開気
孔率を有し、より高いガス透過性を備えている。またN
o. 5は、金属材種を異にするが、高い開気孔率・ガス
抜き性と改良された強度を具備し、比較例No. 11との
差異は歴然である。Specimens Nos. 1 to 5 are inventive examples, and No. 1
Reference numeral 1 is a comparative example obtained by heating and sintering a powder preform in a vacuum atmosphere. In the table, the value in the "Pore size distribution" column is the maximum pore size (μm), the value in the "Degassing property" column is the pressure (Kgf / cm 2 ) required for air permeation, and the "Bending strength" column is Shows the measurement results of 3-point bending strength (Kgf / mm 2 ) by the bending test method of JIS B 1601 (span distance: 30 mm). As shown in Nos. 1 to 3, the metal porous body obtained by HIPing the powder preform has a higher degassing property as compared with the metal porous body No. 11 of the comparative example. It has a strength far exceeding that of .11. Especially No.
No. 2 has achieved extremely high strength. No. 4 is a comparative example
While maintaining the same strength as No. 11, it has a large pore size, high open porosity, and higher gas permeability. Also N
Although o.5 has different metal materials, it has high open porosity, degassing property and improved strength, and the difference from Comparative Example No. 11 is obvious.
【0019】[0019]
【表1】 [Table 1]
【0020】供試体1〜5において、材料表裏面間に渡
る貫通孔が多いことは、開気孔率/気孔率の割合が、比
較例よりも高いことからも明らかである。The large number of through-holes extending between the front and back surfaces of the materials in Specimens 1 to 5 is clear from the fact that the ratio of open porosity / porosity is higher than that in the comparative example.
【0021】1 第2群 この群に属する供試体もまた、2工程を経て製造され
る。製造にあたっては、前述の第2工程に相当する熱間
静水圧加圧焼結処理を最初におこない、さらに、この処
理によって得られたものを熱処理して、所望のものを得
る。この群に属する熱間静水圧加圧焼結処理にあって
は、軟鋼製カプセル内に金属粉末を脱気密封して処理を
おこなう。そして、この処理を行ったのち、処理後の生
成物を軟鋼製カプセルに収納された状態のままで加熱炉
中で加熱処理するのである。この手法における熱間静水
圧加圧焼結処理の特徴は、前述の第1群に属するものを
得る場合と比較して、その処理時間を短く選択して、こ
の処理のみに関しては、処理を甘くおこなっていること
にある。この群に属する供試体の製造条件及び物性を表
2に示した。各供試体について以下に説明する。下記金
属粉末を原料とし、軟鋼製カプセルに充填し、脱気密封
(1×10-2Torr)したうえ、HIP装置に入れ予備成
形する。ついで、カプセルのまま、加熱炉に装入し、加
熱処理する。処理後、カプセルを機械加工により除去し
て金属多孔質体を得る。1 Second Group Specimens belonging to this group are also manufactured through two steps. In the production, a hot isostatic pressing sintering process corresponding to the above-mentioned second step is first performed, and the product obtained by this process is heat-treated to obtain a desired product. In the hot isostatic pressing sintering process belonging to this group, the metal powder is deaerated and hermetically sealed in a mild steel capsule. Then, after this treatment, the treated product is heat-treated in a heating furnace while being kept in a mild steel capsule. The feature of the hot isostatic pressing sintering process in this method is that the process time is selected to be shorter than that in the case where the above-mentioned one belonging to the first group is obtained, and the process is performed only for this process. There is something happening. Table 2 shows the production conditions and physical properties of the test pieces belonging to this group. Each sample will be described below. The following metal powder is used as a raw material, filled into a mild steel capsule, degassed and sealed (1 × 10 −2 Torr), and then placed in a HIP device for preforming. Then, the capsules, as they are, are placed in a heating furnace and heat-treated. After the treatment, the capsule is removed by machining to obtain a porous metal body.
【0022】 金属多孔質体サイズ:300 ×300 ×300mm ステンレス鋼粉末:SUS 310S相当、アトマイズ粉末(C:
0.02,Si:1.0,Mn:0.1,Cr:18.3,Ni:10.8.%) 合金工具鋼粉末:SKD 61相当、アトマイズ粉末(C:0.3
8,Si:0.9,Mn:0.01,Cr:5.25,Mo:1.20,V:1.0.%)Porous metal body size: 300 × 300 × 300 mm Stainless steel powder: SUS 310S equivalent, atomized powder (C:
0.02, Si: 1.0, Mn: 0.1, Cr: 18.3, Ni: 10.8.%) Alloy tool steel powder: SKD 61 equivalent, atomized powder (C: 0.3
8, Si: 0.9, Mn: 0.01, Cr: 5.25, Mo: 1.20, V: 1.0.%)
【0023】供試体No. 6〜10は発明例であり、No.
12は、粉末成形体を真空雰囲気中で加熱焼結して得ら
れた比較例である。表中、「孔径分布」欄の数値は最大
気孔径(μm)、「ガス抜き性」欄の数値は、エアの透
過に必要な圧力(Kgf/cm2)であり、「曲げ強度」欄は、
JIS B 1601の曲げ試験法(スパン距離:30mm)による
3点曲げ強度(Kgf/mm2)の測定結果を示している。発
明例の金属多孔質体は、No. 6〜8に示されるように、
比較例の金属多孔質体No. 12と平均孔径等はほぼ同等
でありながら、高い開気孔率を有し、ガス透過製に優れ
ていると同時に、比較例No. 12を大きく超える高強度
を具備している。また、No. 9,No. 10のように、比
較例No. 12と同等の機械強度を保持しながら、気孔径
を大きく、開気孔率の高い気孔分布とすることも可能で
あり、従来材との差異は歴然である。Specimen Nos. 6 to 10 are inventive examples, and No.
12 is a comparative example obtained by heating and sintering a powder compact in a vacuum atmosphere. In the table, the value in the "Pore size distribution" column is the maximum pore size (μm), the value in the "Degassing property" column is the pressure (Kgf / cm 2 ) required for air permeation, and the "Bending strength" column is ,
The measurement results of three-point bending strength (Kgf / mm 2 ) by the bending test method of JIS B 1601 (span distance: 30 mm) are shown. As shown in Nos. 6 to 8, the metal porous body of the invention example is
Although the porous metal body No. 12 of Comparative Example has almost the same average pore diameter and the like, it has a high open porosity and is excellent in gas permeation, and at the same time, has a high strength that greatly exceeds that of Comparative Example No. 12. It has. Further, like No. 9 and No. 10, it is possible to maintain the mechanical strength equivalent to that of Comparative Example No. 12 while having a large pore diameter and a pore distribution with a high open porosity. The difference with is obvious.
【0024】[0024]
【表2】 [Table 2]
【0025】供試体6〜10において、材料表裏面間に
渡る貫通孔が多いことは、開気孔率/気孔率の割合が、
比較例よりも高いことからも明らかである。結果、この
ようにして製造される金属多孔体を、散気部として採用
する散気装置は、強度の点で優れ、通気性の良好な非常
に使用勝手の良いものであった。In the test pieces 6 to 10, the large number of through holes extending between the front and back surfaces of the material means that the ratio of open porosity / porosity is
It is also clear from the fact that it is higher than the comparative example. As a result, the air diffuser that employs the metal porous body produced as described above as the air diffuser is excellent in strength, has good air permeability, and is extremely convenient to use.
【0026】〔別実施例〕上記の実施例においては、散
気装置を浄化槽に使用する例を示したが、例えば、池の
水質改善、高温高圧下にある反応槽に於ける散気による
反応促進等の用に使用することもできる。さらに、上記
の実施例においては、第1群に属するCIP、HIPを
経る工程で得られる金属多孔体を使用する例を示した
が、第2群に属する甘いHIP処理の後に、熱処理をお
こなう金属多孔体を製造する工程を経て得られるもの
も、本願において使用できる。[Other Embodiments] In the above embodiment, an example in which the air diffuser is used in the septic tank is shown. For example, the water quality of the pond is improved, and the reaction by the air diffusion in the reaction tank under high temperature and high pressure. It can also be used for promotion and the like. Further, in the above-mentioned embodiment, an example in which the metal porous body obtained in the step of passing through the CIP and HIP belonging to the first group is used is shown, but the metal to be heat-treated after the sweet HIP treatment belonging to the second group. The thing obtained through the process of manufacturing a porous body can also be used in this application.
【0027】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。In the claims, reference numerals are provided for convenience of comparison with the drawings, but the present invention is not limited to the configuration shown in the attached drawings.
【図1】本願の散気装置を備えた浄化槽の構成を示す図FIG. 1 is a diagram showing a configuration of a septic tank equipped with an air diffuser of the present application.
【図2】散気装置の側断面図FIG. 2 is a side sectional view of an air diffuser.
【図3】平膜の構造を示す図FIG. 3 is a diagram showing the structure of a flat membrane.
【図4】平膜の内部構造を示す図FIG. 4 is a diagram showing the internal structure of a flat membrane.
101 散気装置本体 102 気体流路 103 散気部 101 Air diffuser main body 102 Gas flow path 103 Air diffuser
───────────────────────────────────────────────────── フロントページの続き (72)発明者 西 隆 大阪府枚方市中宮大池1丁目1番1号 株 式会社クボタ枚方製造所内 (72)発明者 小阪 晃 大阪府枚方市中宮大池1丁目1番1号 株 式会社クボタ枚方製造所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Takashi Nishi Nishi 1-1-1, Nakamiya Oike, Hirakata-shi, Osaka Prefecture Kubota Hirakata Manufacturing Company (72) Inventor Akira Kosaka 1-1-1, Nakamiya Oike, Hirakata-shi, Osaka No. 1 stock company Kubota Hirakata Factory
Claims (3)
に散気対象の気体を導く気体流路(102)を備えると
ともに、前記散気装置本体(101)の特定部位に備え
られる散気部(103)を介して前記気体流路(10
2)から散気対象の液中に、前記気体を散気する散気装
置であって、 加熱状態で、静水圧加圧下に金属粉末材料の焼結を行う
熱間静水圧加圧焼結処理を含む成形処理過程を経て得ら
れ、且つその処理過程で生じ、表裏面間を貫通する孔を
多数備えた金属多孔体にて、前記散気部(103)を構
成した散気装置。1. A gas flow path (102) for guiding a gas to be diffused from a gas source side into an air diffuser body (101), and a gas diffuser provided at a specific portion of the air diffuser body (101). The gas flow path (10) is provided through the air part (103).
2) A diffusing device for diffusing the above-mentioned gas into a liquid to be diffused, which is a hot isostatic pressing sintering process in which a metal powder material is sintered under a hydrostatic pressure in a heated state. An air diffusing device in which the air diffusing unit (103) is constituted by a metal porous body which is obtained through a molding treatment process including and which is formed in the treatment process and has a large number of holes penetrating between the front and back surfaces.
成形して粉末予備成形体を得る第1工程と、前記第1工
程で得られる前記粉末予備成形体に対して前記熱間静水
圧加圧焼結処理を行う第2工程を経て得られるものであ
り、 前記第2工程において、前記粉末予備成形体内に存し、
且つ粉末予備成形体の表裏を貫通する孔内に、前記熱間
静水圧加圧焼結処理で使用される静水圧媒体の侵入を許
容して処理を行って得られるものである請求項1記載の
散気装置。2. The first step of the metal porous body for pressure-molding the metal powder to obtain a powder preform, and the hot static treatment for the powder preform obtained in the first step. It is obtained through a second step of performing hydraulic pressure sintering treatment, and in the second step, the powder is present in the powder preform,
3. The powder preform is obtained by allowing the intrusion of a hydrostatic medium used in the hot isostatic pressing process into the holes penetrating the front and back of the powder preform and performing the process. Air diffuser.
製カプセルに充填、脱気密封して前記熱間静水圧加圧焼
結処理を行い、処理後、前記軟鋼製カプセルに収納した
まま、加熱処理を行って得られるものである請求項1記
載の散気装置。3. The porous metal body is filled with the metal powder in a mild steel capsule, degassed and hermetically sealed, and subjected to the hot isostatic pressing sintering treatment. After the treatment, the porous metal body is stored in the mild steel capsule as it is. The air diffuser according to claim 1, which is obtained by performing heat treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7127908A JPH08318144A (en) | 1995-05-26 | 1995-05-26 | Diffuser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7127908A JPH08318144A (en) | 1995-05-26 | 1995-05-26 | Diffuser |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08318144A true JPH08318144A (en) | 1996-12-03 |
Family
ID=14971639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7127908A Pending JPH08318144A (en) | 1995-05-26 | 1995-05-26 | Diffuser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08318144A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009090216A (en) * | 2007-10-09 | 2009-04-30 | Kubota Corp | Aeration device for septic tank |
JP2011224461A (en) * | 2010-04-19 | 2011-11-10 | Hang-Ichi:Kk | Microbubble generator |
-
1995
- 1995-05-26 JP JP7127908A patent/JPH08318144A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009090216A (en) * | 2007-10-09 | 2009-04-30 | Kubota Corp | Aeration device for septic tank |
JP2011224461A (en) * | 2010-04-19 | 2011-11-10 | Hang-Ichi:Kk | Microbubble generator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yu et al. | Surface modification of polypropylene microporous membrane to improve its antifouling property in MBR: CO2 plasma treatment | |
JP5304250B2 (en) | Immersion membrane separation apparatus and operation method thereof | |
KR100200001B1 (en) | Laminated filter medium, method of making said medium, and filter using said medium | |
AU2011243832B2 (en) | Membrane unit and membrane separation device | |
US5123937A (en) | Deaerating film and deaerating method | |
CN101374591A (en) | Treating Contaminated Influents Using Membrane Distillation Bioreactors | |
EP1582249A1 (en) | Filter plate assembly | |
JP2014231059A (en) | Hollow fiber membrane for immersion filtration, hollow fiber membrane module for immersion filtration using it, immersion filtration device, and immersion filtration method | |
WO2008038436A1 (en) | Membrane separation method, immersion type membrane separator and membrane separation process | |
JPWO2009028435A1 (en) | Immersion type membrane separation device, water purification treatment device, and water purification treatment method using the same | |
KR101080812B1 (en) | Floatable filter module for advanced water treatment | |
JP2014124579A (en) | Processing apparatus of organic wastewater | |
JPH08318144A (en) | Diffuser | |
AU2002325914A1 (en) | Aerator | |
JPS61120694A (en) | Treatment of organic waste water | |
CN113457463B (en) | Biodegradable inorganic-organic composite membrane and preparation method thereof | |
JPH06114247A (en) | Metallic separation membrane | |
JPH10314554A (en) | Membrane separation activated sludge process | |
JPH0929018A (en) | Filter device | |
JPS61249598A (en) | Two-phase anaerobic treatment equipment | |
CN111375313A (en) | Filtration apparatus and filtration method | |
KR20130074996A (en) | Treatment method of waste water using membrane bio reactor having porous metallic hollow fiber and device thereof | |
Kim et al. | Particle fouling in submerged microfiltration membranes: effects of hollow-fiber length and aeration rate | |
JP2004136279A (en) | Metal filter and sewage filtration method | |
CN213680013U (en) | Activated sludge sewage treatment device |