[go: up one dir, main page]

JPH0831411A - Manufacture of negative electrode for non-aqueous electrolyte secondary battery - Google Patents

Manufacture of negative electrode for non-aqueous electrolyte secondary battery

Info

Publication number
JPH0831411A
JPH0831411A JP6161349A JP16134994A JPH0831411A JP H0831411 A JPH0831411 A JP H0831411A JP 6161349 A JP6161349 A JP 6161349A JP 16134994 A JP16134994 A JP 16134994A JP H0831411 A JPH0831411 A JP H0831411A
Authority
JP
Japan
Prior art keywords
negative electrode
carbon
layer
aqueous electrolyte
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6161349A
Other languages
Japanese (ja)
Inventor
Yasuhiko Mifuji
靖彦 美藤
Toshihide Murata
年秀 村田
Masaki Hasegawa
正樹 長谷川
Shuji Ito
修二 伊藤
Yoshinori Toyoguchi
▲吉▼徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6161349A priority Critical patent/JPH0831411A/en
Publication of JPH0831411A publication Critical patent/JPH0831411A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To obtain the negative electrode, which has a high energy density and in which generation of a short circuit due to the dendrite is eliminated, by forming a layer, which includes the organic material, on the surface of a collector of a negative electrode, and heating it for carbonation, and laminating a carbon material included layer thereon. CONSTITUTION:A layer, which includes the organic material such as pitch, polyacrylonitrile to be carbonated by heating, is formed on the surface of a collector of a negative electrode of a non-aqueous electrolyte secondary battery. This layer is heated at the carbonating temperature of the organic material or more for carbonating. (graphitization is included.) A layer including carbon material is laminated on the carbon layer obtained by the first process. Or, hydrocarbon such as benzene and methane is heated in the gas phase so as to form a thermal decomposition carbon layer on the surface of the collector of the negative electrode, and a layer including carbon material is laminated thereon. The carbon layer formed by the first process is made of the carbon material at less than 200mAh/g of discharging capacity, and the carbon of the carbon included layer formed by the second process is made of the carbon material at 200mAh/g or more of discharging capacity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解質二次電池、
特にその負極の製造方法に関するものである。
The present invention relates to a non-aqueous electrolyte secondary battery,
In particular, it relates to a method for manufacturing the negative electrode.

【0002】[0002]

【従来の技術】リチウムを負極とする非水電解質二次電
池は、起電力が高く、従来のニッケルーカドミウム蓄電
池や鉛蓄電池に較べ高エネルギー密度になると期待さ
れ、多くの研究がなされている。しかし、金属状のリチ
ウムを負極に用いると、充電時にデンドライトが発生
し、電池内部で短絡を起こしやすく、信頼性の低い電池
となる。この問題を解決するために、リチウムとアルミ
ニウム(Al)、鉛(Pb)との合金負極を用いること
が検討された。これら合金負極を用いると、充電により
Liは負極合金中に吸蔵され、デンドライトの発生がな
く信頼性の高い電池となる。しかし、合金負極の放電電
位は金属Liに比べ約0.5V貴であるため、電池の電
圧も0.5V低く、これにより電池のエネルギー密度も
低下する。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries using lithium as a negative electrode have high electromotive force and are expected to have higher energy density than conventional nickel-cadmium storage batteries and lead storage batteries, and many studies have been conducted. However, when metallic lithium is used for the negative electrode, dendrites are generated during charging and short circuits easily occur inside the battery, resulting in a battery with low reliability. In order to solve this problem, the use of an alloy negative electrode of lithium and aluminum (Al) or lead (Pb) was studied. When these alloy negative electrodes are used, Li is occluded in the negative electrode alloy by charging, and dendrite is not generated, so that the battery has high reliability. However, since the discharge potential of the alloy negative electrode is about 0.5 V more noble than that of metallic Li, the voltage of the battery is also 0.5 V lower, which lowers the energy density of the battery.

【0003】一方、黒鉛などの炭素材料とLiの層間化
合物を負極活物質とする研究も活発になされている。こ
の化合物負極においても、充電によりLiは炭素の層間
に入り、デンドライトは発生しない。放電電位は金属L
iに較べ約0.1V貴であるにすぎないから、電池電圧
の低下も小さい。これにより、より好ましい負極と言え
る。通常、炭素質材料は、有機物を不活性雰囲気中でお
よそ400〜3000℃の加熱により分解し炭素化、さ
らには黒鉛化を行うことにより得られる。炭素質材料の
出発原料は、ほとんどの場合に有機物であり、炭素化工
程である1500℃付近までの加熱により、ほとんど炭
素原子のみが残り、3000℃近い高温までの加熱によ
り黒鉛構造を発達させる。この有機物原料としては、液
相ではピッチ、コ−ルタ−ルあるいはコ−クスとピッチ
の混合物などが用いられ、固相では木質原料、フラン樹
脂、フェノ−ル樹脂、エポキシ樹脂、セルロ−ス、ポリ
アクリロニトリル、レ−ヨンなどが用いられる。また、
気相では、メタン、プロパンなどの炭化水素ガスが用い
られている。炭素材料は通常、その形状としては粉末の
状態のものが用いられる。
[0003] On the other hand, researches using an intercalation compound of a carbon material such as graphite and Li as a negative electrode active material have been actively conducted. Also in this compound negative electrode, Li enters the carbon layer by charging and dendrite is not generated. Discharge potential is metal L
Since it is only about 0.1 V more than i, the decrease in battery voltage is small. This can be said to be a more preferable negative electrode. Usually, a carbonaceous material is obtained by decomposing an organic substance by heating at about 400 to 3000 ° C. in an inert atmosphere to carbonize and further graphitize. The starting material of the carbonaceous material is almost always an organic substance, and by heating up to around 1500 ° C., which is a carbonization step, almost only carbon atoms remain, and a graphite structure is developed by heating up to a high temperature near 3000 ° C. As the organic raw material, pitch in the liquid phase, coal or a mixture of coke and pitch is used, and in the solid phase, wood raw material, furan resin, phenol resin, epoxy resin, cellulose, Polyacrylonitrile, rayon, etc. are used. Also,
In the gas phase, hydrocarbon gases such as methane and propane are used. The shape of the carbon material is usually powder.

【0004】このような粉末状電極材料を用いて電池を
製造するには、円筒電池や角型電池の場合にはシート状
の負極板に加工され、コイン電池などでは負極成型体に
加工して用いられる。したがって、負極中には少なくと
も負極炭素粉末どうしを結着する働きをするいわゆる結
着剤が添加されるのが常である。この結着剤としては、
ゴム、ポリオレフィン系樹脂、フッ素系樹脂、アクリル
系樹脂など様々な材料が負極材料や要求される電池特性
に応じて用いられる。いずれも製造工程の中で負極板や
負極成型体の形状を維持し、さらには優れた電池諸特性
を得るために使用されている。
In order to manufacture a battery using such a powdery electrode material, in the case of a cylindrical battery or a prismatic battery, it is processed into a sheet-shaped negative electrode plate, and in the case of a coin battery, it is processed into a negative electrode molded body. Used. Therefore, at least a so-called binder which functions to bind the negative electrode carbon powders to each other is usually added to the negative electrode. As this binder,
Various materials such as rubber, polyolefin resin, fluorine resin, and acrylic resin are used according to the negative electrode material and required battery characteristics. All of them are used for maintaining the shapes of the negative electrode plate and the negative electrode molded body in the manufacturing process and for obtaining excellent battery characteristics.

【0005】[0005]

【発明が解決しようとする課題】負極板や負極成型体に
上記のような結着剤を用いることにより優れた二次電池
を得ることが可能となるが、次のような課題がある。 (1)従来の結着剤は、電池の充放電そのものには全く
関与しないため、負極容量の低下の原因となり、電池容
量を低下させる。 (2)従来の結着剤は、負極炭素粉末どうしを結着する
優れた働きをするが、金属集電体と負極炭素粉末との結
着状態はあまり優れたものではなく、充放電にともなう
電極の膨張収縮などによって集電体と電極成型体との間
が充分に接触しなくなり、最悪の場合には剥離や脱落を
引き起こす。 本発明は、前記従来の課題を解決するため、より高エネ
ルギ−密度で、デンドライトによる短絡のない信頼性の
高い非水電解質二次電池を与える負極を提供することを
目的とする。
Although it is possible to obtain an excellent secondary battery by using the above-mentioned binder for the negative electrode plate or the negative electrode molded body, there are the following problems. (1) Since the conventional binder does not participate in the charge / discharge of the battery itself, it causes a decrease in the negative electrode capacity and reduces the battery capacity. (2) The conventional binder has an excellent function of binding the negative electrode carbon powders to each other, but the binding state between the metal current collector and the negative electrode carbon powder is not so excellent, and is associated with charge / discharge. Due to the expansion and contraction of the electrodes, the current collector and the electrode molded body do not come into sufficient contact with each other, and in the worst case, peeling or dropping occurs. SUMMARY OF THE INVENTION In order to solve the above-mentioned conventional problems, an object of the present invention is to provide a negative electrode that provides a highly reliable non-aqueous electrolyte secondary battery with higher energy density and no short circuit due to dendrite.

【0006】[0006]

【課題を解決するための手段】本発明の非水電解質二次
電池用負極の製造方法は、加熱により炭素化する有機材
料を含む層を負極集電体表面に形成した後、前記有機材
料をその炭素化温度以上に加熱して炭素化(黒鉛化を含
む)する第1の工程と、前記で得られた炭素層の上に炭
素材料を含む層を積層する第2の工程を有する。また、
本発明の非水電解質二次電池用負極の製造方法は、炭化
水素類を気相で加熱して負極集電体表面に熱分解炭素層
を形成する第1の工程と、前記熱分解炭素層上に炭素材
料を含む層を積層する第2の工程を有する。
The method for producing a negative electrode for a non-aqueous electrolyte secondary battery according to the present invention comprises forming a layer containing an organic material which is carbonized by heating on the surface of a negative electrode current collector and then applying the organic material to the layer. The method has a first step of carbonizing (including graphitizing) by heating at a temperature higher than the carbonization temperature, and a second step of laminating a layer containing a carbon material on the carbon layer obtained above. Also,
The method for producing a negative electrode for a non-aqueous electrolyte secondary battery of the present invention comprises a first step of heating hydrocarbons in a vapor phase to form a pyrolytic carbon layer on the surface of a negative electrode current collector, and the pyrolytic carbon layer. It has a 2nd process of laminating | stacking the layer containing a carbon material on it.

【0007】ここで、第1の工程で形成される炭素層
が、放電容量200mAh/g未満の炭素材料からな
り、第2の工程で形成される炭素を含む層の炭素が、放
電容量200mAh/g以上の炭素材料からなることが
好ましい。また、第1の工程で得られる炭素層は、第2
の工程で得られる層の炭素材料の0.5〜20wt%相
当が望ましい。さらに、捲回型電極群を構成する場合
は、上記第1の工程と第2の工程との間で、水素雰囲気
中において加熱する工程を有することが好ましい。この
水素雰囲気中における加熱温度は、600〜1000℃
の範囲が好ましい。炭素化する有機材料としては、石油
ピッチ、石炭ピッチ、樹脂系ピッチ、ポリアクリロニト
リル、コ−クス、セルロ−ス、フラン樹脂、フェノ−ル
樹脂、エポキシ樹脂およびレ−ヨンよりなる群から選ば
れる少なくとも一つであることが好ましい。また、この
場合の加熱温度は、600〜1000℃の範囲が好まし
い。
Here, the carbon layer formed in the first step is made of a carbon material having a discharge capacity of less than 200 mAh / g, and the carbon of the layer containing carbon formed in the second step has a discharge capacity of 200 mAh / g. It is preferably made of a carbon material of g or more. The carbon layer obtained in the first step is the second
Corresponding to 0.5 to 20 wt% of the carbon material of the layer obtained in the step is desirable. Further, when forming the wound electrode group, it is preferable to have a step of heating in a hydrogen atmosphere between the first step and the second step. The heating temperature in this hydrogen atmosphere is 600 to 1000 ° C.
Is preferred. The organic material to be carbonized is at least selected from the group consisting of petroleum pitch, coal pitch, resin pitch, polyacrylonitrile, coke, cellulose, furan resin, phenol resin, epoxy resin and rayon. It is preferably one. The heating temperature in this case is preferably in the range of 600 to 1000 ° C.

【0008】また、本発明で用いる原料ガスである炭化
水素類としては、脂肪族炭化水素、芳香族炭化水素、脂
環族炭化水素等のいずれであってもよく、これらは置換
基(ハロゲン原子、水酸基、スルホン基、ニトロ基、ニ
トロソ基、アミノ基、カルボキシル基等)を一部に有し
ていてもよい。これらの具体例としては、メタン、エタ
ン、プロパン、ブタン、ペンタン、ヘキサン、シクロヘ
キサン、ナフタレン、アントラセン、ピレン、ベンゼ
ン、トルエン、ピリジン、アリルベンゼン、ヘキサメチ
ルベンゼン、アニリン、フェノ−ル、1,2−ジブロモ
エチレン、2−ブチン、アセチレン、ビフェニル、ジフ
ェニルアセチレン、スチレン、アクリロニトリル、ピロ
−ル、チオフェンおよびその誘導体等がある。なかで
も、ベンゼン、アセチレン、エチレン、メタン、エタン
およびプロパンよりなる群から選ばれる少なくとも一つ
が好ましい。この場合の加熱温度は、600〜1000
℃の範囲が望ましい。また、負極集電体としては、銅、
ニッケル、またはそれを含む合金を用いることができ
る。なお、この集電体の形状は、平板状、発泡状、網状
のいずれの形態であってもよい。
The hydrocarbons used as the raw material gas in the present invention may be any of aliphatic hydrocarbons, aromatic hydrocarbons, alicyclic hydrocarbons, etc. , A hydroxyl group, a sulfone group, a nitro group, a nitroso group, an amino group and a carboxyl group). Specific examples thereof include methane, ethane, propane, butane, pentane, hexane, cyclohexane, naphthalene, anthracene, pyrene, benzene, toluene, pyridine, allylbenzene, hexamethylbenzene, aniline, phenol, 1,2- Examples include dibromoethylene, 2-butyne, acetylene, biphenyl, diphenylacetylene, styrene, acrylonitrile, pyrrole, thiophene and their derivatives. Among them, at least one selected from the group consisting of benzene, acetylene, ethylene, methane, ethane and propane is preferable. The heating temperature in this case is 600 to 1000.
The range of ° C is desirable. Further, as the negative electrode current collector, copper,
Nickel or an alloy containing it can be used. The shape of the current collector may be any of flat plate, foam, and net.

【0009】[0009]

【作用】前記の本発明の構成によれば、有機材料を含む
層を負極集電体表面に形成したのち、有機材料の炭素化
温度以上にこれを加熱することにより有機材料は炭素化
し、部分的には黒鉛化状態に変化すると考えられる。こ
の炭素化もしくは黒鉛化反応過程では、単に有機材料が
そのような状態変化を起こすばかりではなく、負極集電
体表面に強固に接着・密着しながら反応が進行する。そ
の結果、加熱後には、負極集電体に充分に強固に接着・
密着した炭素体もしくは黒鉛体が形成されることとな
る。次いで、その上に炭素材料を含む層を積層すること
により、炭素層の上に炭素を含む層を積層するので、両
層間は同類材料であるので充分に密着した状態となる。
このようにして、負極集電体に充分に強固に接着・密着
した炭素電極体もしくは黒鉛電極体が形成される。この
結果、高容量で、特にサイクル特性に優れた負極とな
る。また、同様に、炭化水素類を気相で熱分解し、負極
集電体表面にその熱分解炭素層を形成したのち、その上
に炭素材料を含む層を積層する工程を有することによっ
ても同様の効果が得られる。
According to the above-mentioned constitution of the present invention, after the layer containing the organic material is formed on the surface of the negative electrode current collector, the organic material is carbonized by heating it to the carbonization temperature of the organic material or higher, It is considered that it will change to a graphitized state. In this carbonization or graphitization reaction process, not only does the organic material undergo such a state change, but the reaction proceeds while firmly adhering and adhering to the surface of the negative electrode current collector. As a result, after heating, it adhered to the negative electrode current collector sufficiently firmly.
A closely adhered carbon body or graphite body is formed. Then, by laminating a layer containing a carbon material on it, a layer containing carbon is laminated on the carbon layer, so that both layers are in the same material because they are of the same kind of material, and are in a state of being sufficiently adhered.
In this way, a carbon electrode body or a graphite electrode body that is sufficiently firmly adhered and adhered to the negative electrode current collector is formed. As a result, the negative electrode has a high capacity and particularly excellent cycle characteristics. Similarly, by similarly pyrolyzing hydrocarbons in the gas phase to form the pyrolytic carbon layer on the surface of the negative electrode current collector, and then laminating a layer containing a carbon material thereon The effect of is obtained.

【0010】このように本発明によれば、集電体に接触
して形成される炭素もしくは黒鉛が大きな放電容量を有
する材料の場合にも、集電体との充分な接触状態を確保
できるため非常に有意義である。しかし、集電体に接触
して形成される炭素もしくは黒鉛を大きな放電容量を有
する材料で構成しようとすると、工業的にはやや煩雑な
工程を含んでいる。負極集電体表面に形成する炭素材料
は、放電容量が小さなもの、好ましくは200mAh/
g以下の炭素材料がよい。そのような構成にすると、集
電体と直接接触している炭素材料は、その充放電時の膨
張収縮が比較的小さいため、長期の充放電サイクル後に
おいても集電体との接触は充分なものである。この結
果、優れたサイクル特性を有する負極を得ることができ
る。しかも、製造工程が簡単で、工業的意義が大きい。
さらに、捲回型電池においては、これまでに述べた加熱
工程によって集電体が硬くなり捲回困難となる。そこ
で、有機材料を含む層を負極集電体表面に形成し、有機
材料の炭素化温度以上に加熱したのち、水素雰囲気中で
加熱し、焼きなますことにより、加熱前の集電体の硬さ
状態に戻し、捲回可能な負極板を得ることができる。
As described above, according to the present invention, even when carbon or graphite formed in contact with the current collector is a material having a large discharge capacity, a sufficient contact state with the current collector can be secured. It is very meaningful. However, when it is attempted to form carbon or graphite formed in contact with the current collector with a material having a large discharge capacity, it involves an industrially rather complicated process. The carbon material formed on the surface of the negative electrode current collector has a small discharge capacity, preferably 200 mAh /
A carbon material of g or less is preferable. With such a configuration, the carbon material in direct contact with the current collector has a relatively small expansion / contraction during charging / discharging, so that the contact with the current collector is sufficient even after a long-term charge / discharge cycle. It is a thing. As a result, a negative electrode having excellent cycle characteristics can be obtained. Moreover, the manufacturing process is simple and has great industrial significance.
Further, in the wound type battery, the current collector becomes hard due to the heating process described above, which makes winding difficult. Therefore, a layer containing an organic material is formed on the surface of the negative electrode current collector, heated to the carbonization temperature of the organic material or higher, and then heated in a hydrogen atmosphere and annealed to harden the current collector before heating. It is possible to obtain a negative electrode plate that can be wound by returning to the closed state.

【0011】[0011]

【実施例】以下、本発明をその実施例によりさらに詳し
く説明する。 [実施例1]まず、有機材料を含む層を負極集電体表面
に形成し、この有機材料の炭素化温度以上に加熱したの
ち、その上に炭素材料を含む層を積層することにより得
た負極について説明する。本実施例においては、有機材
料として石油ピッチを、また炭素材料として黒鉛をそれ
ぞれ用いた。図1に示した試験セルの作製手順は次のと
おりである。あらかじめトルエン1リットルにピッチを
100gの割合で溶解して得たペ−スト状溶液を銅の芯
材に塗布し、100℃で乾燥した後、アルゴン気流中に
おいて900℃で20時間加熱した。次いで、黒鉛10
0gに、ペースト化剤としてカルボキシメチルセルロー
スのナトリウム塩の2wt%水溶液を200g加え、さ
らにスチレンブタジエンゴム結着剤を5gの割合で加え
たものを塗着し、乾燥して黒鉛層を形成した。比較例と
して、上記ペ−スト状溶液を銅の芯材に塗布し、100
℃で乾燥したのち、上記と同様の黒鉛層を積層した負極
を作製した。また、従来例として、集電体上に直接に上
記と同様の黒鉛層を形成して負極を作製した。
The present invention will be described in more detail with reference to its examples. Example 1 First, a layer containing an organic material was formed on the surface of a negative electrode current collector, heated to a temperature equal to or higher than the carbonization temperature of this organic material, and then a layer containing a carbon material was laminated thereon. The negative electrode will be described. In this example, petroleum pitch was used as the organic material and graphite was used as the carbon material. The procedure for producing the test cell shown in FIG. 1 is as follows. A paste-like solution obtained by dissolving 100 g of pitch in 1 liter of toluene in advance was applied to a copper core material, dried at 100 ° C., and then heated at 900 ° C. for 20 hours in an argon stream. Then, graphite 10
To 0 g, 200 g of a 2 wt% aqueous solution of sodium salt of carboxymethyl cellulose as a pasting agent was added, and 5 g of a styrene-butadiene rubber binder was further added, and the mixture was dried to form a graphite layer. As a comparative example, the paste solution was applied to a copper core material,
After drying at 0 ° C., a negative electrode in which the same graphite layers as above were laminated was prepared. Further, as a conventional example, a graphite layer similar to the above was directly formed on a current collector to prepare a negative electrode.

【0012】これらの負極板を直径17.5mmの円盤
状に打ち抜き、加圧成型して試験用電極とした。図1
は、試験セルを示す。試験電極1はケース2の中央に配
置され、その上に微孔性ポリプロピレンフィルムからな
るセパレータ3が配されている。このセパレータ上に、
1モル/lの過塩素酸リチウム(LiClO4)を溶解
したエチレンカーボネートとジメトキシエタンの体積比
1:1の混合溶液からなる非水電解質を注液した後、内
側に直径17.5mmの円盤状金属Li4を張り付け、
外周部にポリプロピレン製ガスケット5を付けた封口板
6をケース2に組み合わせて封口したものである。これ
らのセルについて、0.8mAの定電流で電極がLi対
極に対して0Vになるまでカソード分極(電極1を負極
としてみる場合には充電に相当)し、次に電極1が1.
0Vになるまでアノード分極(放電に相当)した。この
カソード分極、アノード分極を繰り返し行い、電極特性
を評価した。実施例の電極、比較例および従来例の電極
をそれぞれ用いたセルの1サイクル目の電極合剤1g当
りの放電容量、および100サイクル目の放電容量とサ
イクル容量維持率を表1に示した。放電容量は、実施例
のセルが極めて大きい。また、100サイクル目の放電
容量維持率も実施例のセルが最も高い値を示した。
These negative electrode plates were punched into a disk shape having a diameter of 17.5 mm and pressure-molded to obtain test electrodes. FIG.
Indicates a test cell. The test electrode 1 is arranged in the center of the case 2, and a separator 3 made of a microporous polypropylene film is arranged thereon. On this separator,
After injecting a non-aqueous electrolyte consisting of a mixed solution of ethylene carbonate and dimethoxyethane in a volume ratio of 1: 1 in which 1 mol / l lithium perchlorate (LiClO 4 ) was dissolved, a disc-shaped disc having a diameter of 17.5 mm Stick metal Li4,
A sealing plate 6 having a polypropylene gasket 5 attached to the outer peripheral portion is combined with the case 2 for sealing. With respect to these cells, cathodic polarization (corresponding to charging when the electrode 1 is regarded as a negative electrode) was performed at a constant current of 0.8 mA until the electrode became 0 V with respect to the Li counter electrode, and then the electrode 1 was 1.
Anodic polarization (corresponding to discharge) was performed until it reached 0V. This cathode polarization and anode polarization were repeated to evaluate the electrode characteristics. Table 1 shows the discharge capacity per 1 g of the electrode mixture in the first cycle and the discharge capacity in the 100th cycle and the cycle capacity retention rate of the cells using the electrodes of the examples, the comparative examples and the conventional example. The discharge capacity of the cell of the example is extremely large. The discharge capacity retention ratio at the 100th cycle was also highest in the cells of the examples.

【0013】[0013]

【表1】 [Table 1]

【0014】[実施例2]本実施例においては、炭化水
素を気相で熱分解した熱分解炭素層を負極集電体表面に
形成したのち、その上に炭素材料を含む層を積層して得
られる負極について説明する。炭化水素類としてベンゼ
ンを用い、これをアルゴン気流中において900℃で2
0時間加熱して炭素化させ、負極集電体である銅の芯材
表面に熱分解炭素層を形成した。その後、実施例1と同
様に黒鉛とスチレンブタジエンゴム結着剤を含むペース
トを塗着して黒鉛層を積層した。なお、従来例として同
様の黒鉛層を集電体上に直接に形成した負極も同様に作
製した。試験セルの構成およびその評価方法は実施例1
と同じである。表2に初期容量、100サイクル後の容
量維持率を示す。放電容量は、本実施例のセルが極めて
大きい。また、100サイクル目の放電容量維持率も本
実施例のセルが高い値を示した。このように、本発明の
負極は、高容量で、優れたサイクル特性を兼ね備えてい
る。
[Embodiment 2] In this embodiment, a pyrolytic carbon layer obtained by pyrolyzing a hydrocarbon in a gas phase is formed on the surface of a negative electrode current collector, and then a layer containing a carbon material is laminated thereon. The obtained negative electrode will be described. Benzene is used as a hydrocarbon, and this is used at 900 ° C. in an argon stream for 2 hours.
It was heated for 0 hour for carbonization, and a pyrolytic carbon layer was formed on the surface of the copper core material as the negative electrode current collector. Then, as in Example 1, a paste containing graphite and a styrene-butadiene rubber binder was applied and a graphite layer was laminated. As a conventional example, a negative electrode in which the same graphite layer was directly formed on the current collector was also prepared. The structure of the test cell and its evaluation method are described in Example 1.
Is the same as Table 2 shows the initial capacity and the capacity retention rate after 100 cycles. The discharge capacity of the cell of this example is extremely large. Further, the discharge capacity retention ratio at the 100th cycle also showed a high value in the cell of this example. As described above, the negative electrode of the present invention has high capacity and excellent cycle characteristics.

【0015】[0015]

【表2】 [Table 2]

【0016】[実施例3]本実施例においては、集電体
表面に形成する炭素材料の放電容量について詳しく調べ
た。まず、100〜300mAh/gの放電容量を持つ
6種類の炭素材料をそれぞれ含む層を以下のような方法
で形成した。あらかじめ炭素材料100gにトルエン1
リットルを加えて作製したペ−スト状溶液を銅の芯材に
塗布し、100℃で乾燥した。次いで、実施例1と同様
に黒鉛とスチレンブタジエンゴム結着剤を含むペースト
を塗着して黒鉛層を積層した。従来例として、同様の黒
鉛層を集電体上に直接に形成した負極も同様に作製し
た。試験セルの構成およびその評価方法は実施例1と同
じである。このように異なる7種類の負極板を用いたセ
ルについて初期容量、および100サイクル後の容量維
持率を調べた。その結果を表3に示す。集電体上に形成
する炭素材料の種類により放電容量はあまり大きな差は
ないが、100サイクル目の放電容量維持率は、集電体
上に形成した炭素材料の放電容量として200mAh/
g以下のものが優れていることがわかる。
Example 3 In this example, the discharge capacity of the carbon material formed on the surface of the current collector was investigated in detail. First, layers containing 6 kinds of carbon materials each having a discharge capacity of 100 to 300 mAh / g were formed by the following method. Toluene 1 to carbon material 100g beforehand
The paste solution prepared by adding liter was applied to a copper core material and dried at 100 ° C. Then, as in Example 1, a paste containing graphite and a styrene-butadiene rubber binder was applied to deposit a graphite layer. As a conventional example, a negative electrode in which the same graphite layer was directly formed on the current collector was similarly prepared. The structure of the test cell and its evaluation method are the same as in Example 1. The initial capacity and the capacity retention rate after 100 cycles were examined for cells using seven different types of negative electrode plates as described above. Table 3 shows the results. The discharge capacity does not differ so much depending on the type of carbon material formed on the current collector, but the discharge capacity retention ratio at the 100th cycle is 200 mAh / second as the discharge capacity of the carbon material formed on the current collector.
It can be seen that those of g or less are excellent.

【0017】[0017]

【表3】 [Table 3]

【0018】[実施例4]本実施例においては、有機材
料を含む層を負極集電体表面に形成し、有機材料の炭素
化温度以上に加熱した後、水素雰囲気中で加熱し、次い
で、その上に炭素材料を含む層を積層することにより得
られる負極について検討した。本実施例においては、有
機材料として石炭ピッチを、また炭素材料として黒鉛そ
れぞれ用いた。本実施例では、図2に示した円筒型電池
を構成して特性を調べた。電池を以下の手順により作製
した。正極活物質であるLiMn1.8Co0.24は、L
2CO3とMn34とCoCO3とを所定のモル比で混
合し、900℃で加熱することによって合成した。さら
に、これを100メッシュ以下に分級したものを正極活
物質とした。上記の正極活物質100gに対して導電剤
として炭素粉末を10g、結着剤としてポリ4フッ化エ
チレンの水性ディスパージョンを8gと純水を加え、ペ
ースト状にし、チタンの芯材に塗布し、乾燥、圧延して
正極を得た。正極活物質の重量は5gとした。
[Embodiment 4] In this embodiment, a layer containing an organic material is formed on the surface of a negative electrode current collector, heated to the carbonization temperature of the organic material or higher, and then heated in a hydrogen atmosphere, and then, A negative electrode obtained by laminating a layer containing a carbon material thereon was examined. In this example, coal pitch was used as the organic material and graphite was used as the carbon material. In this example, the cylindrical battery shown in FIG. 2 was constructed and the characteristics were examined. A battery was manufactured by the following procedure. LiMn 1.8 Co 0.2 O 4 , which is the positive electrode active material, is
i 2 CO 3 , Mn 3 O 4, and CoCO 3 were mixed at a predetermined molar ratio, and heated at 900 ° C. to synthesize. Further, this was classified into 100 mesh or less to obtain a positive electrode active material. To 100 g of the above positive electrode active material, 10 g of carbon powder as a conductive agent, 8 g of an aqueous dispersion of polytetrafluoroethylene as a binder and pure water were added to form a paste, which was applied to a titanium core material, It was dried and rolled to obtain a positive electrode. The weight of the positive electrode active material was 5 g.

【0019】負極は次のようにして作製した。まず、石
炭系ピッチ100gをトルエン1リットルに溶解し、そ
のペ−スト状溶液を銅の芯材に塗布し、100℃で乾燥
した後、アルゴン気流中において900℃で20時間加
熱した。これを水素雰囲気中において700℃で20時
間加熱した。次いで、実施例1と同様に黒鉛とスチレン
ブタジエンゴム結着剤を含むペーストを塗着して黒鉛層
を積層した。比較例として、上記ペ−スト状溶液を銅の
芯材に塗布し、100℃で乾燥した後、アルゴン気流中
において900℃で20時間加熱し、次いで、前記と同
様の黒鉛層を積層した。つまり、水素雰囲気中での加熱
は行っていない。なお、従来例として、集電体上に、同
様の黒鉛層を直接に形成した負極も同様に作製した。い
ずれの電池においても、1つの電池に使用したそれぞれ
の黒鉛の重量は2gとした。
The negative electrode was manufactured as follows. First, 100 g of coal-based pitch was dissolved in 1 liter of toluene, the paste solution was applied to a copper core material, dried at 100 ° C., and then heated at 900 ° C. for 20 hours in an argon stream. This was heated in a hydrogen atmosphere at 700 ° C. for 20 hours. Then, as in Example 1, a paste containing graphite and a styrene-butadiene rubber binder was applied to deposit a graphite layer. As a comparative example, the paste solution was applied to a copper core material, dried at 100 ° C., and then heated at 900 ° C. for 20 hours in an argon stream, and then a graphite layer similar to the above was laminated. That is, heating in a hydrogen atmosphere is not performed. As a conventional example, a negative electrode in which the same graphite layer was directly formed on the current collector was also prepared. In each battery, the weight of each graphite used in one battery was 2 g.

【0020】セパレ−タの材質には微孔性ポリプロピレ
ンフィルムを用いた。電極体は、スポット溶接にて取り
付けた芯材と同材質の正極リード14を有する正極板1
1と、負極リード15を有する負極板12と、両極板間
に介在させた両極板より幅の広い帯状のセパレータ13
とを渦巻状に捲回して構成した。さらに、上記電極体の
上下それぞれにポリプロピレン製の絶縁板16、17を
配して電槽18に挿入し、電槽18の上部に段部を形成
させた後、非水電解液として、1モル/lの過塩素酸リ
チウムを溶解したエチレンカーボネートとジメトキシエ
タンの等比体積混合溶液を注入し、封口板19で密閉し
て電池とした。20は、正極端子である。
A microporous polypropylene film was used as the material for the separator. The electrode body is a positive electrode plate 1 having a positive electrode lead 14 made of the same material as the core material attached by spot welding.
1, a negative electrode plate 12 having a negative electrode lead 15, and a strip-shaped separator 13 interposed between both electrode plates and wider than the both electrode plates.
And were spirally wound. Further, polypropylene insulating plates 16 and 17 are arranged above and below the electrode body, respectively, and inserted into a battery case 18 to form a step on the upper part of the battery case 18. A mixed solution of ethylene carbonate and dimethoxyethane in an equal volume ratio in which 1 / l of lithium perchlorate was dissolved was injected and sealed with a sealing plate 19 to obtain a battery. 20 is a positive electrode terminal.

【0021】このように異なる3種類の負極板を用いた
電池について初期容量、および100サイクル後の容量
維持率を調べた。電池は充放電電流0.5mA/c
2、充放電電圧範囲4.3V〜3.0Vで充放電サイ
クル試験を行った。表4に初期容量、および100サイ
クル後の容量維持率を示す。放電容量は、本実施例によ
る電池が極めて大きい。また、100サイクル目の放電
容量維持率も本実施例による電池が最も高い値を示し
た。なお、比較例の電池は、負極板が硬く、柔軟性が悪
いため、渦巻状に捲回できなかった。
The initial capacity and the capacity retention rate after 100 cycles of the battery using the three different kinds of negative electrode plates were examined. Battery has a charge / discharge current of 0.5 mA / c
A charge / discharge cycle test was performed at m 2 and a charge / discharge voltage range of 4.3V to 3.0V. Table 4 shows the initial capacity and the capacity retention rate after 100 cycles. The discharge capacity of the battery according to this example is extremely large. The discharge capacity retention rate at the 100th cycle was also highest in the battery of this example. The battery of Comparative Example could not be spirally wound because the negative electrode plate was hard and poor in flexibility.

【0022】[0022]

【表4】 [Table 4]

【0023】[実施例5]本実施例では、有機材料の種
類について検討した。それぞれの有機材料を含む層を負
極集電体表面に形成し、有機材料の炭素化温度以上に加
熱したのち、その上に炭素材料を含む層を積層すること
により得た負極を用いた円筒電池について説明する。本
実施例においては、炭素材料として黒鉛を用いた。ま
た、検討した有機材料は、石油ピッチ、石炭ピッチ、樹
脂系ピッチ、ポリアクリロニトリル、コ−クス、セルロ
−ス、フラン樹脂、フェノ−ル樹脂、エポキシ樹脂およ
びレ−ヨンである。本実施例では、図2に示した円筒型
電池を構成して特性を調べた。電極および電池の作製方
法や評価方法は実施例4と同様である。比較例として、
集電体上に前記と同様の黒鉛層を直接に形成した負極も
同様に作製した。いずれの電池においても、1つの電池
に使用したそれぞれの黒鉛の重量は2gとした。表5に
初期容量、および100サイクル後の容量維持率を示
す。本実施例の電池は、比較例電池に対してすべて高容
量であり、しかもサイクル特性が優れていることがわか
る。
[Embodiment 5] In this embodiment, the type of organic material was examined. A cylindrical battery using a negative electrode obtained by forming a layer containing each organic material on the surface of a negative electrode current collector, heating the organic material to a carbonization temperature or higher, and then laminating a layer containing a carbon material thereon. Will be described. In this example, graphite was used as the carbon material. The organic materials examined are petroleum pitch, coal pitch, resin pitch, polyacrylonitrile, coke, cellulose, furan resin, phenol resin, epoxy resin and rayon. In this example, the cylindrical battery shown in FIG. 2 was constructed and the characteristics were examined. The manufacturing method and evaluation method of the electrode and the battery are the same as in Example 4. As a comparative example,
A negative electrode in which a graphite layer similar to the above was directly formed on the current collector was also prepared. In each battery, the weight of each graphite used in one battery was 2 g. Table 5 shows the initial capacity and the capacity retention rate after 100 cycles. It can be seen that the batteries of this example all have a higher capacity than the comparative batteries and have excellent cycle characteristics.

【0024】[0024]

【表5】 [Table 5]

【0025】[実施例6]本実施例では、有機材料の加
熱温度について検討した。有機材料として石油系ピッチ
を、炭素材料として黒鉛をそれぞれ用いた。負極板は次
のようにして作製した。まず、石油系ピッチ100gを
トルエン1リットルに溶解し、そのペ−スト状溶液を銅
の芯材に塗布し、100℃で乾燥した後、アルゴン気流
中において400℃、600℃、900℃、1000
℃、1050℃、1200℃までそれぞれ20時間加熱
した。次いで、黒鉛層を積層した。なお、従来例とし
て、集電体上に、黒鉛層を直接に形成した負極も同様に
作製した。上記の加熱温度が異なる以外は実施例4と全
く同様に電池を構成した。なお、芯材である銅の融点が
1083℃であるため1200℃では銅板が溶解したた
め電極を作製できなかった。
Example 6 In this example, the heating temperature of the organic material was examined. Petroleum pitch was used as the organic material, and graphite was used as the carbon material. The negative electrode plate was produced as follows. First, 100 g of petroleum pitch was dissolved in 1 liter of toluene, the paste solution was applied to a copper core material and dried at 100 ° C., and then 400 ° C., 600 ° C., 900 ° C., 1000 in an argon stream.
C., 1050.degree. C. and 1200.degree. C. were respectively heated for 20 hours. Then, a graphite layer was laminated. As a conventional example, a negative electrode in which a graphite layer was directly formed on a current collector was similarly prepared. A battery was constructed in exactly the same manner as in Example 4 except that the above heating temperature was different. Since the melting point of copper as the core material was 1083 ° C., the copper plate was melted at 1200 ° C., so that the electrode could not be produced.

【0026】以上、異なる製造方法で得られた6種類の
負極板を用いた電池について初期放電容量、および10
0サイクル後の容量維持率を調べた。電池は充放電電流
0.5mA/cm2、充放電電圧範囲4.3V〜3.0
Vで充放電サイクル試験を行った。表6に初期容量、お
よび100サイクル後の容量維持率を示す。加熱温度が
600℃〜1000℃の範囲で大きな放電容量が得られ
た。加熱温度が600℃より低い場合、石油ピッチが充
分に炭化しないために、これがリチウムを吸蔵放出する
活物質として作用せず、その結果、負極の放電容量が小
さくなったと考えられる。全く加熱を行わない比較例電
池と同じ初期放電容量、サイクル維持率を示したことか
らもこのことが伺える。一方、加熱温度が1000℃を
越えた場合、必要以上の加熱により急激な炭化や一部で
気化が起こり、負極板組織劣化を引き起こし、これによ
って負極板の強度が低下し、また負極の集電性も低下し
たため、初期放電容量および充放電サイクルによる容量
維持率が低くなったと考えられる。
As described above, the initial discharge capacities of the batteries using the six types of negative electrode plates obtained by the different manufacturing methods, and 10
The capacity retention rate after 0 cycle was examined. The battery has a charge / discharge current of 0.5 mA / cm 2 , and a charge / discharge voltage range of 4.3 V to 3.0.
A charge / discharge cycle test was performed at V. Table 6 shows the initial capacity and the capacity retention rate after 100 cycles. A large discharge capacity was obtained when the heating temperature was in the range of 600 ° C to 1000 ° C. It is considered that when the heating temperature is lower than 600 ° C., the petroleum pitch does not carbonize sufficiently, so that it does not act as an active material that absorbs and releases lithium, and as a result, the discharge capacity of the negative electrode becomes small. This can be seen from the fact that it showed the same initial discharge capacity and cycle maintenance rate as those of the comparative battery which was not heated at all. On the other hand, when the heating temperature exceeds 1000 ° C., excessive carbonization causes rapid carbonization and partial vaporization, which causes deterioration of the structure of the negative electrode plate, which lowers the strength of the negative electrode plate and collects the negative electrode current. It is considered that the initial discharge capacity and the capacity retention rate due to the charge / discharge cycle became low due to the decrease in the property.

【0027】[0027]

【表6】 [Table 6]

【0028】上記の実施例では、炭素材料として黒鉛を
用いて説明したが、天然黒鉛、人造黒鉛、炭素繊維、黒
鉛ウィスカ−、難黒鉛化炭素などをはじめとする充電放
電に対して可逆性を有する負極炭素材を用いた場合にも
同様の効果が得られることは言うまでもない。なお、実
施例では正極として、LiMn1.8Co0.24について
説明したが、本発明で示した負極は、この他に、LiC
oO2、LiNiO2、LiFeO2、γ型LiV25
どをはじめとする充電放電に対して可逆性を有する正極
と組み合わせた場合にも同様の効果があることは言うま
でもない。また、実施例では、円筒型電池を用いた場合
について説明したが、本発明で示した容量増加などの技
術思想は同一のものであることから、この構造に限定さ
れるものではなく、コイン型、角型、偏平型などの形状
の二次電池においても全く同様の発明効果が得られる。
In the above-mentioned embodiments, graphite is used as the carbon material, but it is reversible with respect to charging and discharging such as natural graphite, artificial graphite, carbon fiber, graphite whiskers, and non-graphitizable carbon. Needless to say, the same effect can be obtained by using the negative electrode carbon material. Incidentally, as the positive electrode in the embodiment has been described LiMn 1.8 Co 0.2 O 4, the negative electrode described in the present invention, In addition, LiC
oO 2, LiNiO 2, LiFeO 2 , γ -type LiV it goes without saying that the same effect even when combined with a positive electrode having a reversible against 2 O 5, etc. beginning with charging discharging. Further, in the embodiment, the case of using the cylindrical battery is described, but the technical ideas such as the capacity increase described in the present invention are the same, and therefore the present invention is not limited to this structure, and a coin type battery is used. The same invention effect can be obtained in a secondary battery having a rectangular shape, a flat shape, or the like.

【0029】[0029]

【発明の効果】以上のように、本発明によれば、高エネ
ルギー密度で、デンドライトによる短絡のない信頼性の
高い非水電解質二次電池を与える負極を得ることができ
る。
As described above, according to the present invention, it is possible to obtain a negative electrode that has a high energy density and that provides a highly reliable non-aqueous electrolyte secondary battery that does not cause a short circuit due to dendrites.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に用いた試験セルの縦断面図で
ある。
FIG. 1 is a vertical sectional view of a test cell used in an example of the present invention.

【図2】本発明の実施例に用いた円筒型電池の縦断面図
である。
FIG. 2 is a vertical cross-sectional view of a cylindrical battery used in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 負極 2 ケース 3 セパレータ 4 金属Li 5 ガスケット 6 封口板 11 正極 12 負極 13 セパレータ 14 正極リード板 15 負極リード板 16 上部絶縁板 17 下部絶縁板 18 電槽 19 封口板 20 正極端子 1 Negative electrode 2 Case 3 Separator 4 Metal Li 5 Gasket 6 Sealing plate 11 Positive electrode 12 Negative electrode 13 Separator 14 Positive electrode lead plate 15 Negative electrode lead plate 16 Upper insulating plate 17 Lower insulating plate 18 Battery case 19 Sealing plate 20 Positive electrode terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 修二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 豊口 ▲吉▼徳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shuji Ito 1006, Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. In the company

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 加熱により炭素化する有機材料を含む層
を負極集電体表面に形成した後、前記有機材料をその炭
素化温度以上に加熱して炭素化する第1の工程と、前記
で得られた炭素層の上に炭素材料を含む層を積層する第
2の工程を有する非水電解質二次電池用負極の製造方
法。
1. A first step of forming a layer containing an organic material that is carbonized by heating on the surface of a negative electrode current collector, and then heating the organic material to a temperature equal to or higher than the carbonization temperature to carbonize the organic material. A method for producing a negative electrode for a non-aqueous electrolyte secondary battery, comprising a second step of laminating a layer containing a carbon material on the obtained carbon layer.
【請求項2】 炭化水素類を気相で加熱して負極集電体
表面に熱分解炭素層を形成する第1の工程と、前記熱分
解炭素層上に炭素材料を含む層を積層する第2の工程を
有する非水電解質二次電池用負極の製造方法。
2. A first step of heating hydrocarbons in a gas phase to form a pyrolytic carbon layer on the surface of a negative electrode current collector; and a step of laminating a layer containing a carbon material on the pyrolytic carbon layer. A method for producing a negative electrode for a non-aqueous electrolyte secondary battery, which has the step of 2.
【請求項3】 第1の工程で形成される炭素層が、放電
容量200mAh/g未満の炭素材料からなり、第2の
工程で形成される炭素を含む層の炭素が、放電容量20
0mAh/g以上の炭素材料からなる請求項1または2
記載の非水電解質二次電池用負極の製造方法。
3. The carbon layer formed in the first step is made of a carbon material having a discharge capacity of less than 200 mAh / g, and the carbon of the layer containing carbon formed in the second step has a discharge capacity of 20.
The carbon material of 0 mAh / g or more, claim 1 or 2
A method for producing a negative electrode for a non-aqueous electrolyte secondary battery as described above.
【請求項4】 第1の工程と第2の工程との間で、水素
雰囲気中において加熱する工程を有する請求項1または
2記載の非水電解質二次電池用負極の製造方法。
4. The method for producing a negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, further comprising a step of heating in a hydrogen atmosphere between the first step and the second step.
【請求項5】 有機材料が、石油ピッチ、石炭ピッチ、
樹脂系ピッチ、ポリアクリロニトリル、コ−クス、セル
ロ−ス、フラン樹脂、フェノ−ル樹脂、エポキシ樹脂お
よびレ−ヨンよりなる群から選ばれる少なくとも一つで
ある請求項1記載の非水電解質二次電池用負極の製造方
法。
5. The organic material is petroleum pitch, coal pitch,
The non-aqueous electrolyte secondary according to claim 1, which is at least one selected from the group consisting of resin pitch, polyacrylonitrile, coke, cellulose, furan resin, phenol resin, epoxy resin and rayon. Manufacturing method of negative electrode for battery.
【請求項6】 炭化水素類が、ベンゼン、アセチレン、
エチレン、メタン、エタンおよびプロパンよりなる群か
ら選ばれる少なくとも一つである請求項2記載の非水電
解質二次電池用負極の製造方法。
6. The hydrocarbons are benzene, acetylene,
The method for producing a negative electrode for a non-aqueous electrolyte secondary battery according to claim 2, which is at least one selected from the group consisting of ethylene, methane, ethane and propane.
【請求項7】 加熱温度が600〜1000℃の範囲で
ある請求項1または2記載の非水電解質二次電池用負極
の製造方法。
7. The method for producing a negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the heating temperature is in the range of 600 to 1000 ° C.
【請求項8】 水素雰囲気中における加熱温度が600
〜1000℃の範囲である請求項4記載の非水電解質二
次電池用負極の製造方法。
8. The heating temperature in a hydrogen atmosphere is 600.
The method for producing a negative electrode for a non-aqueous electrolyte secondary battery according to claim 4, wherein the temperature is in the range of 1000 ° C to 1000 ° C.
JP6161349A 1994-07-13 1994-07-13 Manufacture of negative electrode for non-aqueous electrolyte secondary battery Pending JPH0831411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6161349A JPH0831411A (en) 1994-07-13 1994-07-13 Manufacture of negative electrode for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6161349A JPH0831411A (en) 1994-07-13 1994-07-13 Manufacture of negative electrode for non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH0831411A true JPH0831411A (en) 1996-02-02

Family

ID=15733398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6161349A Pending JPH0831411A (en) 1994-07-13 1994-07-13 Manufacture of negative electrode for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH0831411A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6087044A (en) * 1996-12-12 2000-07-11 Denso Corporation Carbon electrode for secondary cells, a method for making the same, and a nonaqueous electrolyte secondary cell comprising the carbon electrode
JP2013127860A (en) * 2011-12-16 2013-06-27 Toyota Motor Corp Negative electrode for nonaqueous electrolytic secondary battery, method of manufacturing the same, and nonaqueous electrolytic secondary battery
KR20230093889A (en) * 2021-12-20 2023-06-27 창원대학교 산학협력단 All-solid-state battery with high chemo-mechanical stability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6087044A (en) * 1996-12-12 2000-07-11 Denso Corporation Carbon electrode for secondary cells, a method for making the same, and a nonaqueous electrolyte secondary cell comprising the carbon electrode
JP2013127860A (en) * 2011-12-16 2013-06-27 Toyota Motor Corp Negative electrode for nonaqueous electrolytic secondary battery, method of manufacturing the same, and nonaqueous electrolytic secondary battery
KR20230093889A (en) * 2021-12-20 2023-06-27 창원대학교 산학협력단 All-solid-state battery with high chemo-mechanical stability

Similar Documents

Publication Publication Date Title
US6106976A (en) Secondary battery or cell with a non-aqueous electrolyte
CA2032137C (en) Carbonaceous electrodes for lithium cells
US5474861A (en) Electrode for non-aqueous electrolyte secondary battery
US20070212611A1 (en) Lithium secondary battery
JPH103920A (en) Lithium secondary battery, and manufacture of the same
US5522127A (en) Method of manufacturing a non-aqueous electrolyte secondary cell
JP2965450B2 (en) Electrodes for non-aqueous electrolyte secondary batteries
JP3061337B2 (en) Non-aqueous electrolyte secondary battery
JPH06111818A (en) Carbon negative electrode for non-aqueous electrolyte secondary battery
JP3253185B2 (en) Non-aqueous electrolyte secondary battery and method for producing negative electrode thereof
JP3401646B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and its manufacturing method
JPH07105938A (en) Manufacture of negetive electrode for non-aqueous electrolyte secondary battery
JPH05266880A (en) Manufacture of negative electrode for nonaqueous electrolyte secondary battery
JP3475530B2 (en) Non-aqueous electrolyte secondary battery
JP3236170B2 (en) Negative electrode for non-aqueous electrolyte secondary batteries
JP3089662B2 (en) Non-aqueous electrolyte secondary battery
JPH0831411A (en) Manufacture of negative electrode for non-aqueous electrolyte secondary battery
JP3424419B2 (en) Method for producing negative electrode carbon material for non-aqueous electrolyte secondary battery
JP3350114B2 (en) Non-aqueous electrolyte secondary battery
JP3456771B2 (en) Non-aqueous electrolyte secondary battery
JP2007122975A (en) Nonaqueous electrolyte secondary battery
JP3568247B2 (en) Non-aqueous electrolyte secondary battery
JPH03245473A (en) Non-aqueous solvent secondary cell
JPH09320593A (en) Nonaqueous electrolyte secondary battery
JPH07105937A (en) Manufacture of negetive electrode for non-aqueous electrolyte secondary battery