JPH08308570A - Production of organism carrier for immobilizing fine particle of magnetic material - Google Patents
Production of organism carrier for immobilizing fine particle of magnetic materialInfo
- Publication number
- JPH08308570A JPH08308570A JP7149360A JP14936095A JPH08308570A JP H08308570 A JPH08308570 A JP H08308570A JP 7149360 A JP7149360 A JP 7149360A JP 14936095 A JP14936095 A JP 14936095A JP H08308570 A JPH08308570 A JP H08308570A
- Authority
- JP
- Japan
- Prior art keywords
- carrier
- fine particle
- biocatalyst
- biochemistry
- chemistry
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010419 fine particle Substances 0.000 title claims abstract description 15
- 230000003100 immobilizing effect Effects 0.000 title abstract description 5
- 239000000696 magnetic material Substances 0.000 title abstract 2
- 238000004519 manufacturing process Methods 0.000 title description 2
- 239000002907 paramagnetic material Substances 0.000 claims abstract description 10
- 239000000919 ceramic Substances 0.000 claims abstract description 6
- 239000002245 particle Substances 0.000 claims abstract 2
- 238000001354 calcination Methods 0.000 claims 1
- 102000004190 Enzymes Human genes 0.000 abstract description 15
- 108090000790 Enzymes Proteins 0.000 abstract description 15
- 239000011942 biocatalyst Substances 0.000 abstract description 12
- 230000004071 biological effect Effects 0.000 abstract description 5
- 244000005700 microbiome Species 0.000 abstract description 5
- 230000005291 magnetic effect Effects 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 3
- 238000000855 fermentation Methods 0.000 abstract description 3
- 230000004151 fermentation Effects 0.000 abstract description 3
- 241000894006 Bacteria Species 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 abstract description 2
- 238000000465 moulding Methods 0.000 abstract description 2
- 230000035755 proliferation Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 12
- 239000000126 substance Substances 0.000 description 6
- 238000001179 sorption measurement Methods 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 3
- 230000000813 microbial effect Effects 0.000 description 3
- 230000005298 paramagnetic effect Effects 0.000 description 3
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 101100460719 Mus musculus Noto gene Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 101100187345 Xenopus laevis noto gene Proteins 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 229940088623 biologically active substance Drugs 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000006247 magnetic powder Substances 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
- Biological Treatment Of Waste Water (AREA)
Abstract
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は生物学的な利用に適した
固定化生体触媒に微粒子常磁性体を含有させることで、
比較的安価で機械的強度も強く生物学的活性を有してい
る、生体触媒に優れた生体固定化用担体の製法に関する
ものである。
【0002】
【従来の技術】現在、生体触媒の固定化法としては、生
体触媒を不溶性の担体に結合させて固定化する担体結合
法と、試薬によって酵素タンパク質中の官能基や菌体の
細胞壁や細胞膜を架橋に形成して固定化する架橋法、生
体触媒をタンパク質やセルロースなどの天然高分子や合
成高分子のゲルの中に包括する包括法があるが、担体結
合法の物理的吸着法では担体と生体触媒との結合が弱
く、生物学的活性が低い。
【0003】
【発明が解決しようとする課題】担体結合法には共有結
合法、イオン結合法、物理的吸着法があり、担体結合法
の物理結合法では担体と生体触媒との結合が弱く脱離す
ることが多く、これが生物学的活性が低くなる原因であ
る。これらの解決のため、担体原料多孔質セラミックス
に微粒子常磁性体を含有する、生体担体を使用すること
で、生物学的活性物質を担持することが出来、高い生物
学的活性が得られ、各種の固定化生体触媒に利用出来
る。
【0004】
【課題を解決するための手段】本発明は種々の成分の混
合体である細胞が磁場による効果があることが、種々発
表されて居り、例えば(Candida albica
ns)など5種類の微生物に50〜900Gを与えたと
ころ、0〜200Gまでは微生物の増殖が増加し、特に
200Gでは30%ほどの増加した、しかし200G以
上では逆に増殖が抑制されたと発表さている。また、微
生物タンパクの固定化のため磁性粉末の使用等が発表さ
れ、このように磁性体が微生物増殖抑制に効果があるこ
とが判明した。本発明は、このような効果のある磁性体
(微粒子常磁性体)を多孔質セラミックスに含有させこ
とで、含有する微粒子常磁性体に微生物の吸引吸着を行
わせることで、生物触媒の結合が優れ、固定化も安定し
微生物も増殖することを発見した。本発明の微粒子常磁
性体固定化用生体担体は多孔質セラミックスに微粒子常
磁性体を含有させ適性な形状に成型後、これを焼成し固
定化用生体担体とする。
【0005】
【発明の効果】本発明により製作した微粒子常磁性体固
定化用生体担体は細菌、酵素等を利用した、発酵、食
品、化学工業、環境浄化等の分野において、生体触媒の
固定化(吸着性)が優れていることで色々と応用利用さ
れ、新な技術が開発できる。
【0006】
【実施例1】本発明による
【表1】
の原料配合で製作した微粒子常磁性体固定化用生体担体
と
【表2】の原料配合で製作した多孔質セラミックス固定化用生物
担体、先願(特願平5−245662号)を用いて吸着
性を比較する。酵母、(Candida arbore
a)を培養し、菌体を採取し、吸着を比較した、その結
果は
【表3】
【表4】のと通り。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides an immobilized biocatalyst suitable for biological use containing a fine particle paramagnetic substance.
The present invention relates to a method for producing a bioimmobilization carrier which is relatively inexpensive, has high mechanical strength, and has biological activity and which is excellent in biocatalyst. [0002] Currently, as a method for immobilizing a biocatalyst, a carrier binding method in which a biocatalyst is bound to an insoluble carrier to immobilize it, and a functional group in an enzyme protein or a cell wall of a microbial cell by a reagent are used. There are cross-linking method that forms and immobilizes cell membranes and cross-links, and entrapment method that encloses biocatalyst in gel of natural polymer or synthetic polymer such as protein and cellulose, but physical adsorption method of carrier binding method. Has a weak bond between the carrier and the biocatalyst and has low biological activity. There are covalent bonding method, ionic bonding method, and physical adsorption method in the carrier binding method. In the physical binding method of the carrier binding method, the binding between the carrier and the biocatalyst is weak and desorption is difficult. They are often separated, which is the cause of the poor biological activity. To solve these problems, by using a biological carrier containing a fine particle paramagnetic material in a porous ceramic material as a carrier material, a biologically active substance can be supported and high biological activity can be obtained. Can be used for immobilized biocatalysts. In the present invention, various disclosures have been made that cells, which are a mixture of various components, have an effect by a magnetic field, for example (Candida albica).
50-900G was given to 5 kinds of microorganisms such as ns), and the growth of the microorganisms increased from 0 to 200G, especially about 30% at 200G, but conversely the growth was suppressed above 200G. I'm standing. In addition, the use of magnetic powder for immobilization of microbial proteins was announced, and it was revealed that magnetic substances are effective in inhibiting microbial growth. According to the present invention, by incorporating a magnetic substance (fine particle paramagnetic substance) having such an effect into the porous ceramics to cause the fine particle paramagnetic substance contained therein to adsorb and adsorb microorganisms, the binding of the biocatalyst can be achieved. It was found that it was excellent, the immobilization was stable, and the microorganisms also grew. The biological carrier for immobilization of fine particle paramagnetic material of the present invention is obtained by including fine particle paramagnetic material in porous ceramics and molding it into an appropriate shape, and then firing this to obtain a biological carrier for immobilization. INDUSTRIAL APPLICABILITY The biological carrier for immobilizing fine particle paramagnetic material produced according to the present invention uses a bacterium, an enzyme or the like, and immobilizes a biocatalyst in the fields of fermentation, food, chemical industry, environmental purification, etc. Due to its excellent (adsorption), it can be used in various applications and new technologies can be developed. Example 1 According to the present invention A biocarrier for immobilization of fine particle paramagnetic material produced by blending raw materials of [Table 2] Using the biological carrier for immobilizing porous ceramics produced by blending the above raw materials, the prior application (Japanese Patent Application No. 5-245662), the adsorptivity is compared. Yeast, (Candida arbore
a) was cultivated, the bacterial cells were collected, and adsorption was compared. The results are shown in [Table 3]. [Table 4] Noto street.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小高 邦彦 福岡県福岡市東区香椎浜1丁目8番2− 502号有限会社農産技研内 (72)発明者 坂口 庭見 佐賀県杵島郡山内町大字鳥海18−811 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Kunihiko Odaka 1-2-8 Kashiihama, Higashi-ku, Fukuoka-shi, Fukuoka No. 502 Limited Company Agricultural Technology Institute (72) Inventor Sakaguchi Nami 18-81, Chokai, Yamauchi-cho, Kishima-gun, Saga Prefecture
Claims (1)
含有させた生体固定化用担体。 【請求項2】 【請求項1】の微粒子常磁性体の粒子直径は0.01〜
100μmとする。 【請求項3】 【請求項2】の微粒子常磁性体の含有量は重量比で10
〜90%とする。 【請求項4】 【請求項1】の生体固定化用担体の焼成温度は1100
〜1300℃とする。Claim: What is claimed is: 1. A bioimmobilization carrier comprising a fine particle paramagnetic material in porous ceramics. 2. The particle diameter of the fine particle paramagnetic material according to claim 1, which is from 0.01 to
It is 100 μm. 3. The content of the fine particle paramagnetic material according to claim 2 in a weight ratio of 10.
~ 90%. 4. The calcination temperature of the bioimmobilization carrier according to claim 1 is 1100.
~ 1300 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7149360A JPH08308570A (en) | 1995-05-12 | 1995-05-12 | Production of organism carrier for immobilizing fine particle of magnetic material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7149360A JPH08308570A (en) | 1995-05-12 | 1995-05-12 | Production of organism carrier for immobilizing fine particle of magnetic material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08308570A true JPH08308570A (en) | 1996-11-26 |
Family
ID=15473437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7149360A Pending JPH08308570A (en) | 1995-05-12 | 1995-05-12 | Production of organism carrier for immobilizing fine particle of magnetic material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08308570A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100490169B1 (en) * | 2003-02-13 | 2005-05-16 | 서희동 | Manufacturing method of catalyst carriers for aeration pond of activated sludge process |
CN104843870A (en) * | 2015-04-24 | 2015-08-19 | 浙江省环境保护科学设计研究院 | Magnetic carrier immobilized microorganism live bacteria preparation and preparation method and application thereof |
WO2020064430A1 (en) | 2018-09-24 | 2020-04-02 | RTI Rauschendorf Tittel Ingenieure GmbH | Grinding media, device and method for producing said grinding media and use thereof |
CN112010431A (en) * | 2020-08-22 | 2020-12-01 | 山东尚科环境工程有限公司 | Embedding method immobilized microorganism particle fluidized bed sewage treatment method |
-
1995
- 1995-05-12 JP JP7149360A patent/JPH08308570A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100490169B1 (en) * | 2003-02-13 | 2005-05-16 | 서희동 | Manufacturing method of catalyst carriers for aeration pond of activated sludge process |
CN104843870A (en) * | 2015-04-24 | 2015-08-19 | 浙江省环境保护科学设计研究院 | Magnetic carrier immobilized microorganism live bacteria preparation and preparation method and application thereof |
WO2020064430A1 (en) | 2018-09-24 | 2020-04-02 | RTI Rauschendorf Tittel Ingenieure GmbH | Grinding media, device and method for producing said grinding media and use thereof |
CN112010431A (en) * | 2020-08-22 | 2020-12-01 | 山东尚科环境工程有限公司 | Embedding method immobilized microorganism particle fluidized bed sewage treatment method |
CN112010431B (en) * | 2020-08-22 | 2023-01-31 | 山东尚科环境工程有限公司 | Embedding method immobilized microorganism particle fluidized bed sewage treatment method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bayramoğlu et al. | Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor | |
Abdelmajeed et al. | Immobilization technology for enhancing bio-products industry | |
Fletcher et al. | Selection of attachment mutants during the continuous culture of Pseudomonas fluorescens and relationship between attachment ability and surface composition | |
JPH0710640A (en) | Production of functional ceramics | |
JP2023078223A (en) | fine particles | |
Piccolomini et al. | Glutathione transferase in bacteria: subunit composition and antigenic characterization | |
A Chaudhari et al. | Immobilization of proteins in alginate: functional properties and applications | |
Ozdemir et al. | Utilization in alginate beads for Cu (II) and Ni (II) adsorption of an exopolysaccharide produced by Chryseomonas luteola TEM05 | |
Hussain et al. | Urease-Based Biocatalytic Platforms―A Modern View of a Classic Enzyme with Applied Perspectives | |
Solheim et al. | Characterization of the substances causing deformation of root hairs of Trifolium repens when inoculated with Rhizobium trifolii | |
JP2008289424A (en) | Method for producing microbial carrier | |
JPH08308570A (en) | Production of organism carrier for immobilizing fine particle of magnetic material | |
Mishra et al. | Silica based bio-hybrid materials and their relevance to bionanotechnology | |
CN113307359B (en) | A kind of composite carrier material for biological fluidized bed and preparation method thereof | |
Jirku et al. | [30] Cell immobilization by covalent linkage | |
CN105572396B (en) | Express recombinant protein G bacterial magnetic particles and its application | |
Mishra et al. | Byssus Thread: a novel support material for urease immobilization | |
JPS6331538A (en) | Immobilizing carrier | |
CN103013976A (en) | Method for preparing organic-inorganic composite hydrogel membrane and grafting material containing immobilized biological macromolecules | |
Kamitakahara et al. | Adhesion behavior of microorganisms isolated from soil on hydroxyapatite and other materials | |
KR101913841B1 (en) | Matrix of rice husk silica for immobilizing enzyme and uses thereof | |
US5658790A (en) | Cell culture media formulated in unit dose | |
CN108841815A (en) | A kind of preparation method of the fixed material of microorganism | |
Al-Hakawati et al. | Copper removal by polymer immobilised Rhizopus oryzae | |
Bradley et al. | Phage F0 lac: an F0 lac plasmid-dependent bacteriophage |