JPH08311157A - Curable conductive composition - Google Patents
Curable conductive compositionInfo
- Publication number
- JPH08311157A JPH08311157A JP3948596A JP3948596A JPH08311157A JP H08311157 A JPH08311157 A JP H08311157A JP 3948596 A JP3948596 A JP 3948596A JP 3948596 A JP3948596 A JP 3948596A JP H08311157 A JPH08311157 A JP H08311157A
- Authority
- JP
- Japan
- Prior art keywords
- conductive composition
- curable conductive
- copper powder
- group
- epoxy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 91
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 64
- 150000001875 compounds Chemical class 0.000 claims abstract description 48
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 28
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 27
- 125000003700 epoxy group Chemical group 0.000 claims abstract description 25
- 125000001931 aliphatic group Chemical group 0.000 claims abstract description 19
- 238000004132 cross linking Methods 0.000 claims abstract description 15
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 claims abstract description 13
- 239000003822 epoxy resin Substances 0.000 claims description 32
- 229920000647 polyepoxide Polymers 0.000 claims description 32
- 238000013329 compounding Methods 0.000 claims description 5
- 239000000758 substrate Substances 0.000 abstract description 19
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 abstract description 10
- JOLVYUIAMRUBRK-UHFFFAOYSA-N 11',12',14',15'-Tetradehydro(Z,Z-)-3-(8-Pentadecenyl)phenol Natural products OC1=CC=CC(CCCCCCCC=CCC=CCC=C)=C1 JOLVYUIAMRUBRK-UHFFFAOYSA-N 0.000 abstract description 4
- YLKVIMNNMLKUGJ-UHFFFAOYSA-N 3-Delta8-pentadecenylphenol Natural products CCCCCCC=CCCCCCCCC1=CC=CC(O)=C1 YLKVIMNNMLKUGJ-UHFFFAOYSA-N 0.000 abstract description 4
- JOLVYUIAMRUBRK-UTOQUPLUSA-N Cardanol Chemical compound OC1=CC=CC(CCCCCCC\C=C/C\C=C/CC=C)=C1 JOLVYUIAMRUBRK-UTOQUPLUSA-N 0.000 abstract description 4
- FAYVLNWNMNHXGA-UHFFFAOYSA-N Cardanoldiene Natural products CCCC=CCC=CCCCCCCCC1=CC=CC(O)=C1 FAYVLNWNMNHXGA-UHFFFAOYSA-N 0.000 abstract description 4
- PTFIPECGHSYQNR-UHFFFAOYSA-N cardanol Natural products CCCCCCCCCCCCCCCC1=CC=CC(O)=C1 PTFIPECGHSYQNR-UHFFFAOYSA-N 0.000 abstract description 4
- DGUJJOYLOCXENZ-UHFFFAOYSA-N 4-[2-[4-(oxiran-2-ylmethoxy)phenyl]propan-2-yl]phenol Chemical compound C=1C=C(OCC2OC2)C=CC=1C(C)(C)C1=CC=C(O)C=C1 DGUJJOYLOCXENZ-UHFFFAOYSA-N 0.000 abstract 1
- 238000001723 curing Methods 0.000 description 57
- 239000002245 particle Substances 0.000 description 23
- 239000000047 product Substances 0.000 description 23
- 238000004898 kneading Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 13
- 229920005989 resin Polymers 0.000 description 12
- 239000011347 resin Substances 0.000 description 12
- -1 aliphatic ester compound Chemical class 0.000 description 11
- 239000003085 diluting agent Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 239000002904 solvent Substances 0.000 description 10
- FQYUMYWMJTYZTK-UHFFFAOYSA-N Phenyl glycidyl ether Chemical compound C1OC1COC1=CC=CC=C1 FQYUMYWMJTYZTK-UHFFFAOYSA-N 0.000 description 9
- 239000004593 Epoxy Substances 0.000 description 8
- 230000035939 shock Effects 0.000 description 8
- 238000001816 cooling Methods 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 125000000217 alkyl group Chemical group 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 239000005011 phenolic resin Substances 0.000 description 6
- LCFVJGUPQDGYKZ-UHFFFAOYSA-N Bisphenol A diglycidyl ether Chemical compound C=1C=C(OCC2OC2)C=CC=1C(C)(C)C(C=C1)=CC=C1OCC1CO1 LCFVJGUPQDGYKZ-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- 238000011049 filling Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000005315 distribution function Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229920003986 novolac Polymers 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 238000000944 Soxhlet extraction Methods 0.000 description 2
- 150000008065 acid anhydrides Chemical class 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 229930003836 cresol Natural products 0.000 description 2
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 2
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 150000002460 imidazoles Chemical class 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000000790 scattering method Methods 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- KMOUUZVZFBCRAM-OLQVQODUSA-N (3as,7ar)-3a,4,7,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1C=CC[C@@H]2C(=O)OC(=O)[C@@H]21 KMOUUZVZFBCRAM-OLQVQODUSA-N 0.000 description 1
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- ZCZCZLVSKGCRTD-UHFFFAOYSA-N 2-(tridecoxymethyl)oxirane Chemical compound CCCCCCCCCCCCCOCC1CO1 ZCZCZLVSKGCRTD-UHFFFAOYSA-N 0.000 description 1
- HNJSJLKMMRCGKX-UHFFFAOYSA-N 2-(undecoxymethyl)oxirane Chemical compound CCCCCCCCCCCOCC1CO1 HNJSJLKMMRCGKX-UHFFFAOYSA-N 0.000 description 1
- IGDUBEZMULCNAF-UHFFFAOYSA-N 2-[(2-dodecylphenoxy)methyl]oxirane Chemical compound CCCCCCCCCCCCC1=CC=CC=C1OCC1OC1 IGDUBEZMULCNAF-UHFFFAOYSA-N 0.000 description 1
- WNISWKAEAPQCJQ-UHFFFAOYSA-N 2-[(2-nonylphenoxy)methyl]oxirane Chemical compound CCCCCCCCCC1=CC=CC=C1OCC1OC1 WNISWKAEAPQCJQ-UHFFFAOYSA-N 0.000 description 1
- CCYKKRHICFHBTR-UHFFFAOYSA-N 2-[(2-octadecylphenoxy)methyl]oxirane Chemical compound CCCCCCCCCCCCCCCCCCC1=CC=CC=C1OCC1OC1 CCYKKRHICFHBTR-UHFFFAOYSA-N 0.000 description 1
- XOQUTYDTROZTID-UHFFFAOYSA-N 2-[(4-tert-butylphenyl)-[(4-tert-butylphenyl)-(oxiran-2-yl)methoxy]methyl]oxirane Chemical compound C1=CC(C(C)(C)C)=CC=C1C(C1OC1)OC(C=1C=CC(=CC=1)C(C)(C)C)C1OC1 XOQUTYDTROZTID-UHFFFAOYSA-N 0.000 description 1
- ULKLGIFJWFIQFF-UHFFFAOYSA-N 5K8XI641G3 Chemical compound CCC1=NC=C(C)N1 ULKLGIFJWFIQFF-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- KBWLNCUTNDKMPN-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) hexanedioate Chemical compound C1OC1COC(=O)CCCCC(=O)OCC1CO1 KBWLNCUTNDKMPN-UHFFFAOYSA-N 0.000 description 1
- XUCHXOAWJMEFLF-UHFFFAOYSA-N bisphenol F diglycidyl ether Chemical compound C1OC1COC(C=C1)=CC=C1CC(C=C1)=CC=C1OCC1CO1 XUCHXOAWJMEFLF-UHFFFAOYSA-N 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical group 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- ZZTCPWRAHWXWCH-UHFFFAOYSA-N diphenylmethanediamine Chemical compound C=1C=CC=CC=1C(N)(N)C1=CC=CC=C1 ZZTCPWRAHWXWCH-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000010332 dry classification Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- VLKZOEOYAKHREP-UHFFFAOYSA-N hexane Substances CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- CAQIWIAAHXOQOS-UHFFFAOYSA-N octadecanoic acid;propan-2-ol;titanium Chemical compound [Ti].CC(C)O.CCCCCCCCCCCCCCCCCC(O)=O.CCCCCCCCCCCCCCCCCC(O)=O.CCCCCCCCCCCCCCCCCC(O)=O CAQIWIAAHXOQOS-UHFFFAOYSA-N 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 125000005375 organosiloxane group Chemical group 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- WSDQIHATCCOMLH-UHFFFAOYSA-N phenyl n-(3,5-dichlorophenyl)carbamate Chemical compound ClC1=CC(Cl)=CC(NC(=O)OC=2C=CC=CC=2)=C1 WSDQIHATCCOMLH-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 239000013008 thixotropic agent Substances 0.000 description 1
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
- H05K1/092—Dispersed materials, e.g. conductive pastes or inks
- H05K1/095—Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
Landscapes
- Parts Printed On Printed Circuit Boards (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
- Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
- Conductive Materials (AREA)
Abstract
(57)【要約】
【課題】 回路形成用基板の導通スルーホールを形成す
る場合等のように、厚みのある導電性硬化体を形成する
場合においても、硬化時にクラックの発生がなく、しか
も、得られる硬化体が長期にわたって安定な導電性を発
揮する硬化性導電組成物を提供する。
【解決手段】 (1)(a)分子内に1個のエポキシ
基、1個以上の芳香族炭化水素基、および炭素数が6〜
20の脂肪族炭化水素基とを有する炭素数が18〜30
のモノグリシジル化合物、例えば、カルダノールグリシ
ジルエーテル、(b)分子内に2個以上のエポキシ基と
1個以上の芳香族炭化水素基とを有する架橋成分、例え
ば、ビスフェノールAグリシジルエーテル、
(2)硬化剤および
(3)銅粉よりなる硬化性導電組成物。
(57) Abstract: Even when a conductive cured body having a large thickness is formed, such as a case where a conductive through hole of a circuit forming substrate is formed, cracks do not occur during curing, and moreover, Provided is a curable conductive composition in which the obtained cured body exhibits stable conductivity over a long period of time. (1) (a) One epoxy group, one or more aromatic hydrocarbon groups, and 6 to 6 carbon atoms in the molecule.
18 to 30 carbon atoms having 20 aliphatic hydrocarbon groups
A monoglycidyl compound of, for example, cardanol glycidyl ether, (b) a crosslinking component having two or more epoxy groups and one or more aromatic hydrocarbon groups in the molecule, for example, bisphenol A glycidyl ether, (2) A curable conductive composition comprising a curing agent and (3) copper powder.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、新規な硬化性導電
組成物に関する。詳しくは、回路形成用基板のスルーホ
ール用貫通孔に充填硬化して導通スルーホールを形成す
る場合等のように、厚みのある導電性硬化体を得る場合
においても、硬化時にクラックの発生がなく、しかも、
得られる硬化体が長期にわたって安定な導電性を発揮す
る硬化性導電組成物である。TECHNICAL FIELD The present invention relates to a novel curable conductive composition. In detail, even when a conductive cured body having a large thickness is obtained, such as a case where a through hole for a through hole of a circuit forming substrate is filled and cured to form a conductive through hole, cracks do not occur during curing. And moreover,
The resulting cured product is a curable conductive composition that exhibits stable conductivity over a long period of time.
【0002】[0002]
【従来の技術】硬化性導電組成物は、エレクトロニクス
分野において、IC回路用、導電性接着剤、電磁波シー
ルド等多くの用途に使用されている。特に最近では、硬
化性導電組成物をスルーホール形成用貫通孔に充填・硬
化させて、導通スルーホールの形成を行う、安価で信頼
性の高い導通スルーホールの形成技術が提唱されてい
る。2. Description of the Related Art Curable conductive compositions are used in many fields in the electronics field, such as IC circuits, conductive adhesives, and electromagnetic wave shields. Particularly, recently, an inexpensive and highly reliable conductive through-hole forming technique has been proposed in which a curable conductive composition is filled in and cured in a through-hole forming through-hole to form a conductive through-hole.
【0003】上記の導通スルーホール用の硬化性導電組
成物の用途においては、硬化性導電組成物の硬化時或い
は硬化後の冷却時における基材の膨張・収縮や、硬化体
の硬化収縮に起因する内部応力により、硬化体へのクラ
ックの発生が問題となる。即ち、硬化性導電組成物は、
硬化性樹脂の硬化収縮による金属粉間の接触により、導
通性能を発揮するものであり、硬化性導電組成物自体の
硬化収縮を伴う。そのため、上記硬化性導電組成物は、
一般に、硬化時或いは硬化後の冷却時に、硬化体内部に
クラックを発生しやすいという問題が指摘されている。
また、硬化後においても、部品実装時の半田による熱衝
撃によりクラックが発生するという問題点もある。In the use of the above-mentioned curable conductive composition for conductive through-holes, it is caused by the expansion and contraction of the base material during the curing of the curable conductive composition or the cooling after curing, and the curing contraction of the cured product. Due to the internal stress generated, the occurrence of cracks in the cured product becomes a problem. That is, the curable conductive composition is
The contact between the metal powders caused by the curing shrinkage of the curable resin exerts the conduction performance, and is accompanied by the curing shrinkage of the curable conductive composition itself. Therefore, the curable conductive composition,
In general, it has been pointed out that cracks are likely to occur inside the cured body during curing or during cooling after curing.
In addition, there is a problem in that even after curing, cracks are generated by thermal shock due to solder when mounting components.
【0004】このような問題点を解決する方法として、
(1)硬化性導電組成物中に変性オルガノシロキサン等
の可撓性付与剤を添加する方法、(2)硬化性導電組成
物中に2個以上のグリシジル基を有する長鎖脂肪族エス
テル化合物或いはエーテル化合物を添加する方法(特開
平4−173858号公報)が提案されている。As a method of solving such a problem,
(1) A method of adding a flexibility-imparting agent such as modified organosiloxane to the curable conductive composition, (2) a long-chain aliphatic ester compound having two or more glycidyl groups in the curable conductive composition, or A method of adding an ether compound (JP-A-4-173858) has been proposed.
【0005】しかしながら、上記(1)における硬化性
導電組成物は、IC回路用、導電性接着剤、電磁波シー
ルド等の回路形成の用途に使用した場合の熱衝撃に対し
てある程度の効果を有するものの、前記スルーホール用
貫通孔に充填して導通スルーホールを形成する場合のよ
うに、厚みのある導電性硬化体を得る場合の硬化時或い
は硬化時の熱衝撃におけるクラックの発生を防止する場
合には、未だ改良の余地がある。また、かかる可撓性付
与剤を使用してスルーホールの形成における上記現象を
防止するためには、該可撓性付与剤の添加量を極端に増
加させる必要があり、そうすると硬化性導電組成物の硬
化収縮率が低下し、その結果、得られる硬化体の導電性
が低下するという問題を有する。However, the curable conductive composition in the above (1) has some effect on thermal shock when used for the purpose of forming circuits such as IC circuits, conductive adhesives and electromagnetic wave shields. For preventing the occurrence of cracks during curing or thermal shock during curing when a conductive cured body having a thickness is obtained, as in the case of filling the through holes for through holes to form conductive through holes There is still room for improvement. Further, in order to prevent the above phenomenon in the formation of through holes using such a flexibility-imparting agent, it is necessary to extremely increase the addition amount of the flexibility-imparting agent, and then the curable conductive composition. However, there is a problem that the curing shrinkage rate of the cured product decreases, and as a result, the conductivity of the obtained cured product decreases.
【0006】また、上記(2)の方法では、添加する化
合物が反応性を有するため、硬化体の導電性を犠牲にす
ることなく、硬化性導電組成物に該化合物を添加するこ
とができる。しかし、該化合物中にはグリシジル基が2
個以上存在するため、硬化後は該化合物の分子運動のた
めの自由度が小さい。そのため、かかる硬化性導電組成
物にあっても、回路形成の用途においては、十分な効果
を有するものの、前記スルーホール用貫通孔に充填・硬
化した場合のクラックの発生を避けることが困難であ
る。Further, in the above method (2), since the compound to be added is reactive, the compound can be added to the curable conductive composition without sacrificing the conductivity of the cured product. However, the glycidyl group in the compound is 2
Since there are one or more, the degree of freedom for the molecular motion of the compound is small after curing. Therefore, even with such a curable conductive composition, although it has a sufficient effect in the application of circuit formation, it is difficult to avoid generation of cracks when the through hole for through holes is filled and cured. .
【0007】そこで、本発明者らは、炭素数11〜13
の直鎖アルキルモノグリシジルエーテル、または炭素数
9〜11の直鎖アルキルモノグリシジルエーテルをエポ
キシ樹脂に配合することを試みた(特開平6−1844
09号公報)。これらの直鎖アルキル基を有する化合物
を配合することにより、クラックの発生をある程度防止
することができる。Therefore, the present inventors have found that the carbon number is 11 to 13
Attempts were made to blend the linear alkyl monoglycidyl ether of No. 6 or the linear alkyl monoglycidyl ether having 9 to 11 carbon atoms into the epoxy resin (Japanese Patent Laid-Open No. 6-1844).
09 publication). By compounding these compounds having a linear alkyl group, the occurrence of cracks can be prevented to some extent.
【0008】しかし、近年では、回路基板のコストダウ
ンを目的として、従来のガラスエポキシ基板から安価な
材料である紙−フェノール基板への変更が進められてい
る。該紙−フェノール基板は、ガラスエポキシ基板に比
べて線膨張係数が大きいため、これに前記スルーホール
用貫通孔を形成し、硬化性導電組成物を充填・硬化する
場合には、従来のガラスエポキシ基板の場合に比べ、硬
化性導電組成物が受ける膨張・収縮応力が大きく、得ら
れる硬化体にクラックが発生し易くなる。However, in recent years, in order to reduce the cost of a circuit board, a conventional glass epoxy board is being changed to a paper-phenol board which is an inexpensive material. Since the paper-phenol substrate has a larger linear expansion coefficient than that of the glass epoxy substrate, when the through holes for through holes are formed in the paper-phenol substrate and the curable conductive composition is filled and cured, the conventional glass epoxy substrate is used. As compared with the case of using a substrate, the curable conductive composition is subjected to a large amount of expansion / contraction stress, and cracks easily occur in the obtained cured body.
【0009】上記の直鎖アルキル基を有する化合物を配
合したエポキシ樹脂を含む硬化性導電組成物は、紙−フ
ェノール基板のような線膨張係数の大きい基板に適用し
た場合、硬化体のクラック発生を十分に防止できなかっ
た。The above-mentioned curable conductive composition containing an epoxy resin compounded with a compound having a linear alkyl group causes cracking of a cured product when applied to a substrate having a large linear expansion coefficient such as a paper-phenol substrate. I couldn't prevent it enough.
【0010】従って、厚みのある導電性硬化体を形成す
る場合、硬化時にクラックの発生がなく、得られる硬化
体が長期にわたって高度な導電性を発揮し、しかも、線
膨張係数の大きな紙−フェノール基板に対しても、クラ
ック等の発生がなく、適用可能な硬化性導電組成物の開
発が望まれていた。Therefore, when a thick conductive cured body is formed, no crack is generated during curing, and the resulting cured body exhibits a high degree of conductivity for a long period of time, and has a large linear expansion coefficient. It has been desired to develop a curable conductive composition that can be applied to a substrate without cracks or the like.
【0011】[0011]
【発明が解決しようとする課題】本発明の目的は、厚み
のある導電性硬化体を形成した場合にも硬化時および硬
化後の冷却時にクラックの発生のない硬化性導電組成物
を提供することにある。SUMMARY OF THE INVENTION It is an object of the present invention to provide a curable conductive composition which does not generate cracks during curing and during cooling after curing even when a conductive cured product having a thickness is formed. It is in.
【0012】また、本発明の他の目的は、得られる硬化
体が長期にわたって高度な導電性を発揮する硬化性導電
組成物を提供することにある。Another object of the present invention is to provide a curable conductive composition in which the obtained cured product exhibits a high degree of conductivity over a long period of time.
【0013】さらに、本発明の他の目的は、紙−フェノ
ール基板のように線膨張係数の大きな基板を使用した場
合にも、硬化時および硬化後の冷却時にクラックの発生
のない硬化性導電組成物を提供することにある。Still another object of the present invention is to provide a curable conductive composition which does not cause cracks during curing and during cooling after curing even when a substrate having a large linear expansion coefficient such as a paper-phenol substrate is used. To provide things.
【0014】[0014]
【課題を解決するための手段】これらの本発明の目的
は、以下に述べる硬化性導電組成物によって達成され
る。These objects of the present invention are achieved by the curable conductive composition described below.
【0015】(1)(a)分子内に1個のエポキシ基、
1個以上の芳香族炭化水素基、および、炭素数が6〜2
0の脂肪族炭化水素基とを有する炭素数が18〜30の
モノグリシジル化合物、および、(b)分子内に2個以
上のエポキシ基と1個以上の芳香族炭化水素基とを有す
る架橋成分とを含み、モノグリシジル化合物の配合量が
架橋成分100重量部に対して5〜60重量部であるエ
ポキシ樹脂 (2)上記エポキシ樹脂中のエポキシ基と反応する反応
性基を有する硬化剤および (3)銅粉を含み、上記硬化剤は、エポキシ樹脂中のエ
ポキシ基と反応する反応性基の当量で表示して、エポキ
シ樹脂のエポキシ基1当量に対して0.3〜1.3当量
となるように配合され、銅粉は、上記エポキシ樹脂と硬
化剤の合計量100重量部に対して180〜750重量
部の範囲で配合されてなる硬化性導電組成物。(1) (a) One epoxy group in the molecule,
One or more aromatic hydrocarbon groups and 6 to 2 carbon atoms
C18 to C30 monoglycidyl compound having 0 aliphatic hydrocarbon group, and (b) crosslinking component having 2 or more epoxy groups and 1 or more aromatic hydrocarbon groups in the molecule And an epoxy resin containing 5 to 60 parts by weight of a monoglycidyl compound with respect to 100 parts by weight of a crosslinking component. (2) A curing agent having a reactive group that reacts with an epoxy group in the epoxy resin, and ( 3) Copper powder is included, and the curing agent is expressed as an equivalent of a reactive group that reacts with an epoxy group in an epoxy resin, and is 0.3 to 1.3 equivalents relative to 1 equivalent of an epoxy group of the epoxy resin. The curable conductive composition, wherein the copper powder is blended in the range of 180 to 750 parts by weight based on 100 parts by weight of the total amount of the epoxy resin and the curing agent.
【0016】[0016]
【発明の実施の形態】本発明の硬化性導電組成物の一成
分は、特定のモノグリシジル化合物と架橋成分とを含む
エポキシ樹脂である。エポキシ樹脂中に含まれるモノグ
リシジル化合物は、分子内に1個のエポキシ基、1個以
上の芳香族炭化水素基、および、炭素数が6〜20の脂
肪族炭化水素基とを有する炭素数18〜30のモノグリ
シジル化合物である。BEST MODE FOR CARRYING OUT THE INVENTION One component of the curable conductive composition of the present invention is an epoxy resin containing a specific monoglycidyl compound and a crosslinking component. The monoglycidyl compound contained in the epoxy resin has 18 carbon atoms having one epoxy group, one or more aromatic hydrocarbon groups, and an aliphatic hydrocarbon group having 6 to 20 carbon atoms in the molecule. ~ 30 monoglycidyl compounds.
【0017】上記のモノグリシジル化合物は、分子内に
1個のエポキシ基を有することが重要である。2個以上
のエポキシ基を有する化合物を用いた場合は、該化合物
が架橋剤として働いて分子運動の自由度が小さくなり、
その結果、クラックの抑制効果が十分に発揮されない。
また、エポキシ基を有さない化合物を用いた場合は、該
化合物が硬化剤との反応で得られる硬化体中に固定化さ
れないために溶出等の惧れがあり好ましくない。It is important that the above monoglycidyl compound has one epoxy group in the molecule. When a compound having two or more epoxy groups is used, the compound acts as a cross-linking agent and the degree of freedom of molecular movement decreases,
As a result, the crack suppressing effect is not sufficiently exerted.
Further, when a compound having no epoxy group is used, the compound is not fixed in the cured product obtained by the reaction with the curing agent, which may cause elution or the like, which is not preferable.
【0018】また、上記のモノグリシジル化合物は、分
子内に1個以上の芳香族炭化水素基と炭素数が6〜20
の脂肪族炭化水素基とを有することが重要である。この
ような特定の基を有するモノグリシジル化合物を使用す
ることにより、紙−フェノール基板のように線膨張係数
の大きな基板を用いた場合にも、硬化時および硬化後の
冷却時におけるクラックの発生を効果的に防止すること
ができる。The above monoglycidyl compound has one or more aromatic hydrocarbon groups and 6 to 20 carbon atoms in the molecule.
It is important to have an aliphatic hydrocarbon group of By using a monoglycidyl compound having such a specific group, even when a substrate having a large linear expansion coefficient such as a paper-phenol substrate is used, the occurrence of cracks during curing and cooling after curing is prevented. It can be effectively prevented.
【0019】このような効果が発現する作用機構は不明
であるが、本発明者らは次のように考えている。即ち、
芳香族炭化水素基は、後述する芳香族炭化水素基とエポ
キシ基とを有する架橋成分との相溶性を向上させる機能
を有し、一方、炭素数が6〜20の脂肪族炭化水素基
は、後述する硬化剤と反応して得られた硬化体に柔軟性
を付与する機能を有している。そして、これらの機能が
相俟って、硬化時および硬化後の冷却時におけるクラッ
クの発生防止に貢献しているものと考えられる。Although the mechanism of action in which such an effect is exhibited is unknown, the present inventors consider the following. That is,
The aromatic hydrocarbon group has a function of improving compatibility with a crosslinking component having an aromatic hydrocarbon group and an epoxy group described later, while the aliphatic hydrocarbon group having 6 to 20 carbon atoms is It has a function of imparting flexibility to a cured product obtained by reacting with a curing agent described later. It is considered that these functions together contribute to the prevention of cracks during curing and during cooling after curing.
【0020】上記の芳香族炭化水素基としては、ベンゼ
ン環から誘導される1価または2価の基(フェニル基、
またはフェニレン基)が好適である。その個数は、モノ
グリシジル化合物中に1個以上であれば良いが、炭素数
6〜20の脂肪族炭化水素基による硬化体への柔軟性付
与効果を阻害しないようにするためには1個または2個
であることが好ましい。As the above-mentioned aromatic hydrocarbon group, a monovalent or divalent group derived from a benzene ring (phenyl group,
Alternatively, a phenylene group) is preferable. The number thereof may be 1 or more in the monoglycidyl compound, but 1 or in order not to impair the flexibility imparting effect to the cured product by the aliphatic hydrocarbon group having 6 to 20 carbon atoms or It is preferably two.
【0021】上記のモノグリシジル化合物は、さらに炭
素数が18〜30でなければならない。炭素数が18未
満のときは、モノグリシジル化合物中に含まれる脂肪族
炭化水素基の炭素数が6未満となり、硬化体への柔軟性
の付与効果が低下するために好ましくない。また、炭素
数が30を越えるときは、モノグリシジル化合物が固体
となり、エポキシ樹脂を構成する他の成分との相溶性が
低下するために好ましくない。The above monoglycidyl compound must further have 18 to 30 carbon atoms. When the carbon number is less than 18, the aliphatic hydrocarbon group contained in the monoglycidyl compound has less than 6 carbon atoms, and the effect of imparting flexibility to the cured product is reduced, which is not preferable. Further, when the carbon number exceeds 30, the monoglycidyl compound becomes solid and the compatibility with other components constituting the epoxy resin decreases, which is not preferable.
【0022】本発明において好適に使用できるモノグリ
シジル化合物の代表的な構造式を示せば、下記式(1)
で示されるモノグリシジルエーテル、および下記式
(2)で示されるモノグリシジルエステルを挙げること
ができる。A typical structural formula of the monoglycidyl compound which can be preferably used in the present invention is shown by the following formula (1).
And a monoglycidyl ester represented by the following formula (2).
【0023】[0023]
【化1】 Embedded image
【0024】(但し、式中、R1 は炭素数が6〜20の
脂肪族炭化水素基か、又は炭素数が6〜20の脂肪族炭
化水素基を含む基を示し、Phはフェニレン基を示
す。) 上記式中、R1 は炭素数が6〜20の脂肪族炭化水素基
か、又は炭素数が6〜20の脂肪族炭化水素基を含む基
である。脂肪族炭化水素基は飽和および不飽和のいずれ
であってもよく、また、直鎖および分岐のいずれであっ
てもよい。脂肪族炭化水素基が不飽和の場合は、不飽和
結合を1〜4個有するものであることが好ましい。(In the formula, R1 represents an aliphatic hydrocarbon group having 6 to 20 carbon atoms or a group containing an aliphatic hydrocarbon group having 6 to 20 carbon atoms, and Ph represents a phenylene group. In the above formula, R1 is an aliphatic hydrocarbon group having 6 to 20 carbon atoms or a group containing an aliphatic hydrocarbon group having 6 to 20 carbon atoms. The aliphatic hydrocarbon group may be saturated or unsaturated, and may be linear or branched. When the aliphatic hydrocarbon group is unsaturated, it preferably has 1 to 4 unsaturated bonds.
【0025】炭素数が6〜20の脂肪族炭化水素基を例
示すれば、炭素数が6〜20のアルキル基、アルケニル
基、アルカジエニル基、アルカトリエニル基、アルカテ
トラエニル基等を挙げることができる。Examples of the aliphatic hydrocarbon group having 6 to 20 carbon atoms include an alkyl group, alkenyl group, alkadienyl group, alkatrienyl group, alkatetraenyl group and the like having 6 to 20 carbon atoms. it can.
【0026】また、炭素数が6〜20の脂肪族炭化水素
基を含む基を例示すれば、炭素数が6〜20のアルキレ
ン基を含むアラルキル基を挙げることができる。Further, as an example of a group containing an aliphatic hydrocarbon group having 6 to 20 carbon atoms, there can be mentioned an aralkyl group containing an alkylene group having 6 to 20 carbon atoms.
【0027】上記のモノグリシジル化合物を硬化性導電
組成物に配合することで、該硬化性導電組成物を加熱硬
化して得られる硬化体が、良好な導電性と十分な可撓性
を併せ持つことができる。従って、該硬化性導電組成物
を紙−フェノール基板のような熱膨張係数の大きな基材
に充填した場合、加熱硬化の際に基材との熱膨張係数の
差に起因して生じる内部応力を緩和し、該硬化体内部の
クラック発生を抑制することができる。By blending the above-mentioned monoglycidyl compound with the curable conductive composition, the cured product obtained by heating and curing the curable conductive composition has both good conductivity and sufficient flexibility. You can Therefore, when the curable conductive composition is filled in a base material having a large coefficient of thermal expansion such as a paper-phenolic substrate, internal stress caused by the difference in the coefficient of thermal expansion with the base material during heat curing may be reduced. It is possible to relax and suppress the generation of cracks inside the cured body.
【0028】上記のモノグリシジル化合物を具体的に例
示すると、式(1)のR1 が飽和脂肪族炭化水素基であ
るノニルフェニルモノグリシジルエーテル、ラウリルフ
ェニルモノグリシジルエーテル、(イソ)トリデシルフ
ェニルモノグリシジルエーテル、ペンタデカフェニルモ
ノグリシジルエーテル、(イソ)ステアリルフェニルモ
ノグリシジルエーテル、又はR1 が不飽和脂肪族炭化水
素基である3−(8′,11′,14′−ペンタデカト
リエニル)フェニルグリシジルエーテル、3−(8′,
11′−ペンタデカジエニル)フェニルグリシジルエー
テル、3−(8′−ペンタデセニル)フェニルグリシジ
ルエーテル、或いはこれら3成分とペンタデカフェニル
モノグリシジルエーテルの混合物であるカルダノールモ
ノグリシジルエーテル、或いは3−(6 ′−テトラデセ
ニル)フェニルグリシジルエーテル、3−(4′−デセ
ニル)フェニルグリシジルエーテル、又はR1 が芳香族
炭化水素基を含む3−(8′−フェニル−t−オクチ
ル)フェニルモノグリシジルエーテル、3−(4′−フ
ェニル−n−ヘキシル)フェニルモノグリシジルエーテ
ル、又は上記化合物のグリシジルエーテルをグリシジル
エステルに変更した化合物等が挙げられ、これらの化合
物を単独、又は2種以上を混合して用いても良い。Specific examples of the above-mentioned monoglycidyl compound include nonylphenyl monoglycidyl ether, laurylphenyl monoglycidyl ether, and (iso) tridecylphenyl monoglycidyl in which R 1 of the formula (1) is a saturated aliphatic hydrocarbon group. Ether, pentadecaphenyl monoglycidyl ether, (iso) stearylphenyl monoglycidyl ether, or 3- (8 ', 11', 14'-pentadecatrienyl) phenylglycidyl ether in which R1 is an unsaturated aliphatic hydrocarbon group , 3- (8 ',
11'-pentadecadienyl) phenyl glycidyl ether, 3- (8'-pentadecenyl) phenyl glycidyl ether, or cardanol monoglycidyl ether which is a mixture of these three components and pentadecaphenyl monoglycidyl ether, or 3- (6 '-Tetradecenyl) phenyl glycidyl ether, 3- (4'-decenyl) phenyl glycidyl ether, or 3- (8'-phenyl-t-octyl) phenyl monoglycidyl ether, in which R1 contains an aromatic hydrocarbon group, 3- ( 4′-phenyl-n-hexyl) phenyl monoglycidyl ether, or a compound in which the glycidyl ether of the above compound is changed to a glycidyl ester, and the like, and these compounds may be used alone or in combination of two or more. .
【0029】なお、上記のモノグリシジル化合物の中で
も、R1 が炭素数9〜20の飽和又は不飽和の脂肪族炭
化水素基である化合物が、該化合物を配合して得た硬化
性導電組成物の硬化時に発生する内部応力の緩和に特に
効果が高いため好ましい。Among the above monoglycidyl compounds, a compound in which R1 is a saturated or unsaturated aliphatic hydrocarbon group having 9 to 20 carbon atoms is a curable conductive composition obtained by blending the compound. It is preferable because it is particularly effective in relaxing the internal stress generated during curing.
【0030】本発明に用いられるエポキシ樹脂は、上記
のモノグリシジル化合物の他に架橋成分を含む。架橋成
分としては、分子内に2個以上のエポキシ基と1個以上
の芳香族炭化水素基とを有し、エポキシ樹脂として使用
されることが公知の化合物を何ら制限なく用い得る。一
般には、分子の両末端にエポキシ基をそれぞれ1個づつ
有し、フェニル基を1〜4個有する化合物を好適に用い
ることができる。The epoxy resin used in the present invention contains a crosslinking component in addition to the above monoglycidyl compound. As the cross-linking component, a compound having two or more epoxy groups and one or more aromatic hydrocarbon groups in the molecule and known to be used as an epoxy resin can be used without any limitation. Generally, a compound having one epoxy group at each end of the molecule and one to four phenyl groups can be preferably used.
【0031】本発明において、架橋成分としては、吸水
率が低く、硬化したときの架橋密度が高く良好な導電性
が得られるという理由のため、エポキシ当量が170〜
200g/当量のビスフェノールAジグリシジルエーテ
ル、エポキシ当量が156〜200g/当量のビスフェ
ノールFジグリシジルエーテル、またはこれらの混合物
を好適に用いることができる。In the present invention, as the crosslinking component, the epoxy equivalent is 170 to 170 for the reason that the water absorption is low, the crosslinking density when cured is high, and good conductivity is obtained.
200 g / equivalent of bisphenol A diglycidyl ether, epoxy equivalent of 156 to 200 g / equivalent bisphenol F diglycidyl ether, or a mixture thereof can be preferably used.
【0032】尚、上記のエポキシ当量は、分子中に含ま
れるエポキシ基の当量数で分子量を除した値である。The above-mentioned epoxy equivalent is a value obtained by dividing the molecular weight by the equivalent number of epoxy groups contained in the molecule.
【0033】本発明において、上記のモノグリシジル化
合物は、硬化性導電組成物の硬化体のクラックをなくす
るため、および、エポキシ樹脂中の架橋成分による架橋
密度を低下させることによる導電性の低下を防止するた
め、架橋成分100重量部に対して5〜60重量部の範
囲でなければならず、15〜50重量部の範囲であるこ
とが好ましい。In the present invention, the above-mentioned monoglycidyl compound eliminates cracks in the cured product of the curable conductive composition, and reduces the crosslink density due to the crosslink component in the epoxy resin, thus lowering the conductivity. In order to prevent this, the amount should be in the range of 5 to 60 parts by weight with respect to 100 parts by weight of the crosslinking component, and preferably in the range of 15 to 50 parts by weight.
【0034】本発明において、上記エポキシ樹脂の他の
成分として、反応性希釈剤を添加しても良い。かかる反
応性希釈剤は、室温において100cps以下の液状で
あり、エポキシ基を1〜2個有し、室温にて水90重量
部に対し反応性希釈剤10重量部を溶解したときの溶解
率として定義される水溶率が30%以下であり、炭素数
6〜16の化合物が好適に使用できる。In the present invention, a reactive diluent may be added as another component of the epoxy resin. Such a reactive diluent is a liquid of 100 cps or less at room temperature, has 1 to 2 epoxy groups, and has a dissolution rate when 10 parts by weight of the reactive diluent is dissolved in 90 parts by weight of water at room temperature. A defined water solubility is 30% or less, and a compound having 6 to 16 carbon atoms can be preferably used.
【0035】上記反応性希釈剤は、得られる硬化性導電
組成物の粘度を下げ、作業性を向上させるばかりではな
く、溶剤の使用量を低減することができ、硬化時の溶剤
の揮発を容易に行わしめることができるため、得られる
硬化体における空隙等の欠陥を減少させることができ
る。The above-mentioned reactive diluent not only lowers the viscosity of the curable conductive composition to be obtained and improves workability, but also can reduce the amount of solvent used and facilitates volatilization of the solvent during curing. Therefore, defects such as voids in the obtained cured product can be reduced.
【0036】本発明において好適に使用できる反応性希
釈剤を具体的に例示すると、例えば、炭素数6〜16の
アルキルモノグリシジルエーテル、炭素数6〜16のア
ルキルモノグリシジルエステル、1,6−ヘキサンジオ
ールジグリシジルエーテル、フェニルグリシジルエーテ
ル、p−t−ブチルフェニルグリシジルエーテル、アジ
ピン酸ジグリシジルエステル等を挙げることができる。Specific examples of the reactive diluent that can be preferably used in the present invention include, for example, alkyl monoglycidyl ether having 6 to 16 carbon atoms, alkyl monoglycidyl ester having 6 to 16 carbon atoms, and 1,6-hexane. Examples thereof include diol diglycidyl ether, phenyl glycidyl ether, p-t-butylphenyl glycidyl ether, and adipic acid diglycidyl ester.
【0037】これらの反応性希釈剤の中でも、特に炭素
数6〜16のアルキルモノグリシジルエーテル及び炭素
数6〜16のアルキルモノグリシジルエステルは、共に
長鎖のアルキル基を有するため、該反応性希釈剤を添加
してなる硬化性導電組成物を加熱硬化して得られる硬化
体のβ分散温度が−50℃以下となり、モノグリシジル
化合物を配合する効果と併せて、特に硬化体の冷熱衝撃
によるクラックの発生を防止するという効果を発揮する
ことができる。Among these reactive diluents, the alkyl monoglycidyl ether having 6 to 16 carbon atoms and the alkyl monoglycidyl ester having 6 to 16 carbon atoms each have a long-chain alkyl group, and therefore, the reactive diluent. Of the curable conductive composition obtained by adding the agent to the cured product has a β-dispersion temperature of −50 ° C. or lower, and in addition to the effect of incorporating the monoglycidyl compound, cracks caused by the thermal shock of the cured product. The effect of preventing the occurrence of can be exhibited.
【0038】上記の目的のために反応性希釈剤を使用す
る場合は、本発明の効果を著しく阻害しない範囲で添加
量を決定すればよい。具体的には、反応性希釈剤は、硬
化性導電組成物の粘度低減による作業性の改善、およ
び、適当量の架橋成分の存在による架橋密度の確保、即
ち、良好な導電性の確保を勘案すると、上記の架橋成分
100重量部に対し、10〜60重量部であることが好
ましく、特に20〜50重量部であることが好ましい。When the reactive diluent is used for the above purpose, the addition amount may be determined within a range that does not significantly impair the effects of the present invention. Specifically, the reactive diluent is considered in terms of improving workability by reducing the viscosity of the curable conductive composition, and ensuring the crosslink density by the presence of an appropriate amount of the crosslinking component, that is, ensuring good conductivity. Then, it is preferably 10 to 60 parts by weight, and particularly preferably 20 to 50 parts by weight with respect to 100 parts by weight of the above-mentioned crosslinking component.
【0039】本発明において、第2の成分の硬化剤は、
上記したエポキシ樹脂中のエポキシ基と反応する反応性
基を有し、エポキシ樹脂の硬化剤として公知のものが何
ら制限なく使用できる。エポキシ樹脂中のエポキシ基と
反応する反応性基としては、例えば、アミノ基、カルボ
ン酸無水物基、水酸基等を挙げることができる。本発明
で好適に使用できる硬化剤を例示すれば、例えば、メタ
フェニレンジアミン、ジアミノジフェニルメタン、ジア
ミノジフェニルスルホン等のアミン類、無水フタル酸、
無水コハク酸、無水トリメリット酸、無水ピロメリット
酸、テトラヒドロ無水フタル酸等の酸無水物、イミダゾ
ール類、ジシアンジアミド等の化合物系硬化剤、フェノ
ール樹脂、ポリアミド樹脂、尿素樹脂等の樹脂系硬化剤
が挙げられる。特に、ノボラック型フェノール樹脂また
はノボラック型クレゾール樹脂は、耐湿性、耐熱性に優
れ、また還元性を備えている点、ポットライフが長い
点、プリント配線板等に対して硬化温度が適切である
点、ボイドの原因となるような副生成物の量が極めて少
ない点等から、本発明の硬化剤として最も適している。In the present invention, the second component curing agent is
Any known epoxy resin curing agent having a reactive group that reacts with the epoxy group in the above-mentioned epoxy resin can be used without any limitation. Examples of the reactive group that reacts with the epoxy group in the epoxy resin include an amino group, a carboxylic acid anhydride group, and a hydroxyl group. Examples of curing agents that can be preferably used in the present invention include, for example, amines such as metaphenylenediamine, diaminodiphenylmethane, and diaminodiphenylsulfone, phthalic anhydride,
Acid anhydrides such as succinic anhydride, trimellitic anhydride, pyromellitic anhydride, tetrahydrophthalic anhydride, compound type curing agents such as imidazoles and dicyandiamide, resin type curing agents such as phenol resins, polyamide resins, urea resins, etc. Can be mentioned. In particular, novolac-type phenol resin or novolac-type cresol resin has excellent moisture resistance, heat resistance, and reducibility, long pot life, and appropriate curing temperature for printed wiring boards. It is most suitable as the curing agent of the present invention because the amount of by-products that cause voids is extremely small.
【0040】上記硬化剤の配合量は、使用する硬化剤の
種類に応じて多少の変動はあるが、良好な硬化体を得る
ためには一般にはエポキシ樹脂中のエポキシ基と反応す
る反応性基の当量で表示してエポキシ樹脂中のエポキシ
基1当量に対して0.3〜1.3当量でなければなら
ず、好ましくは0.4〜1.1当量の範囲である。The compounding amount of the above-mentioned curing agent may vary depending on the kind of the curing agent used, but in order to obtain a good cured product, it is generally a reactive group which reacts with the epoxy group in the epoxy resin. It should be 0.3 to 1.3 equivalents, preferably 0.4 to 1.1 equivalents, based on 1 equivalent of epoxy groups in the epoxy resin.
【0041】特に、硬化剤がノボラック型フェノール樹
脂またはノボラック型クレゾール樹脂のときは、水酸基
の当量で表示してエポキシ樹脂のエポキシ基1当量に対
して0.4〜1.3当量、好ましくは0.5〜0.8当
量とするのが良い。In particular, when the curing agent is a novolac type phenol resin or a novolac type cresol resin, it is represented by the equivalent amount of hydroxyl groups and is 0.4 to 1.3 equivalents, preferably 0 equivalent to 1 equivalent of epoxy groups of the epoxy resin. It is good to set it as 0.5-0.8 equivalent.
【0042】本発明において、銅粉は特に制限されない
が、形成される導通スルーホールの信頼性を考慮すると
純度が99.99%以上であることが好ましい。特に、
マイグレーション等のスルーホール間の絶縁信頼性を維
持するためには、不純物として、銀等のマイグレーショ
ンの起こしやすい金属の混入がないものが好ましい。In the present invention, the copper powder is not particularly limited, but it is preferable that the purity is 99.99% or more in consideration of the reliability of the conductive through hole to be formed. In particular,
In order to maintain insulation reliability between through holes due to migration or the like, it is preferable that impurities such as silver that do not easily cause migration are mixed as impurities.
【0043】また、銅粉の形状は樹枝状であることがエ
ポキシ樹脂との密着性が良好であり、且つ銅粉とバイン
ダー界面における剥離に伴うクラックの発生を防止する
ため、及び後記の特定の粒度分布への調整及び前記エポ
キシ樹脂との組み合わせによって、硬化時にクラックの
発生がなく、得られる硬化体が、長期にわたって安定な
導電性を発揮する硬化性導電組成物を得るために好まし
い。In addition, the shape of the copper powder is dendritic so that the adhesion with the epoxy resin is good, and in order to prevent the occurrence of cracks due to the peeling at the interface between the copper powder and the binder, and the specific description described later. By adjusting the particle size distribution and combining with the epoxy resin, a cured product obtained without cracks during curing is preferable in order to obtain a curable conductive composition that exhibits stable conductivity over a long period of time.
【0044】更に、本発明の硬化性導電組成物において
は、該硬化性導電組成物から銅粉の性状を実質的に変化
させることなく抽出された状態の銅粉が、平均粒径が2
〜20μm、好ましくは5〜15μmであり、タップ密
度が1.0〜3.3g/cm3 、好ましくは2.0〜
3.1g/cm3 であることが好ましい。Further, in the curable conductive composition of the present invention, the copper powder extracted from the curable conductive composition without substantially changing the properties of the copper powder has an average particle size of 2
.About.20 .mu.m, preferably 5 to 15 .mu.m, and a tap density of 1.0 to 3.3 g / cm.sup.3, preferably 2.0 to.
It is preferably 3.1 g / cm @ 3.
【0045】上記、硬化性導電組成物から抽出された銅
粉とは、硬化性導電組成物を構成する硬化性樹脂を、銅
粉の性状を変化させることなく分離した状態の銅粉をい
い、原料銅粉とは区別される。The above-mentioned copper powder extracted from the curable conductive composition means the copper powder in which the curable resin constituting the curable conductive composition is separated without changing the properties of the copper powder, It is distinguished from raw copper powder.
【0046】かかる硬化性導電組成物からの銅粉の抽出
は、一般には、硬化性導電組成物を構成する硬化性樹脂
成分を選択的に溶解可能な溶剤に溶解し、濾過して銅粉
を分離し、更に、該銅粉を溶剤で20時間ソックスレー
抽出を行う方法により行うことができる。Extraction of the copper powder from the curable conductive composition is generally carried out by dissolving the curable resin component constituting the curable conductive composition in a solvent which can be selectively dissolved and filtering the copper powder. The separation can be performed by a method in which the copper powder is subjected to Soxhlet extraction with a solvent for 20 hours.
【0047】従来、硬化性導電組成物中の銅粉の物性を
制御することは行われておらず、一般には、原料銅粉に
おいて、そのタップ密度、平均粒径が制御されているに
すぎない。しかし、実際に得られる硬化性導電組成物中
の銅粉の性状は、硬化性樹脂との混練によって変化し、
特に、分岐部分が多い樹枝状銅粉の場合、混練中に分岐
部分が破砕し、平均粒径やタップ密度は大きく変化す
る。従って、得られる硬化性導電組成物の性能は、原料
銅粉の性状を制御するだけでは、安定した性能を維持す
ることは困難であり、硬化性導電組成物中に含まれる銅
粉、即ち硬化性導電組成物より抽出した銅粉性状を制御
することが重要である。Conventionally, the physical properties of the copper powder in the curable conductive composition have not been controlled, and generally, in the raw copper powder, the tap density and the average particle size are only controlled. . However, the properties of the copper powder in the curable conductive composition actually obtained change by kneading with the curable resin,
In particular, in the case of dendritic copper powder having many branched portions, the branched portions are crushed during kneading, and the average particle diameter and tap density greatly change. Therefore, the performance of the curable conductive composition obtained is difficult to maintain stable performance only by controlling the properties of the raw material copper powder, and the copper powder contained in the curable conductive composition, that is, cured It is important to control the properties of the copper powder extracted from the conductive conductive composition.
【0048】上記のように硬化性導電組成物から抽出さ
れた銅粉のタップ密度が3.3g/cm3 を越える場合
は、樹枝状銅粉の分岐部がかなり破砕されており、銅粉
同士の接触点が少なくなるため、硬化後に良好な導電性
を得ることが困難となる傾向がある。When the tap density of the copper powder extracted from the curable conductive composition exceeds 3.3 g / cm3 as described above, the branched portions of the dendritic copper powder are considerably crushed and the copper powder particles are separated from each other. Since there are few contact points, it tends to be difficult to obtain good conductivity after curing.
【0049】また、上記のように樹枝状銅粉は混練によ
り粉砕されるため、該硬化性導電組成物から抽出された
銅粉のタップ密度は、原料銅粉に比べ高くなる。従っ
て、硬化性導電組成物から抽出された銅粉のタップ密度
は、後述する製造方法により混練を行っても、1.0g
/cm3 が下限である。Since the dendritic copper powder is pulverized by kneading as described above, the tap density of the copper powder extracted from the curable conductive composition becomes higher than that of the raw material copper powder. Therefore, the tap density of the copper powder extracted from the curable conductive composition is 1.0 g even if kneading is performed by the production method described later.
/ Cm3 is the lower limit.
【0050】また、硬化性導電組成物より抽出された銅
粉の平均粒径が20μmを越える場合は、硬化性導電組
成物の流動性が悪くなり、作業性が低下するばかりでな
く、比較的粒径の大きい銅粉の存在比率が大きくなるた
め、硬化性導電組成物を硬化させる際のクラックの発生
原因となりやすい。特に、硬化性導電組成物をプリント
配線板のスルーホール用貫通孔に充填・硬化して導通ス
ルーホールを得る場合には、クラックの発生等により導
電性が低下する可能性が高くなる傾向がある。また、硬
化性導電組成物より抽出された銅粉の平均粒径が2μm
より小さいものは、表面積が過大となり耐酸化性が低下
する傾向がある。When the average particle size of the copper powder extracted from the curable conductive composition exceeds 20 μm, the flowability of the curable conductive composition deteriorates and the workability deteriorates, and the workability is relatively low. Since the abundance ratio of the copper powder having a large particle size becomes large, it tends to cause a crack when the curable conductive composition is cured. In particular, when a curable conductive composition is filled in and cured in a through hole for a through hole of a printed wiring board to obtain a conductive through hole, there is a high possibility that the conductivity is lowered due to the occurrence of cracks or the like. . The average particle size of the copper powder extracted from the curable conductive composition is 2 μm.
If smaller, the surface area becomes too large and the oxidation resistance tends to decrease.
【0051】更に、上記原料銅粉は、平均粒径が5〜2
0μmであることが好ましい。また、かかる原料銅粉
は、40μmを越える粒径の銅粉の割合が0.05容量
%以下で、且つ対数分布関数で定義される標準偏差lo
gσが0.20〜0.26であることが好ましい。Further, the raw material copper powder has an average particle size of 5 to 2
It is preferably 0 μm. In addition, in such a raw material copper powder, the ratio of the copper powder having a particle size of more than 40 μm is 0.05% by volume or less, and the standard deviation lo defined by the logarithmic distribution function is lo.
It is preferable that gσ is 0.20 to 0.26.
【0052】即ち、本発明者らは、硬化時の硬化性導電
組成物のクラックの発生原因について種々検討した結
果、銅粉中に比較的粒径の大きな銅粉が存在する場合、
該銅粉と樹脂との界面において優先的にクラックが発生
することを見いだした。That is, as a result of various investigations by the present inventors on the cause of cracking of the curable conductive composition at the time of curing, when copper powder having a relatively large particle size is present in the copper powder,
It was found that cracks preferentially occur at the interface between the copper powder and the resin.
【0053】そして、該銅粉の大粒径の粒子を、対数分
布関数で定義される標準偏差logσが0.20〜0.
26となるように制限し、且つ40μmを越える粒径の
銅粉を減少させることにより、上記のモノグリシジル化
合物の作用との相乗効果により、硬化性導電組成物の硬
化時及び熱衝撃時のクラックの発生を効果的に防止し得
ることができる。The copper powder having a large particle size has a standard deviation log σ defined by a logarithmic distribution function of 0.20 to 0.
By limiting the amount to be 26 and reducing the copper powder having a particle size of more than 40 μm, a synergistic effect with the action of the above-mentioned monoglycidyl compound is exerted, whereby the curable conductive composition is cracked at the time of curing and at the time of thermal shock. Can be effectively prevented.
【0054】尚、上記銅粉の平均粒径及び対数分布関数
で定義される標準偏差logσ、及び40μmを越える
粒径の銅粉の割合は、レーザー散乱法により測定したも
のである。即ち、レーザー散乱法によって測定された銅
粉の粒度分布の測定データを基に、平均粒径及び対数分
布関数で定義される標準偏差logσ、及び40μmを
越える粒径の銅粉の割合を算出した。尚、本発明におけ
る銅粉の平均粒径は、体積平均粒子径を示す。The average particle diameter of the copper powder and the standard deviation logσ defined by the logarithmic distribution function, and the proportion of the copper powder having a particle diameter exceeding 40 μm are measured by a laser scattering method. That is, based on the measurement data of the particle size distribution of the copper powder measured by the laser scattering method, the standard deviation logσ defined by the average particle size and the logarithmic distribution function, and the ratio of the copper powder having a particle size exceeding 40 μm were calculated. . In addition, the average particle diameter of the copper powder in the present invention indicates a volume average particle diameter.
【0055】本発明に使用される前記特定の平均粒径、
粒度分布を有する樹枝状銅粉の製造方法は、特に制限さ
れるものではない。例えば、レーキ分級器、スパイラル
分級器、液体サイクロン等の温式分級法、ふるい、回転
体型分級器、円心分級器、エア・セパレーター等の乾式
分級法による方法が好適である。The particular average particle size used in the present invention,
The method for producing the dendritic copper powder having a particle size distribution is not particularly limited. For example, a temperature classifying method such as a rake classifier, a spiral classifier, a hydrocyclone, or a dry classifying method such as a sieve, a rotary type classifier, a circular center classifier, or an air separator is preferable.
【0056】本発明において、安定した導電性と、良好
な取り扱い性を兼ね備えた硬化性導電組成物を得るため
には、銅粉は、エポキシ樹脂と硬化剤との合計量100
重量部に対して、180〜750重量部でなければなら
ず、200〜570重量部の割合で用いることが好まし
い。In the present invention, in order to obtain a curable conductive composition having both stable conductivity and good handleability, the copper powder is 100 parts by weight of the total amount of the epoxy resin and the curing agent.
It should be 180 to 750 parts by weight, preferably 200 to 570 parts by weight, relative to parts by weight.
【0057】本発明の硬化性導電組成物の製造におい
て、上記原料銅粉を硬化性樹脂に均一に分散させるため
の混練は、樹枝状銅粉の2次凝集をほぐす程度の弱い分
散力で混練することが好ましい。In the production of the curable conductive composition of the present invention, the kneading for uniformly dispersing the above-mentioned raw material copper powder in the curable resin is carried out with a weak dispersive force enough to loosen the secondary aggregation of the dendritic copper powder. Preferably.
【0058】上記混練するための装置としては、例え
ば、ロールミル、バンバリーミキサー、エクストルーダ
ー等のロール型混練機、ボールミル、サンドグラインダ
ー等のボール型混練機、ミックスマラー、マルチミル等
のホイール型混練機、ニーダー、スクリューミキサー、
ジグザクミキサー、スパイラルミキサー、プラネタリー
ミキサー、ポニーミキサー等のブレード型混練機、らい
かい機、コロイドミル等が挙げられる。そのうち、ロー
ル型混練機、ボール型混練機、或いはホイール型混練機
等の混練力の強い装置を用いて混練を行う場合は、銅粉
が破砕されやすく、得られる硬化体の導電性が低下する
ことがある。従って、このような混練力の強い装置、例
えば3本ロールミルを用いた場合には、ロール回転数を
小さくし、ロール間のギャップをある程度設け、ロール
通過回数を少なくする等の条件を設定することが好まし
い。Examples of the kneading apparatus include roll type kneaders such as roll mills, Banbury mixers and extruders, ball type kneaders such as ball mills and sand grinders, wheel type kneaders such as mix muller and multi mills. Kneader, screw mixer,
Examples thereof include a blade type kneader such as a zigzag mixer, a spiral mixer, a planetary mixer, a pony mixer, a raider machine, and a colloid mill. Among them, when kneading is performed using a device having a strong kneading force such as a roll-type kneading machine, a ball-type kneading machine, or a wheel-type kneading machine, the copper powder is easily crushed, and the conductivity of the obtained cured product decreases. Sometimes. Therefore, when such a device with a strong kneading force, for example, a three-roll mill is used, the conditions such as reducing the number of roll rotations, providing a gap between the rolls to some extent, and reducing the number of roll passages should be set. Is preferred.
【0059】従って、上記硬化性導電組成物の混練に
は、比較的混練力の弱いブレード型混練機を用いて混練
することが好ましい。その中でも、プラネタリーミキサ
ーを用いるのが特に好ましい。Therefore, it is preferable to knead the curable conductive composition using a blade type kneader having a relatively weak kneading force. Among them, it is particularly preferable to use the planetary mixer.
【0060】本発明の硬化性導電組成物には、必要に応
じて、上記硬化剤に加え、硬化促進剤を添加しても良
い。例えば、酸無水物、ジシアンジアミド、フェノール
樹脂、芳香族アミン等に対し、第3級アミン類やイミダ
ゾール類が好適に使用できる。かかる硬化促進剤の添加
量は、エポキシ樹脂及び硬化剤の合計量100重量部に
対し、0.1〜5重量部が適当である。In addition to the above curing agent, a curing accelerator may be added to the curable conductive composition of the present invention, if necessary. For example, tertiary amines and imidazoles can be preferably used for acid anhydrides, dicyandiamide, phenolic resins, aromatic amines and the like. An appropriate amount of the curing accelerator added is 0.1 to 5 parts by weight based on 100 parts by weight of the total amount of the epoxy resin and the curing agent.
【0061】本発明の硬化性導電組成物は、特に溶剤を
必要としないが、その用途に応じて、適宜、溶剤を添加
して粘度の調節を行って使用しても良い。上記溶剤とし
ては、公知のものが特に制限なく使用できる。例えば、
イソプロパノール、ブタノール等のアルコール類、酢酸
エチル、酢酸ブチル等のエステル類、エチルカルビトー
ル、ブチルカルビトール等のカルビトール類等が挙げら
れる。上記溶剤は、単独、或いは2種以上を混合して使
用しても良い。The curable conductive composition of the present invention does not require a solvent in particular, but it may be used by adjusting the viscosity by adding a solvent depending on the application. As the solvent, known solvents can be used without particular limitation. For example,
Examples thereof include alcohols such as isopropanol and butanol, esters such as ethyl acetate and butyl acetate, and carbitols such as ethyl carbitol and butyl carbitol. You may use the said solvent individually or in mixture of 2 or more types.
【0062】本発明の硬化性導電組成物には、その特性
を著しく低下させない範囲で、公知の添加剤を配合して
も良い。かかる添加剤としては、例えば、消泡剤、分散
剤、チキソトロピー化剤、レベリング剤、防錆剤、還元
剤等が挙げられる。Known additives may be added to the curable conductive composition of the present invention within a range that does not significantly deteriorate the characteristics. Examples of such additives include a defoaming agent, a dispersant, a thixotropic agent, a leveling agent, a rust preventive, and a reducing agent.
【0063】本発明の硬化性導電組成物は、スプレー、
ブラシ塗り、ディッピング、オフセット印刷、スクリー
ン印刷等の、公知の方法で塗装、印刷或いは充填するこ
とができる。The curable conductive composition of the present invention is sprayed,
Coating, printing or filling can be performed by a known method such as brush coating, dipping, offset printing, screen printing.
【0064】[0064]
【発明の効果】以上の説明から理解されるように、本発
明の硬化性導電組成物は、硬化性導電組成物を構成する
エポキシ樹脂として、特定のモノグリシジル化合物を含
有するエポキシ樹脂を使用することにより、硬化時にお
けるクラックの発生防止及び得られる硬化体の熱衝撃に
よるクラックの発生防止に優れた効果を発揮する。ま
た、長期にわたって高度な導電性を発揮するという特徴
をも有する。As can be understood from the above description, the curable conductive composition of the present invention uses an epoxy resin containing a specific monoglycidyl compound as the epoxy resin constituting the curable conductive composition. By doing so, it is possible to exert an excellent effect of preventing the occurrence of cracks during curing and preventing the occurrence of cracks due to the thermal shock of the obtained cured product. It also has the characteristic of exhibiting a high degree of conductivity over a long period of time.
【0065】従って、本発明の硬化性導電組成物は、上
記特性を利用して、例えばスルーホール目詰め等のよう
な比較的厚い硬化体を形成する用途において好適に使用
され、高い信頼性を得ることができる。Therefore, the curable conductive composition of the present invention is suitably used in the application of forming a relatively thick cured body such as through-hole filling by utilizing the above characteristics, and has high reliability. Obtainable.
【0066】[0066]
【実施例】以下、本発明を具体的に説明するために実施
例を示すが、本発明はこれらの実施例に限定されるもの
ではない。EXAMPLES Examples will be shown below for specifically explaining the present invention, but the present invention is not limited to these examples.
【0067】実施例1〜4 モノグリシジル化合物として、下記式で示されるカルダ
ノールモノグリシジルエーテル(カシュー(株)社製、
商品名エピカード)Examples 1 to 4 As a monoglycidyl compound, cardanol monoglycidyl ether represented by the following formula (manufactured by Cashew Co., Ltd.,
Product name Epicard)
【0068】[0068]
【化2】 Embedded image
【0069】を用い表1に示す組成比で配合した硬化性
導電組成物を調製した。即ち、エポキシ樹脂はモノグリ
シジル化合物と、架橋成分としてエポキシ当量173g
/当量のビスフェノールAジグリシジルエーテルと、反
応性希釈剤としてn−ウンデシルモノグリシジルエーテ
ルとよりなり、それぞれ表1に示した配合比で調製し
た。また、該エポキシ樹脂に硬化剤としてヒドロキシ当
量105g/当量のノボラック型フェノール樹脂をビス
フェノールAジグリシジルエーテル100重量部に対し
て46重量部配合して硬化性樹脂成分とした。また、上
記硬化性樹脂成分100重量部に対して1重量部の2−
エチル−4−メチルイミダゾールを硬化促進剤として添
加した。更に、表2に示した樹枝状銅粉を、予め1.0
wt.%のイソプロピルトリステアロイルチタネートで
表面処理し、その中からAの樹枝状銅粉を表1に示した
配合比で配合した。A curable conductive composition was prepared by using the above composition in the composition ratio shown in Table 1. That is, the epoxy resin is a monoglycidyl compound and an epoxy equivalent of 173 g as a crosslinking component.
/ Equivalent amount of bisphenol A diglycidyl ether and n-undecyl monoglycidyl ether as a reactive diluent were prepared at the compounding ratios shown in Table 1. Further, 46 parts by weight of a novolak type phenol resin having a hydroxy equivalent of 105 g / equivalent was blended with 100 parts by weight of bisphenol A diglycidyl ether as a curing agent in the epoxy resin to prepare a curable resin component. In addition, 1 part by weight of 2-
Ethyl-4-methylimidazole was added as a curing accelerator. Furthermore, the dendritic copper powder shown in Table 2 was previously added to 1.0
wt. % Of isopropyl tristearoyl titanate, and the dendritic copper powder of A was mixed in the compounding ratio shown in Table 1.
【0070】上記組成比でプラネタリーミキサーを用い
て40℃、120分の条件で混練を行い硬化性導電組成
物を得た。A kneading conductive composition was obtained by kneading the above composition ratio using a planetary mixer at 40 ° C. for 120 minutes.
【0071】尚、表2における抽出銅粉の平均粒径およ
びタップ密度は、各実施例における硬化性導電組成物の
一部をメチルエチルケトンに溶解し、濾過した後、ソッ
クスレー抽出により銅粉を洗浄し、得られた抽出銅粉に
ついて各実施例毎に測定し、銅粉毎にその数値範囲を明
記した。The average particle size and tap density of the extracted copper powder in Table 2 are as follows. A part of the curable conductive composition in each example was dissolved in methyl ethyl ketone and filtered, and then the copper powder was washed by Soxhlet extraction. The obtained extracted copper powder was measured for each example, and the numerical range was specified for each copper powder.
【0072】得られた硬化性導電組成物の評価は以下の
方法で行った。即ち、図1及び図2に示す試験パターン
を形成した厚み1.6mmの紙−フェノール基材に、直
径0.8mmのスルーホールを穿孔し、得られた硬化性
導電組成物を該スルーホール内に、スクリーン印刷法を
用いて充填した。充填された硬化性導電組成物は熱風乾
燥炉で、50℃で1時間乾燥した後、180℃で60分
間の条件で硬化した。The curable conductive composition thus obtained was evaluated by the following methods. That is, a 1.6 mm-thick paper-phenol substrate on which the test pattern shown in FIGS. 1 and 2 was formed was provided with a through hole having a diameter of 0.8 mm, and the resulting curable conductive composition was placed in the through hole. Was filled using a screen printing method. The filled curable conductive composition was dried in a hot air drying oven at 50 ° C. for 1 hour and then cured at 180 ° C. for 60 minutes.
【0073】硬化後、各導通スルーホールの抵抗値をデ
ジタルマルチメーターで測定し、スルーホール抵抗値の
平均値を算出した。1穴当たりのスルーホールの抵抗値
が200mΩを越えるものについては、硬化後の不良率
の計算における不良数としてカウントした。また、スル
ーホール抵抗値は、不良スルーホールを除いた平均値で
表した。After curing, the resistance value of each conductive through hole was measured with a digital multimeter, and the average value of the through hole resistance values was calculated. Those in which the resistance value of the through hole per hole exceeds 200 mΩ was counted as the number of defects in the calculation of the defect rate after curing. Further, the through hole resistance value is represented by an average value excluding defective through holes.
【0074】また、各実施例及び比較例で得られたスル
ーホールをそれぞれ1,000穴について断面を観察し
た。断面観察は倍率40倍の実体顕微鏡で行い、クラッ
クの発生率を算出した。The cross-sections of the through holes obtained in each of the Examples and Comparative Examples were observed for 1,000 holes. The cross-section was observed with a stereoscopic microscope at a magnification of 40, and the crack generation rate was calculated.
【0075】更に、各実施例及び比較例において、それ
ぞれ10,000穴のスルーホールについて冷熱衝撃試
験を実施した。冷熱試験条件は−40℃30分〜100
℃30分(気相)の繰り返しを100サイクル行った。
冷熱衝撃試験後、スルーホール抵抗値が30%以上上昇
したスルーホールを不良として、不良率を算出した。Further, in each of the examples and comparative examples, a thermal shock test was conducted on 10,000 through holes. Cooling test condition is -40 ° C 30 minutes to 100
The cycle of 30 minutes at 30 ° C. (gas phase) was repeated 100 times.
After the thermal shock test, the through hole having a through hole resistance value increased by 30% or more was regarded as a defect, and the defect rate was calculated.
【0076】これらの結果を表1にまとめて示した。The results are summarized in Table 1.
【0077】実施例5 モノグリシジル化合物として、実施例1と同じカルダノ
ールモノグリシジルエーテルを用い、これを、エポキシ
当量173g/当量のビスフェノールAジグリシジルエ
ーテル100重量部に対して35重量部と、硬化剤とし
てヒドロキシ当量105g/当量のノボラック型フェノ
ール樹脂をビスフェノールAジグリシジルエーテル10
0重量部に対して46重量部配合して硬化性樹脂成分を
得た。上記硬化性樹脂成分に、実施例1〜4と同一の硬
化促進剤及び銅粉を配合し、更に粘度調整用にデュポン
社のエステル系溶剤のDBE(商品名)を適量添加して
硬化性導電組成物とし、実施例1〜4と同様の評価を行
った。但し、溶剤を揮発させる目的で、スルーホール内
に充填された硬化性導電組成物の硬化条件を、80℃で
2時間乾燥した後、1℃/分の昇温速度で180℃まで
昇温し、180℃で60分保持する条件に変更して硬化
を行った。一連の評価結果を表1に併せて示した。Example 5 As the monoglycidyl compound, the same cardanol monoglycidyl ether as in Example 1 was used, and this was cured to 35 parts by weight with respect to 100 parts by weight of bisphenol A diglycidyl ether having an epoxy equivalent of 173 g / equivalent. As the agent, a hydroxy equivalent of 105 g / equivalent novolak type phenol resin was added to bisphenol A diglycidyl ether 10
46 parts by weight of 0 part by weight was compounded to obtain a curable resin component. To the above curable resin component, the same curing accelerator and copper powder as in Examples 1 to 4 were blended, and an appropriate amount of DBE (trade name) of an ester solvent of DuPont was added for viscosity adjustment. The composition was evaluated as in Examples 1 to 4. However, for the purpose of volatilizing the solvent, the curing condition of the curable conductive composition filled in the through hole was dried at 80 ° C. for 2 hours, and then heated to 180 ° C. at a heating rate of 1 ° C./min. The curing was carried out by changing the conditions of holding at 180 ° C. for 60 minutes. A series of evaluation results are also shown in Table 1.
【0078】比較例1〜2 配合するモノグリシジル化合物の量だけを変えて他の組
成比は実施例1〜4と同様にして、硬化性導電組成物の
調製を行い、得られた硬化性導電組成物の評価を行っ
た。結果を表1に併せて示した。Comparative Examples 1-2 A curable conductive composition was prepared in the same manner as in Examples 1-4 except that the amount of the monoglycidyl compound to be blended was changed and the other composition ratios were the same. The composition was evaluated. The results are also shown in Table 1.
【0079】実施例6〜10 モノグリシジル化合物として、イソトリデシルフェニル
モノグリシジルエーテル(実施例6、分子式Examples 6 to 10 As the monoglycidyl compound, isotridecylphenyl monoglycidyl ether (Example 6, molecular formula
【0080】[0080]
【化3】 Embedded image
【0081】)、ギンゴールモノグリシジルエーテル
(=3−(8′ペンタデセニル)フェニルモノグリシジ
ルエーテル、実施例7、分子式), Gingol monoglycidyl ether (= 3- (8 'pentadecenyl) phenyl monoglycidyl ether, Example 7, molecular formula
【0082】[0082]
【化4】 [Chemical 4]
【0083】)、ノニルフェニルモノグリシジルエステ
ル(実施例8、分子式), Nonylphenyl monoglycidyl ester (Example 8, molecular formula
【0084】[0084]
【化5】 Embedded image
【0085】)、ペンタデカフェニルモノグリシジルエ
ーテル(実施例9、分子式), Pentadecaphenyl monoglycidyl ether (Example 9, molecular formula
【0086】[0086]
【化6】 [Chemical 6]
【0087】)、3−(8′,11′,14′−ペンタ
デカトリエニル)フェニルモノグリシジルエーテル(実
施例10、分子式), 3- (8 ', 11', 14'-Pentadecatrienyl) phenyl monoglycidyl ether (Example 10, molecular formula
【0088】[0088]
【化7】 [Chemical 7]
【0089】)を用いた他は、全て実施例3と同様にし
て硬化性導電組成物を調製し、一連の評価を行った。結
果を表1にまとめて示した。A curable conductive composition was prepared in the same manner as in Example 3 except that (1) was used, and a series of evaluations were performed. The results are summarized in Table 1.
【0090】実施例11〜13 反応性希釈剤として、n−トリデシルモノグリシジルエ
ーテル(実施例11、分子式Examples 11 to 13 As a reactive diluent, n-tridecyl monoglycidyl ether (Example 11, molecular formula
【0091】[0091]
【化8】 Embedded image
【0092】)、n−ノニルモノグリシジルエーテル
(実施例12、分子式), N-nonyl monoglycidyl ether (Example 12, molecular formula
【0093】[0093]
【化9】 [Chemical 9]
【0094】)、n−ウンデシルモノグリシジルエステ
ル(実施例13、分子式), N-undecyl monoglycidyl ester (Example 13, molecular formula
【0095】[0095]
【化10】 [Chemical 10]
【0096】)を用いた他は、全て実施例3と同様にし
て硬化性導電組成物を調製し、一連の評価を行った。結
果を表1にまとめて示した。A curable conductive composition was prepared in the same manner as in Example 3 except that (1) was used, and a series of evaluations were performed. The results are summarized in Table 1.
【0097】実施例14、15、比較例3 表2のBに示した樹枝状銅粉を用い、表1に示した配合
比で銅粉を配合した他は、全て実施例3と同様にして硬
化性導電組成物を調製し、一連の評価を行った。結果を
表1にまとめて示した。Examples 14 and 15, Comparative Example 3 The same procedure as in Example 3 was carried out except that the dendritic copper powder shown in B of Table 2 was used and the copper powder was mixed in the mixing ratio shown in Table 1. A curable conductive composition was prepared and a series of evaluations were performed. The results are summarized in Table 1.
【0098】実施例16、17、比較例4 表2のCに示した樹枝状銅粉を用い、表1に示した配合
比で銅粉を配合した他は、全て実施例3と同様にして硬
化性導電組成物を調製し、一連の評価を行った。結果を
表1にまとめて示した。Examples 16 and 17, Comparative Example 4 The same procedure as in Example 3 was carried out except that the dendritic copper powder shown in Table 2C was used and the copper powder was mixed in the mixing ratio shown in Table 1. A curable conductive composition was prepared and a series of evaluations were performed. The results are summarized in Table 1.
【0099】[0099]
【表1】 [Table 1]
【0100】[0100]
【表2】 [Table 2]
【図1】図1は、充填評価用基板の平面図である。FIG. 1 is a plan view of a filling evaluation substrate.
【図2】図2は、図1の充填評価用基板の断面図であ
る。FIG. 2 is a cross-sectional view of the filling evaluation substrate of FIG.
1 貫通孔 2 銅箔 3 基板 1 Through hole 2 Copper foil 3 Substrate
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H05K 1/09 7511−4E H05K 1/09 A 1/11 6921−4E 1/11 N ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H05K 1/09 7511-4E H05K 1/09 A 1/11 6921-4E 1/11 N
Claims (1)
基、1個以上の芳香族炭化水素基、および、炭素数が6
〜20の脂肪族炭化水素基とを有する炭素数が18〜3
0のモノグリシジル化合物、および、(b)分子内に2
個以上のエポキシ基と1個以上の芳香族炭化水素基とを
有する架橋成分とを含み、モノグリシジル化合物の配合
量が架橋成分100重量部に対して5〜60重量部であ
るエポキシ樹脂 (2)上記エポキシ樹脂中のエポキシ基と反応する反応
性基を有する硬化剤および (3)銅粉を含み、上記硬化剤は、エポキシ樹脂中のエ
ポキシ基と反応する反応性基の当量で表示して、エポキ
シ樹脂のエポキシ基1当量に対して0.3〜1.3当量
となるように配合され、銅粉は、上記エポキシ樹脂と硬
化剤の合計量100重量部に対して180〜750重量
部の範囲で配合されてなる硬化性導電組成物。(1) (a) One epoxy group, one or more aromatic hydrocarbon groups, and 6 carbon atoms in the molecule.
18 to 3 carbon atoms having an aliphatic hydrocarbon group of 20
0 monoglycidyl compound, and (b) 2 in the molecule
Epoxy resin containing a cross-linking component having one or more epoxy groups and one or more aromatic hydrocarbon groups, and the compounding amount of the monoglycidyl compound is 5 to 60 parts by weight with respect to 100 parts by weight of the cross-linking component. ) A curing agent having a reactive group that reacts with an epoxy group in the epoxy resin and (3) copper powder, wherein the curing agent is represented by the equivalent amount of the reactive group that reacts with the epoxy group in the epoxy resin. The amount of the copper powder is 180 to 750 parts by weight based on 100 parts by weight of the total amount of the epoxy resin and the curing agent. A curable conductive composition that is blended within the range.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3948596A JPH08311157A (en) | 1995-03-15 | 1996-02-27 | Curable conductive composition |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5630395 | 1995-03-15 | ||
JP7-56303 | 1995-03-15 | ||
JP3948596A JPH08311157A (en) | 1995-03-15 | 1996-02-27 | Curable conductive composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08311157A true JPH08311157A (en) | 1996-11-26 |
Family
ID=26378892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3948596A Pending JPH08311157A (en) | 1995-03-15 | 1996-02-27 | Curable conductive composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08311157A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11140280A (en) * | 1997-11-11 | 1999-05-25 | Ngk Spark Plug Co Ltd | Paste for filling through hole and printed circuit board using the same |
JPH11181250A (en) * | 1997-12-22 | 1999-07-06 | Ngk Spark Plug Co Ltd | Paste for filling through hole and printed wiring board using the same |
JPH11199759A (en) * | 1997-11-11 | 1999-07-27 | Ngk Spark Plug Co Ltd | Hole-filling material for printed circuit board and printed circuit board prepared by using same |
US6193910B1 (en) | 1997-11-11 | 2001-02-27 | Ngk Spark Plug Co., Ltd. | Paste for through-hole filling and printed wiring board using the same |
JP2003133672A (en) * | 2001-10-25 | 2003-05-09 | Sanei Kagaku Kk | Hole-filling material, printed wiring board with filled holes and method of manufacturing the same |
US6706975B2 (en) | 2000-07-13 | 2004-03-16 | Ngk Spark Plug Co., Ltd. | Paste for filling throughhole and printed wiring board using same |
JP2009540046A (en) * | 2006-12-27 | 2009-11-19 | ディピアイ ホールディングズ カンパニー リミテッド | Epoxy resin, epoxy resin composition containing the same, coating composition, and method for forming coating film using the same |
JP2016222836A (en) * | 2015-06-02 | 2016-12-28 | ソマール株式会社 | Epoxy resin composition for thermistor sensor and thermistor sensor |
JP2017226774A (en) * | 2016-06-23 | 2017-12-28 | Dic株式会社 | Curable composition and fiber reinforced composite material |
JP2017226773A (en) * | 2016-06-23 | 2017-12-28 | Dic株式会社 | Curable composition and fiber reinforced composite material |
-
1996
- 1996-02-27 JP JP3948596A patent/JPH08311157A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11140280A (en) * | 1997-11-11 | 1999-05-25 | Ngk Spark Plug Co Ltd | Paste for filling through hole and printed circuit board using the same |
JPH11199759A (en) * | 1997-11-11 | 1999-07-27 | Ngk Spark Plug Co Ltd | Hole-filling material for printed circuit board and printed circuit board prepared by using same |
US6193910B1 (en) | 1997-11-11 | 2001-02-27 | Ngk Spark Plug Co., Ltd. | Paste for through-hole filling and printed wiring board using the same |
JPH11181250A (en) * | 1997-12-22 | 1999-07-06 | Ngk Spark Plug Co Ltd | Paste for filling through hole and printed wiring board using the same |
US6706975B2 (en) | 2000-07-13 | 2004-03-16 | Ngk Spark Plug Co., Ltd. | Paste for filling throughhole and printed wiring board using same |
JP2003133672A (en) * | 2001-10-25 | 2003-05-09 | Sanei Kagaku Kk | Hole-filling material, printed wiring board with filled holes and method of manufacturing the same |
JP2009540046A (en) * | 2006-12-27 | 2009-11-19 | ディピアイ ホールディングズ カンパニー リミテッド | Epoxy resin, epoxy resin composition containing the same, coating composition, and method for forming coating film using the same |
JP2016222836A (en) * | 2015-06-02 | 2016-12-28 | ソマール株式会社 | Epoxy resin composition for thermistor sensor and thermistor sensor |
JP2017226774A (en) * | 2016-06-23 | 2017-12-28 | Dic株式会社 | Curable composition and fiber reinforced composite material |
JP2017226773A (en) * | 2016-06-23 | 2017-12-28 | Dic株式会社 | Curable composition and fiber reinforced composite material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100832628B1 (en) | Conductive paste | |
JP4235887B2 (en) | Conductive paste | |
US5683627A (en) | Curable electroconductive composition | |
JPH08311157A (en) | Curable conductive composition | |
JP4235888B2 (en) | Conductive paste | |
JP6542077B2 (en) | Method of producing conductive paste and conductive paste | |
CN1105161C (en) | Heat-conductive paste | |
JP2558013B2 (en) | Conductive copper paste composition and method for producing the same | |
JP2742190B2 (en) | Curable conductive composition | |
JPH11134939A (en) | Curable conductive composition | |
JP2019206614A (en) | Metallic paste and electrode paste for forming edge surface | |
JP2004047418A (en) | Conductive paste | |
JP7085857B2 (en) | Resin composition, protective film for chip resistors, and chip resistors | |
JP3061309B2 (en) | Curable conductive composition | |
JPH05171008A (en) | Epoxy resin composition | |
JP2017076591A (en) | Metallic paste | |
JP2004319281A (en) | Conductive cooper paste composition | |
JP3568742B2 (en) | Resin paste for semiconductor | |
JP2004335358A (en) | Conductive copper paste composite | |
JP2001214041A (en) | Insulating paste | |
KR20150027721A (en) | Conductive paste and substrate with conductive film | |
DE102018117507A1 (en) | Powder coatings and compositions thereof, and methods of coating an article | |
JP4224772B2 (en) | Conductive paste | |
JP2004047423A (en) | Conductive paste | |
JPH0741706A (en) | Conductive paste |