JPH08313319A - Thermal air flow meter - Google Patents
Thermal air flow meterInfo
- Publication number
- JPH08313319A JPH08313319A JP7121095A JP12109595A JPH08313319A JP H08313319 A JPH08313319 A JP H08313319A JP 7121095 A JP7121095 A JP 7121095A JP 12109595 A JP12109595 A JP 12109595A JP H08313319 A JPH08313319 A JP H08313319A
- Authority
- JP
- Japan
- Prior art keywords
- air flow
- flow meter
- resistors
- thermal air
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010438 heat treatment Methods 0.000 claims abstract description 47
- 239000000758 substrate Substances 0.000 claims abstract description 24
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 14
- 230000001419 dependent effect Effects 0.000 claims abstract description 6
- 239000012530 fluid Substances 0.000 claims 3
- 230000007423 decrease Effects 0.000 claims 1
- 238000002485 combustion reaction Methods 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 5
- 238000005259 measurement Methods 0.000 abstract description 5
- 238000001514 detection method Methods 0.000 abstract description 2
- 230000020169 heat generation Effects 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 230000010349 pulsation Effects 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- GNLCAVBZUNZENF-UHFFFAOYSA-N platinum silver Chemical compound [Ag].[Ag].[Ag].[Pt] GNLCAVBZUNZENF-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Measuring Volume Flow (AREA)
Abstract
(57)【要約】
【目的】自動車などの内燃機関の吸入空気量を測定する
熱式空気流量計において、吸入空気量の一部逆流を伴う
場合の測定誤差を回避し空気流量の測定精度を向上させ
るために逆流検出を可能とし、且つ高速化を図った熱式
空気流量計を提供する。
【構成】吸気通路内に配置される略平板状基板上に温度
依存性抵抗膜よりなる少なくとも2個の発熱抵抗体を上
流側と下流側に隣接して形成し、上記隣接する2個の発
熱抵抗体が互いに近接するに従い単位面積当たりの抵抗
値が小さくなるよう構成した。
【効果】通常の空気流7の時(順流)および反対方向
(逆流)時の空気流量を高速に計測することが可能とな
り、吸気空気流の両方向の流量を高精度に且つ高速で検
知できる熱式空気流量計を提供することができる。
(57) [Abstract] [Purpose] In a thermal type air flow meter that measures the intake air amount of an internal combustion engine such as an automobile, avoid measurement error when a partial backflow of the intake air amount is involved, and improve the measurement accuracy of the air flow rate. (EN) Provided is a thermal type air flowmeter which enables backflow detection for improvement and has a high speed. [Structure] At least two heating resistors made of a temperature-dependent resistance film are formed adjacent to each other on an upstream side and a downstream side on a substantially flat plate-shaped substrate arranged in an intake passage, and the two adjacent heat generations are performed. The resistance value per unit area is reduced as the resistors are close to each other. [Effect] It becomes possible to measure the air flow rate in the normal air flow 7 (forward flow) and in the opposite direction (backflow) at high speed, and to detect the flow rate of the intake air flow in both directions with high accuracy and at high speed. Type air flow meter can be provided.
Description
【0001】[0001]
【産業上の利用分野】本発明は、熱式空気流量計に係
り、特に内燃機関の吸気量検出に好適な熱式空気流量計
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal air flow meter, and more particularly to a thermal air flow meter suitable for detecting the intake air amount of an internal combustion engine.
【0002】[0002]
【従来の技術】従来より自動車などの内燃機関の電子制
御燃料噴射装置に設けられ吸入空気量を測定する空気流
量計として、熱線式のものが質量空気量を直接検知でき
ることから主流となってきており、SAE paper 80046
8,830615 に記載のものが実用化されている。また、膜
式抵抗体を用いて高速応答を図った空気流量計としては
特開昭60−236029号公報に記載のもの等が考案されてい
る。2. Description of the Related Art Conventionally, as an air flow meter provided in an electronically controlled fuel injection device for an internal combustion engine of an automobile or the like, which measures the intake air amount, a hot wire type has become mainstream because it can directly detect the mass air amount. Ori, SAE paper 80046
The one described in 8,830615 has been put to practical use. Further, as an air flow meter that uses a membrane resistor to achieve a high-speed response, the one described in JP-A-60-236029 has been devised.
【0003】[0003]
【発明が解決しようとする課題】図9は、特開昭60−23
6029号公報に記載された高速応答を図った従来の熱式空
気流量計の平面図である。空気流7の流量を基板30上
に形成した膜式抵抗パターン31の上流側部分の単位面
積当たりの抵抗値を下流側の単位面積当たりの抵抗値よ
り大きくしたことにより流量計測の高速化を実現してい
る。FIG. 9 is a schematic view of JP-A-60-23.
It is a top view of the conventional thermal type air flow meter which aimed at the high-speed response described in 6029 publication. The flow rate of the air flow 7 is increased by increasing the resistance value per unit area of the upstream portion of the film type resistance pattern 31 formed on the substrate 30 to be larger than the resistance value per unit area of the downstream side. are doing.
【0004】しかし、上記従来技術は、4気筒以下のエ
ンジンの低回転数,重負荷時のように、吸入空気量の脈
動振幅が大きく一部逆流を伴う脈動流の場合精度が低下
する。脈動時に逆流と呼ばれる吸気弁がオーバーラップ
しているときはピストン上昇に伴って排気弁側から正圧
で吸気弁側に戻る空気の吹き返し現象を、従来の熱式空
気流量計で測定すると、その信号は順流,逆流の流れの
方向に関係なく流速の絶対値に対応した正の信号を出力
する。従って逆流時にあたかも順流のような信号となる
ので、真の平均空気流量よりも大きい信号を出力するこ
とになる。このときの測定誤差は30〜100%に達す
るという問題がある。上記従来技術はこのような逆流時
の問題について考慮されていない。However, in the above-mentioned prior art, the accuracy is lowered in the case of a pulsating flow with a large backflow, where the pulsation amplitude of the intake air amount is large, such as when the engine with four or less cylinders has a low rotational speed and a heavy load. When the intake valve called backflow at the time of pulsation overlaps, the blowback phenomenon of air returning from the exhaust valve side to the intake valve side with positive pressure as the piston rises is measured with a conventional thermal air flow meter. The signal outputs a positive signal corresponding to the absolute value of the flow velocity regardless of the flow direction of forward flow and reverse flow. Therefore, when the backflow occurs, the signal is as if it were a forward flow, and a signal larger than the true average air flow rate is output. There is a problem that the measurement error at this time reaches 30 to 100%. The above-mentioned prior art does not consider such a problem at the time of backflow.
【0005】本発明の目的は、吸気空気流の両方向の流
量を高精度に且つ高速で検出できる熱式空気流量計を提
供することにある。An object of the present invention is to provide a thermal air flow meter capable of detecting the flow rate of the intake air flow in both directions with high accuracy and high speed.
【0006】[0006]
【課題を解決するための手段】上記目的は、吸気通路内
に配置される略平板状基板上に温度依存性抵抗膜よりな
る少なくとも2個の発熱抵抗体を上流側と下流側に隣接
して形成し、上記隣接する2個の発熱抵抗体が互いに近
接するに従い単位面積当たりの抵抗値が小さくなるよう
構成することによって達成される。The above object is to provide at least two heat-generating resistors made of a temperature-dependent resistance film on a substantially flat plate-shaped substrate arranged in the intake passage so as to be adjacent to each other on the upstream side and the downstream side. This is achieved by forming the two adjacent heating resistors so that the resistance value per unit area becomes smaller as the two adjacent heating resistors become closer to each other.
【0007】[0007]
【作用】吸気通路内に配置される略平板状基板上に温度
依存性抵抗膜よりなる少なくとも2個の発熱抵抗体を上
流側と下流側に隣接して形成し、上記隣接する2個の発
熱抵抗体が互いに近接するに従い単位面積当たりの抵抗
値が小さくなるよう構成したことにより、通常の空気流
7の時(順流)にはより放熱効果の高い上流側発熱抵抗
体により順流空気流量を、空気流7と反対方向(逆流)
時には下流側発熱抵抗体により逆流空気流量を高速に計
測することが可能となり、吸気空気流の両方向の流量を
高精度に且つ高速で検知できる熱式空気流量計を提供す
ることができる。Operation: At least two heating resistors made of a temperature-dependent resistance film are formed adjacent to each other on the upstream side and the downstream side on a substantially flat substrate arranged in the intake passage. Since the resistance value per unit area becomes smaller as the resistors get closer to each other, when the air flow 7 is normal (forward flow), the forward flow air flow rate is increased by the upstream heat generating resistor having a higher heat dissipation effect. Direction opposite to air flow 7 (backflow)
At times, the backflow air flow rate can be measured at high speed by the downstream heating resistor, and it is possible to provide a thermal air flowmeter capable of detecting the flow rate of the intake air flow in both directions with high accuracy and at high speed.
【0008】[0008]
【実施例】以下、本発明の実施例を図により説明する。
図5は、本発明の熱式空気流量計の実施例の平面図であ
る。1が基板4上で空気流7の上流側に配置された発熱
抵抗体、2が下流側に配置された発熱抵抗体、3が温度
補償用抵抗体、5が基板4を支持する支持体、10がス
リット、6a,6b,6c,6d,6e,6fが外部回
路との接続の為の端子電極である。また、発熱抵抗体
1,2のパターンの拡大図を図1,図2,図3に、温度
補償用抵抗体3のパターンの拡大図を図4に示す。ここ
で、図1は第一の実施例の抵抗パターンで基板4の両端
に近づくに従い抵抗パターンの幅が狭くなるとともに各
抵抗パターンは近接しており緻密に配列されている。図
2は第二の実施例の抵抗パターンで、パターン幅は一定
でパターンピッチが基板4の両端に近づくに従い小さく
配列されている。図3は第三の実施例の抵抗パターン
で、パターンピッチが一定で基板4の両端に近づくに従
い抵抗パターンのパターン幅が狭くなるよう配列されて
いる。いずれの実施例においても、基板4の両端に近づ
くに従い単位面積当たりの抵抗値が増大するように構成
されている。また、図4を見て分かるように温度補償用
抵抗体3は、2個の温度補償用抵抗体3a,3bよりな
り、抵抗パターンは基板4の先端に近づくに従い単位面
積当たりの抵抗値が増大し且つ2個の温度補償用抵抗体
3a,3bのパターンは対になって引き回されほぼ同一
形状となるように構成されている。Embodiments of the present invention will be described below with reference to the drawings.
FIG. 5 is a plan view of an embodiment of the thermal air flow meter of the present invention. Reference numeral 1 denotes a heating resistor arranged on the substrate 4 on the upstream side of the air flow 7, 2 is a heating resistor arranged on the downstream side, 3 is a temperature compensation resistor, and 5 is a support for supporting the substrate 4, Reference numeral 10 is a slit, and 6a, 6b, 6c, 6d, 6e and 6f are terminal electrodes for connection with an external circuit. Further, enlarged views of the patterns of the heating resistors 1 and 2 are shown in FIGS. 1, 2 and 3, and enlarged views of the pattern of the temperature compensating resistor 3 are shown in FIG. Here, FIG. 1 shows the resistance pattern of the first embodiment in which the width of the resistance pattern becomes narrower toward both ends of the substrate 4, and the resistance patterns are close to each other and are densely arranged. FIG. 2 shows a resistance pattern of the second embodiment, in which the pattern width is constant and the pattern pitch is arranged smaller toward both ends of the substrate 4. FIG. 3 shows a resistance pattern of the third embodiment, which is arranged such that the pattern pitch is constant and the pattern width of the resistance pattern becomes narrower toward both ends of the substrate 4. In any of the embodiments, the resistance value per unit area is configured to increase as the both ends of the substrate 4 are approached. Further, as can be seen from FIG. 4, the temperature compensating resistor 3 is composed of two temperature compensating resistors 3a and 3b, and the resistance pattern has a resistance value per unit area increasing toward the tip of the substrate 4. In addition, the patterns of the two temperature compensating resistors 3a and 3b are arranged in pairs to be drawn out to have substantially the same shape.
【0009】ここで、基板4はアルミナ等のセラミック
よりなり応答速度を高める為に0.05mmから0.15mm の
極めて薄い厚みを選択している。発熱抵抗体1,2およ
び温度補償用抵抗体3(3a,3b)は白金薄膜よりな
りスパッタ,蒸着等の方法により0.1 ミクロンから2
ミクロンの膜厚で一括して基板4上に着膜された後ホト
エッチング等の方法のより図1,図2,図3,図4に示
した形状に形成される。端子電極6a,6b,6c,6
d,6e,6fおよび抵抗体1,2,3と電極端子を接
続するための引き出し電極は、電気抵抗を下げる為に上
記抵抗体1,2,3の白金薄膜より厚い白金−銀合金等
の厚膜を白金薄膜上に印刷等の方法で形成する。また、
図には示していないが抵抗体1,2,3上には素子の保
護の為にアルミナ,二酸化ケイ素,ガラス等の保護膜が
形成されている。スリット10は発熱抵抗体1,2と温
度補償用抵抗体3(3a,3b)間の熱絶縁を図る為の
もので、レーザー加工等の方法で形成する。抵抗体およ
び電極端子が形成された基板4は、基板4を機械的に支
持するとともに外部回路と電極端子の電気接続を図る為
にワイヤボンド等の方法で接続する為に支持体5により
支持される。The substrate 4 is made of ceramics such as alumina and has an extremely thin thickness of 0.05 mm to 0.15 mm in order to enhance the response speed. The heating resistors 1 and 2 and the temperature compensating resistor 3 (3a, 3b) are made of a platinum thin film and are made to have a thickness of 0.1 micron to 2 by a method such as sputtering or vapor deposition.
After being collectively deposited on the substrate 4 with a film thickness of micron, it is formed into the shape shown in FIGS. 1, 2, 3 and 4 by a method such as photoetching. Terminal electrodes 6a, 6b, 6c, 6
The lead electrodes for connecting the electrodes d, 6e, 6f and the resistors 1, 2, 3 to the electrode terminals are made of a platinum-silver alloy or the like thicker than the platinum thin film of the resistors 1, 2, 3 in order to lower the electric resistance. A thick film is formed on the platinum thin film by a method such as printing. Also,
Although not shown in the figure, a protective film made of alumina, silicon dioxide, glass or the like is formed on the resistors 1, 2, and 3 to protect the elements. The slit 10 is provided for thermal insulation between the heating resistors 1 and 2 and the temperature compensating resistor 3 (3a, 3b), and is formed by a method such as laser processing. The substrate 4 on which the resistor and the electrode terminal are formed is supported by the support 5 for mechanically supporting the substrate 4 and for connecting the external circuit and the electrode terminal by a wire bond or the like for electrical connection. It
【0010】図6は、内燃機関への吸気通路に設けた本
発明の実施例の断面図である。8は吸気の主通路のボデ
イ、27は副通路のボデイ、9は外部回路で抵抗体1,
2,3と支持体5を通じて電気的に接続されている。FIG. 6 is a sectional view of an embodiment of the present invention provided in an intake passage to an internal combustion engine. Reference numeral 8 is a body of the main passage of the intake air, 27 is a body of the auxiliary passage, and 9 is an external circuit for the resistor 1,
2, 3 and the support 5 are electrically connected.
【0011】図7は、外部回路9と抵抗体1,2,3
(3a,3b)の電気回路図である。以下、本発明の実
施例の動作方法に関して説明する。熱線駆動回路11,
12はそれぞれ独立した回路であり、電源17に接続さ
れ別々に空気流量に応じた出力をする。熱線駆動回路1
1は発熱抵抗体1,温度補償抵抗体3a,抵抗18,1
9からなるホイーストンブリッジ回路により、ブリッジ
中点の電位差がゼロになるように差動増幅器20,トラ
ンジスタ21によって発熱抵抗体1に流れる電流を調整
するように構成されている。この構成により空気流速に
よらず発熱抵抗体1の抵抗値は一定に、すなわち温度が
一定値になるように制御される。このとき、発熱抵抗体
1による空気流速に対応する信号は、図中A点の電位で
ある。また熱線駆動回路12の発熱抵抗体2も同様であ
り、発熱抵抗体2による空気流速に対応する信号は、図
中B点の電位である。発熱抵抗体1,2は自動車等の内
燃機関の吸気通路内に図6に示すように設けられ、例え
ば吸気上流側には発熱抵抗体1が、吸気下流側には発熱
抵抗体2が設けられる。発熱抵抗体1,2の温度は、通
常の定温度型熱式流速計と同様に、空気温度との差が空
気流速に関係なく一定値になるように熱線駆動回路1
1,12により電気加熱される。まず、吸気上流側から
下流側の順方向に空気が流れるときは、発熱抵抗体1は
2に比べて空気流による冷却が大であるので、熱線駆動
回路11からの供給電流は発熱抵抗体1の方が2より大
となる。一方、吸気下流側から上流側の逆方向に空気が
流れるときは、空気流による冷却は前と逆に発熱抵抗体
2の方が大となり、熱線駆動回路12からの供給電流は
発熱抵抗体2の方が1より大となる。従って発熱抵抗体
1,2への供給電流の大小の差により、空気流の方向を
検知することができる。イコライザ回路13,14は、
発熱抵抗体1,2のそれぞれの空気流量に応じた出力を
電気的に周波数応答性を改善し、電圧比較器15により
イコライザ回路13,14の出力の大小の差により空気
流の方向を検知するとともに、スイッチ回路16により
イコライザ回路13,14の出力を切り替えて逆流誤差
の少ない流量信号として出力する為のものである。FIG. 7 shows an external circuit 9 and resistors 1, 2, 3
It is an electric circuit diagram of (3a, 3b). The operation method of the embodiment of the present invention will be described below. Hot wire drive circuit 11,
Reference numeral 12 is an independent circuit, which is connected to the power supply 17 and outputs separately according to the air flow rate. Heat ray drive circuit 1
1 is a heating resistor 1, a temperature compensation resistor 3a, resistors 18 and 1
The Wheatstone bridge circuit of 9 is configured to adjust the current flowing through the heating resistor 1 by the differential amplifier 20 and the transistor 21 so that the potential difference at the bridge midpoint becomes zero. With this configuration, the resistance value of the heating resistor 1 is controlled to be constant regardless of the air flow rate, that is, the temperature is controlled to be a constant value. At this time, the signal corresponding to the air flow velocity by the heating resistor 1 is the potential at point A in the figure. The same applies to the heating resistor 2 of the heat wire drive circuit 12, and the signal corresponding to the air flow velocity by the heating resistor 2 is the potential at point B in the figure. The heating resistors 1 and 2 are provided in an intake passage of an internal combustion engine of an automobile or the like as shown in FIG. 6, and for example, the heating resistor 1 is provided on the intake upstream side and the heating resistor 2 is provided on the intake downstream side. . The temperature of the heating resistors 1 and 2 is the same as in a normal constant temperature type thermal anemometer so that the difference from the air temperature becomes a constant value regardless of the air velocity.
It is electrically heated by 1 and 12. First, when air flows in the forward direction from the intake upstream side to the downstream side, the heating resistor 1 is cooled more by the air flow than the heating resistor 2. Therefore, the current supplied from the heat wire drive circuit 11 is the heating resistor 1. Is greater than 2. On the other hand, when air flows in the opposite direction from the intake downstream side to the upstream side, cooling by the air flow is greater in the heating resistor 2 than in the previous case, and the current supplied from the heat wire drive circuit 12 is the heating resistor 2. Is greater than 1. Therefore, the direction of the air flow can be detected by the difference in the magnitude of the current supplied to the heating resistors 1 and 2. The equalizer circuits 13 and 14 are
The frequency response of each of the heating resistors 1 and 2 according to the air flow rate is electrically improved, and the direction of the air flow is detected by the voltage comparator 15 based on the difference between the outputs of the equalizer circuits 13 and 14. At the same time, the switch circuit 16 switches the outputs of the equalizer circuits 13 and 14 to output as a flow rate signal with a small backflow error.
【0012】次に、図6により更に動作を詳細に説明す
る。ここで熱線信号は、全て空気流量に換算して表示し
ている。一般に空気流量は、4気筒以下のエンジンの低
回転数,重負荷時の場合、吸入空気量の脈動振幅が大き
く図8(1)に示すように、逆流と呼ぶ負の空気流量を
伴う正弦波に近い波形となる。これは例えば、エンジン
回転数が1000rpm の場合は約33Hzの脈動周波数
となる。このような現象は、エンジンの燃焼室形状,吸
排気管形状およびエアークリーナ形状などによって異な
った形態を示す。この逆流を伴った脈動流を、応答性の
速い理想的な熱線プローブを用いた場合、図8(2)に
示すように順流,逆流の方向に関係なく流速の絶対値に
対応した正の信号を出力する。実際の熱線プローブで
は、図8(3)に示すような応答遅れが生じることから
順流と逆流の切り替え時において熱線信号はゼロとなら
ない信号を出力する。また吸気上流側に配置された発熱
抵抗体1の出力Aは、順流時は大きく逆流時は小さい。
逆に吸気下流側に配置された発熱抵抗体2の出力Bは、
逆流時は大きく順流時は小さい。これら2つの信号を電
圧比較器15で比較した結果は、図8(4)に示すよう
な順流を示す高電位レベル(Hi),逆流を示す低電位
レベル(Low)を繰り返す。スイッチ回路16によっ
て、方向信号を用いて順逆の切り替えをして逆流補正し
た熱線信号は、図8(5)に示すような逆流を伴う合成
波形となる。ただし、真の空気流量に対して位相がず
れ、空気流量がゼロ付近での波形に飛びが生じるため、
平均空気流量を比較すると、ただ方向信号を用いて合成
しただけでは誤差が生ずる。更に、イコライザ回路1
3,14を採用することにより電気的に応答遅れを回復
出来、図8(6)に示すような信号となる。応答遅れを
回復した順逆2つの熱線信号出力A2,B2は、位相と
振幅が真の空気流量に近くなるように、イコライザ回路
13,14で調整され、図8(7)に示すような真の空
気流量そのものに近い逆流補正した熱線信号を得ること
が出来、平均空気流量の誤差を非常に小さくすることが
出来る。Next, the operation will be described in more detail with reference to FIG. Here, all the heat ray signals are converted into the air flow rate and displayed. Generally, the air flow rate has a large pulsation amplitude of the intake air amount when the engine speed of four cylinders or less is low and the load is heavy, and as shown in FIG. 8 (1), a sine wave with a negative air flow rate called backflow. The waveform is close to. This has a pulsation frequency of about 33 Hz when the engine speed is 1000 rpm, for example. Such a phenomenon varies depending on the shape of the combustion chamber of the engine, the shape of the intake and exhaust pipes, the shape of the air cleaner, and the like. When an ideal hot-wire probe with fast response is used for the pulsating flow accompanied by the backflow, a positive signal corresponding to the absolute value of the flow velocity is obtained irrespective of the direction of the forward flow and the backflow as shown in FIG. 8 (2). Is output. In an actual heat ray probe, since a response delay as shown in FIG. 8 (3) occurs, a heat ray signal that does not become zero is output when switching between forward flow and reverse flow. Further, the output A of the heating resistor 1 arranged on the intake upstream side is large during forward flow and small during reverse flow.
On the contrary, the output B of the heating resistor 2 arranged downstream of the intake air is
Large during backflow and small during forward flow. As a result of comparing these two signals by the voltage comparator 15, a high potential level (Hi) indicating forward flow and a low potential level (Low) indicating reverse flow as shown in FIG. 8 (4) are repeated. The hot-wire signal, which has been subjected to backflow correction by performing forward / reverse switching using the direction signal by the switch circuit 16, has a composite waveform with backflow as shown in FIG. However, since the phase shifts with respect to the true air flow rate, and there is a jump in the waveform when the air flow rate is near zero,
If the average air flow rates are compared, an error will occur if they are simply combined using the direction signal. Furthermore, the equalizer circuit 1
By adopting Nos. 3 and 14, the response delay can be electrically recovered and the signal becomes as shown in FIG. 8 (6). The two forward and reverse heat ray signal outputs A2 and B2 that have recovered the response delay are adjusted by the equalizer circuits 13 and 14 so that the phase and the amplitude are close to the true air flow rate, and the true heat flow signal outputs as shown in FIG. A backflow-corrected heat ray signal close to the air flow rate itself can be obtained, and the error in the average air flow rate can be made extremely small.
【0013】上記実施例では、応答遅れを補正するため
にイコライザ回路を採用した例について示したが、図
1,図2,図3および図4に示したような抵抗パターン
にすることにより空気流の当たる基板4の両端において
単位面積当たりの抵抗値が高くなり空気流量計測の高速
化が図られることから必ずしもイコライザ回路を使用し
なくても図8(7)に示したような高精度の真の空気流
量に近い信号が得られる。In the above embodiment, an example in which an equalizer circuit is used to correct the response delay has been shown. However, the air flow can be changed by using the resistance patterns shown in FIGS. 1, 2, 3 and 4. Since the resistance value per unit area becomes high at both ends of the hitting substrate 4 and the air flow rate measurement can be speeded up, even if the equalizer circuit is not necessarily used, it is possible to obtain a highly accurate true value as shown in FIG. 8 (7). A signal close to the air flow rate of is obtained.
【0014】なお、図5に示した実施例では、発熱抵抗
体1,2に対して温度補償用抵抗体3(3a,3b)が
空気流7の垂直方向に引っ込む段差構成でかつスリット
が設けられていることから、逆流の時でも発熱抵抗体
1,2によって熱せられた空気流の影響が温度補償用抵
抗体3(3a,3b)に及ばず精度の高い空気流量計測
が可能となる。また、上記発熱抵抗体1,2および温度
補償用抵抗体3(3a,3b)は、基板4上に、同一工
程で同一材料同一膜厚に形成されることから、発熱抵抗
体1,2および温度補償用抵抗体3(3a,3b)の電
気抵抗の温度係数が同じくなることから空気流量計測の
温度特性のバラツキが低減できる。In the embodiment shown in FIG. 5, the temperature compensating resistors 3 (3a, 3b) with respect to the heat generating resistors 1 and 2 have a step structure in which they are retracted in the vertical direction of the air flow 7 and slits are provided. Therefore, even when the backflow occurs, the influence of the airflow heated by the heating resistors 1 and 2 does not affect the temperature compensating resistor 3 (3a, 3b), and the airflow rate can be measured with high accuracy. Further, since the heating resistors 1 and 2 and the temperature compensating resistor 3 (3a, 3b) are formed on the substrate 4 in the same process and with the same material and the same film thickness, the heating resistors 1, 2, and Since the temperature coefficients of the electric resistances of the temperature compensating resistors 3 (3a, 3b) are the same, variations in the temperature characteristics of the air flow rate measurement can be reduced.
【0015】更に、本実施例では温度補償用抵抗体3
(3a,3b)を発熱抵抗体1,2の上流側に配置して
いるが、温度補償用抵抗体3(3a,3b)は発熱抵抗
体1,2に対して段差を構成していることから下流側に
配置しても本発明の効果には変わりがない。また、温度
補償用抵抗体3の抵抗パターンの実施例として図4に示
したが、発熱抵抗体の図2,図3に示した実施例と同様
に構成しても基板4の先端に近くなるに従い抵抗パター
ンの単位面積当たりの抵抗値が大きくでき本発明の効果
が実現できる。Further, in this embodiment, the temperature compensating resistor 3 is used.
(3a, 3b) is arranged on the upstream side of the heating resistors 1 and 2, but the temperature compensating resistor 3 (3a, 3b) forms a step with respect to the heating resistors 1 and 2. Even if it is arranged on the downstream side, the effect of the present invention does not change. Further, although an example of the resistance pattern of the temperature compensating resistor 3 is shown in FIG. 4, even if it is configured in the same manner as the example of the heating resistor shown in FIGS. 2 and 3, it is close to the tip of the substrate 4. Accordingly, the resistance value per unit area of the resistance pattern can be increased and the effect of the present invention can be realized.
【0016】[0016]
【発明の効果】本発明によれば、吸気通路内に配置され
る略平板状基板上に温度依存性抵抗膜よりなる少なくと
も2個の発熱抵抗体を上流側と下流側に隣接して形成
し、上記隣接する2個の発熱抵抗体が互いに近接するに
従い単位面積当たりの抵抗値が小さくなるよう構成した
ことにより、通常の空気流7の時(順流)にはより放熱
効果の高い上流側発熱抵抗体により順流空気流量を、空
気流7と反対方向(逆流)時には下流側発熱抵抗体によ
り逆流空気流量を高速に計測することが可能となり、吸
気空気流の両方向の流量を高精度に且つ高速で検知でき
る熱式空気流量計を提供することができる。According to the present invention, at least two heating resistors made of a temperature-dependent resistance film are formed adjacent to each other on the upstream side and the downstream side on a substantially flat plate-shaped substrate arranged in the intake passage. Since the resistance value per unit area becomes smaller as the two adjacent heating resistors come close to each other, the upstream side heat generation having a higher heat dissipation effect during the normal air flow 7 (forward flow) The forward flow air flow rate can be measured at high speed by the resistor, and the backward flow air flow rate can be measured at high speed by the downstream heating resistor when the flow direction is opposite to the air flow 7 (reverse flow). It is possible to provide a thermal air flow meter that can be detected by.
【図1】本発明の第一実施例による発熱抵抗体素子部の
抵抗パターン図。FIG. 1 is a resistance pattern diagram of a heating resistor element portion according to a first embodiment of the present invention.
【図2】本発明の第二実施例による発熱抵抗体素子部の
抵抗パターン図。FIG. 2 is a resistance pattern diagram of a heating resistor element portion according to a second embodiment of the present invention.
【図3】本発明の第三実施例による発熱抵抗体素子部の
抵抗パターン図。FIG. 3 is a resistance pattern diagram of a heating resistor element portion according to a third embodiment of the present invention.
【図4】温度補償抵抗体素子部の抵抗パターン図。FIG. 4 is a resistance pattern diagram of a temperature compensation resistor element portion.
【図5】本発明の実施例による熱式空気流量計の平面
図。FIG. 5 is a plan view of a thermal type air flow meter according to an embodiment of the present invention.
【図6】本発明の実施例による熱式空気流量計の流量検
出部の断面図。FIG. 6 is a cross-sectional view of a flow rate detection unit of the thermal type air flow meter according to the embodiment of the present invention.
【図7】本発明の実施例の回路図。FIG. 7 is a circuit diagram of an embodiment of the present invention.
【図8】本発明の実施例の動作説明図。FIG. 8 is an operation explanatory diagram of the embodiment of the present invention.
【図9】従来の熱式空気流量計の素子部の平面図。FIG. 9 is a plan view of an element portion of a conventional thermal air flow meter.
1,1a,1b,1c,2,2a,2b,2c,31…
発熱抵抗体、3,3a,3b…温度補償用抵抗体、4,
30…基板、5…支持体、6a,6b,6c,6d,6
e,6f…端子電極、8,27…ボデイ、11,12…
熱線駆動回路、13,14…イコライザ回路、15,2
0,24…差動増幅器、17…電源、18,19,2
2,23…抵抗、21,25…トランジスタ。1, 1a, 1b, 1c, 2, 2a, 2b, 2c, 31 ...
Heating resistors, 3, 3a, 3b ... Temperature compensating resistors, 4,
30 ... Substrate, 5 ... Support, 6a, 6b, 6c, 6d, 6
e, 6f ... Terminal electrode, 8, 27 ... Body, 11, 12 ...
Heat ray drive circuit, 13, 14 ... Equalizer circuit, 15, 2
0, 24 ... Differential amplifier, 17 ... Power supply, 18, 19, 2
2, 23 ... Resistors, 21, 25 ... Transistors.
フロントページの続き (72)発明者 渡辺 泉 茨城県ひたちなか市大字高場字鹿島谷津 2477番地3日立オートモティブエンジニア リング株式会社内 (72)発明者 磯野 忠 茨城県ひたちなか市大字高場字鹿島谷津 2477番地3日立オートモティブエンジニア リング株式会社内 (72)発明者 中右 利彦 茨城県ひたちなか市大字高場字鹿島谷津 2477番地3日立オートモティブエンジニア リング株式会社内Front page continuation (72) Inventor Izumi Watanabe 2477, Kashima Yatsu, Hitachi, Hitachinaka, Ibaraki Prefecture 3477 Hitachi Automotive Engineers Ring Co., Ltd. (72) Inventor, Tadashi Isono 2477 Kashima, Yatsu, Hitachinaka, Hitachinaka, Ibaraki 3 Hitachi Automotive Engineering Co., Ltd. (72) Inventor Toshihiko Nakato 2477 Kashima Yatsu Kaita, Hitachinaka City, Ibaraki Prefecture 3 Hitachi Automotive Engineering Co., Ltd.
Claims (9)
温度依存性抵抗膜よりなる少なくとも2個の発熱抵抗体
を上流側と下流側に隣接して形成した熱式空気流量計に
おいて、上記隣接する2個の発熱抵抗体が互いに近接す
るに従い単位面積当たりの抵抗値が小さくなることを特
徴とする熱式空気流量計。1. A thermal air flow meter in which at least two heating resistors made of a temperature-dependent resistance film are formed adjacent to each other on an upstream side and a downstream side on a substantially flat substrate arranged in an intake passage. A thermal air flowmeter, wherein the resistance value per unit area decreases as the two adjacent heating resistors approach each other.
に近接するに従い疎になることを特徴とする請求項1記
載の熱式空気流量計。2. The thermal air flow meter according to claim 1, wherein the resistance pattern densities of the heating resistors become sparser as they come closer to each other.
いに近接するに従い大きくなることを特徴とする請求項
1記載の熱式空気流量計。3. The thermal type air flow meter according to claim 1, wherein the line widths of the resistance patterns of the heat generating resistors increase as they approach each other.
従い厚くなることを特徴とする請求項1記載の熱式空気
流量計。4. The thermal type air flow meter according to claim 1, wherein the film thicknesses of the heating resistors become thicker as they approach each other.
少なくとも2個の温度補償用抵抗体を設け、上記抵抗体
より遠い引き出し電極を形成した側の基板の一端を支持
部材で支持し、上記抵抗体を被測定流体中に設置し、被
測定流体の温度を検出すると共に発熱抵抗体を発熱させ
た時の放熱量により上記被測定流体の流量を検出する熱
式空気流量計において、上記2個の温度補償用抵抗体の
抵抗パターンが各々対となって引き回され、2個の抵抗
パターンの各部分が略同一形状で且つ基板上の略同一位
置を占めるように構成されたことを特徴とする熱式空気
流量計。5. A substantially flat substrate is provided with at least two temperature compensating resistors made of a temperature-dependent resistance film, and one end of the substrate on the side on which the lead-out electrode is formed, which is far from the resistors, is supported by a supporting member. In the thermal air flow meter, the resistor is installed in the fluid to be measured, and the flow rate of the fluid to be measured is detected by detecting the temperature of the fluid to be measured and the amount of heat released when the heating resistor is heated. The resistance patterns of the two temperature compensating resistors are routed as a pair, and the respective portions of the two resistance patterns have substantially the same shape and occupy substantially the same position on the substrate. A thermal air flow meter characterized by.
り離れるに従い単位面積当たりの抵抗値が大きくなる様
構成したことを特徴とする請求項5記載の熱式空気流量
計。6. The thermal air flow meter according to claim 5, wherein the two temperature compensating resistors are configured so that the resistance value per unit area increases as the distance from the supporting member increases.
が支持部材より離れるに従い密になることを特徴とする
請求項5又は6記載の熱式空気流量計。7. The thermal air flow meter according to claim 5, wherein the resistance pattern density of the temperature compensating resistor becomes denser as the distance from the supporting member increases.
幅が支持部材より離れるに従い小さくなることを特徴と
する請求項5又は6記載の熱式空気流量計。8. The thermal air flow meter according to claim 5, wherein the line width of the resistance pattern of the temperature compensating resistor becomes smaller as the distance from the supporting member increases.
り離れるに従い薄くなることを特徴とする請求項5又は
6記載の熱式空気流量計。9. The thermal air flow meter according to claim 5, wherein the film thickness of the temperature compensating resistor becomes thinner as the distance from the supporting member increases.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7121095A JPH08313319A (en) | 1995-05-19 | 1995-05-19 | Thermal air flow meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7121095A JPH08313319A (en) | 1995-05-19 | 1995-05-19 | Thermal air flow meter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08313319A true JPH08313319A (en) | 1996-11-29 |
Family
ID=14802760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7121095A Pending JPH08313319A (en) | 1995-05-19 | 1995-05-19 | Thermal air flow meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08313319A (en) |
-
1995
- 1995-05-19 JP JP7121095A patent/JPH08313319A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100488213B1 (en) | Thermal Air Flow Meter | |
JPH08313320A (en) | Measuring element for thermal air flow meter and thermal air flow meter including the same | |
US4870860A (en) | Direct-heated flow measuring apparatus having improved response characteristics | |
US6889545B2 (en) | Flow rate sensor | |
JP3333712B2 (en) | Flow rate detecting element and flow rate sensor using the same | |
JP5315304B2 (en) | Thermal flow meter | |
US8186213B2 (en) | Thermal-type flowmeter | |
CN101308036A (en) | Thermal Flow Meter | |
JP4558647B2 (en) | Thermal fluid flow meter | |
US4843882A (en) | Direct-heated flow measuring apparatus having improved sensitivity response speed | |
JP2001027558A (en) | Thermal type flowrate sensor | |
JP3240733B2 (en) | Thermal air flow meter | |
US6684693B2 (en) | Heat generation type flow sensor | |
JP3706358B2 (en) | Gas flow / temperature measuring element | |
JP3331814B2 (en) | Thermal flow detector | |
US4761995A (en) | Direct-heated flow measuring apparatus having improved sensitivity and response speed | |
JPH08313319A (en) | Thermal air flow meter | |
JP3668921B2 (en) | Flow detection element | |
JP2957769B2 (en) | Thermal air flow meter and engine controller | |
JP3060861B2 (en) | Intake air amount measurement device for internal combustion engine | |
JPH09304147A (en) | Measuring element for thermal air flow meter and thermal air flow meter including the same | |
JPS62812A (en) | Hot-wire air flow meter | |
JP3525917B2 (en) | Thermal air flow meter | |
JPH11281445A (en) | Flow rate detecting element and flow sensor | |
JPS6273124A (en) | Heat type flow rate detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |