[go: up one dir, main page]

JPH08308191A - Method for manufacturing rotor in claw-type rotating electric machine - Google Patents

Method for manufacturing rotor in claw-type rotating electric machine

Info

Publication number
JPH08308191A
JPH08308191A JP7129404A JP12940495A JPH08308191A JP H08308191 A JPH08308191 A JP H08308191A JP 7129404 A JP7129404 A JP 7129404A JP 12940495 A JP12940495 A JP 12940495A JP H08308191 A JPH08308191 A JP H08308191A
Authority
JP
Japan
Prior art keywords
capsule
bodies
claw
gas
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7129404A
Other languages
Japanese (ja)
Inventor
Kiyoshi Tsuchiya
清 土屋
Hisashi Ishida
久 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuba Corp
Original Assignee
Mitsuba Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuba Electric Manufacturing Co Ltd filed Critical Mitsuba Electric Manufacturing Co Ltd
Priority to JP7129404A priority Critical patent/JPH08308191A/en
Publication of JPH08308191A publication Critical patent/JPH08308191A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/021Magnetic cores
    • H02K15/022Magnetic cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/16Synchronous generators
    • H02K19/22Synchronous generators having windings each turn of which co-operates alternately with poles of opposite polarity, e.g. heteropolar generators
    • H02K19/24Synchronous generators having windings each turn of which co-operates alternately with poles of opposite polarity, e.g. heteropolar generators with variable-reluctance soft-iron rotors without winding
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Synchronous Machinery (AREA)

Abstract

PURPOSE: To improve the workability of a cutting process by joining a capsule including cylindrical gas discharging bodies protruded from both bottom face sections of the capsule in a solid phase after evacuating the capsule to a vacuum state by discharging e gas from the capsule through the gas discharging bodies and cutting the gas discharging bodies. CONSTITUTION: In a first process, both bottom face sections of a cylindrical body 14 constituting a capsule are covered with lid bodies 15 from which thin hollow cylindrical gas discharging bodies 15a are respectively protruded after parent bodies 11a and 12a which become a pair of pawl type magnetic poles 11 and 12 are put in the cylindrical body 14 while a parent body 13a which becomes a nonmagnetic metallic body 13 is held between the parent bodies 11a and 12a. Then the capsule is evacuated to a vacuum state by discharging a gas from the capsule through the gas discharging bodies 15a and the front end sections of the bodies 15a are sealed. In a second process, the contacting faces of the parent bodies 11a, 12a, and 13a are joined to each other in a solid phase by mutual diffusion in the capsule. In a third process, the gas discharging bodies 15a are partially cut so that their remaining parts can become thin shaft sections 2a which are printed by the bearings 3 of a rotor 2 and necessary cutting work is also performed on the parent bodies 11a, 12a, and 13a also.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、爪型回転電機における
回転子の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a rotor in a claw type rotating electric machine.

【0002】[0002]

【従来技術及び発明が解決しようとする課題】今日、二
極の爪型磁極を有した回転子を超高速回転させる回転電
機の開発が行われており、その場合の回転子を製造する
方法として、特公昭56−4091号公報、特開昭62
−233045号公報の如きものが知られている。
2. Description of the Related Art Today, a rotating electric machine for rotating a rotor having a two-pole claw-shaped magnetic pole at an extremely high speed is being developed. As a method for manufacturing the rotor in that case, JP-B-56-4091, JP-A-62-62
No. 2,330,45 is known.

【0003】前者のものは、一対の爪型磁極の極間を非
磁性体金属にて肉盛り溶接して製造する方法である。し
かるにこの方法では、非磁性体金属を肉盛り溶接する際
に、磁極が溶けてしまうため、その境界面が整った平面
状態にならず、凹凸面状態になってしまい、この結果、
磁束分布が不規則になって電機的特性が低下するうえ、
振動が発生しやすい等の問題が有る。
The former is a method of manufacturing by overlay welding between a pair of claw-shaped magnetic poles with a non-magnetic metal. However, in this method, when the non-magnetic metal is welded by overlay welding, the magnetic poles are melted, so that the boundary surface does not become a flat state, but becomes an uneven surface state.
The magnetic flux distribution becomes irregular and the electrical characteristics deteriorate.
There is a problem that vibration is likely to occur.

【0004】これに対し、後者のものは、円筒状のカプ
セル内に、非磁性金属体を挟む状態で磁極を真空状態で
封入し、これを不活性ガス雰囲気下で加熱加圧して固相
接合するものであるため、前者のような問題はないが、
このものは、固相接合した後、カプセルを除去し、前記
固相接合した磁極および非磁性金属体を所要形状に切削
加工して爪型磁極を成形することになるが、この場合
に、爪型磁極の両端部を小径に切削加工してケーシング
側に軸支される細径シャフト部とするときの切削代が大
きく作業性が損なわれると共に、カプセルおよび発生す
る切削屑もそのまま無駄になるいう問題がある。
On the other hand, in the latter, the magnetic poles are sealed in a vacuum in a cylindrical capsule with a non-magnetic metal body sandwiched, and this is heated and pressed in an inert gas atmosphere to perform solid phase bonding. Since there is no problem like the former,
In this case, after solid-phase joining, the capsule is removed, and the solid-phase joined magnetic pole and non-magnetic metal body are cut into a required shape to form a claw-shaped magnetic pole. It is said that when both ends of the die pole are machined to a small diameter to form a small-diameter shaft portion that is axially supported on the casing side, the cutting allowance is large and the workability is impaired, and the capsule and the generated cutting waste are also wasted. There's a problem.

【0005】[0005]

【課題を解決するための手段】本発明は、上記の如き実
情に鑑みこれらの欠点を一掃することができる爪型回転
電機における回転子の製造方法を提供することを目的と
して創案されたものであつて、円筒状のカプセル内に、
非磁性金属体を挟むようにして一対の磁極を真空状態に
て封入する第一の工程と、これを不活性ガス雰囲気下で
加熱加圧して固相接合する第二の工程と、固相接合され
たものに必要な切削加工を施す第三の工程を有して爪型
磁極を製造するにあたり、前記第一の工程では、カプセ
ルの両底面部から突設された筒状のガス排出体からカプ
セル内のガスを排出して真空状態にした後、ガス排出体
を封止する工程を有し、第二の工程では、前記封止され
たガス排出体を含めて固相接合するものとし、第三の工
程では、ガス排出体を切削して爪型磁極の軸受に支持さ
れる細径シャフト部に加工する工程を有していることを
特徴とするものである。
SUMMARY OF THE INVENTION The present invention was conceived with the object of providing a method for manufacturing a rotor in a claw-type rotary electric machine that can eliminate these drawbacks in view of the above-mentioned circumstances. Attention, in a cylindrical capsule,
A first step of encapsulating a pair of magnetic poles in a vacuum state with a non-magnetic metal body sandwiched between them, a second step of heating and pressurizing this in an inert gas atmosphere for solid phase bonding, and a solid phase bonding In manufacturing the claw-shaped magnetic pole having the third step of subjecting the object to the necessary cutting process, in the first step, the inside of the capsule is removed from the cylindrical gas discharge body protruding from both bottom surfaces of the capsule. After the gas is discharged to make a vacuum state and then the gas discharger is sealed, in the second step, solid phase bonding is performed including the sealed gas discharger. The step (1) is characterized by including a step of cutting the gas discharge body to form a small-diameter shaft portion supported by the bearing of the claw-shaped magnetic pole.

【0006】そして本発明は、この構成によつて、爪型
磁極の製造の簡略化と共に、素材の無駄を可及的に低減
できるようにしたものである。
According to the present invention, with this structure, the manufacture of the claw-shaped magnetic pole can be simplified and the waste of the material can be reduced as much as possible.

【0007】[0007]

【実施例】次に、本発明の一実施例を図面に基づいて説
明する。図面において、1は爪型回転電機(発電機)の
ケーシングであって、該ケーシング1は透磁性素材から
成形されて磁路を構成するが、ケーシング1の両底面部
には、後述する本発明方法により製造された回転子(ロ
ータ)2の細径シャフト部2aが軸受3を介して回動自
在に軸支されている。また、4はケーシング1の内周面
に非透磁性素材から成形された支持部材5、6によって
軸心方向両端部が支持されたステータであって、該ステ
ータ4の内周面側には、先端が回転子2の外周面に僅か
な隙間を存して対向する複数のティース4aが突設さ
れ、これら隣設ティース4a間に形成されるスロット4
bにはステータコイル7が巻装されている。また、8は
ケーシング両底面部内面に一体的に設けられた円筒状の
磁路部材であって、該磁路部材8の内周面は回転子2の
外周面に近接対向し、外周面には回転子2を励磁するた
めの励磁用コイル9が巻装されている。また、ケーシン
グ1から突出する回転子2の一方の細径シャフト部2a
は図示しない駆動源に連動連結され、該駆動源からの動
力入力によって高速回転する設定になっている。尚、図
中、16は冷却液注入口、17は冷却液排出口、18は
ステータ4と回転子2とのあいだのギャップ間に配され
る仕切り板、また支持部材5、6には、冷却液を流すた
めの流路5a、6aが形成されている。
Next, an embodiment of the present invention will be described with reference to the drawings. In the drawings, reference numeral 1 is a casing of a claw-type rotating electric machine (generator), and the casing 1 is formed of a magnetically permeable material to form a magnetic path. A small-diameter shaft portion 2a of a rotor (rotor) 2 manufactured by the method is rotatably supported by a bearing 3. Reference numeral 4 denotes a stator having axially opposite ends supported by support members 5 and 6 formed from a non-magnetic material on the inner peripheral surface of the casing 1. A plurality of teeth 4a whose tips are opposed to each other on the outer peripheral surface of the rotor 2 with a slight gap are provided in a protruding manner, and slots 4 formed between these adjacent teeth 4a.
A stator coil 7 is wound around b. Reference numeral 8 denotes a cylindrical magnetic path member integrally provided on the inner surfaces of both bottom surface portions of the casing. The inner peripheral surface of the magnetic path member 8 closely opposes the outer peripheral surface of the rotor 2, and the outer peripheral surface An excitation coil 9 for exciting the rotor 2 is wound. In addition, one small diameter shaft portion 2a of the rotor 2 protruding from the casing 1
Is linked to a drive source (not shown), and is set to rotate at high speed by power input from the drive source. In the figure, 16 is a coolant inlet, 17 is a coolant outlet, 18 is a partition plate arranged in the gap between the stator 4 and the rotor 2, and the support members 5 and 6 are provided with cooling liquid. Flow paths 5a and 6a for flowing the liquid are formed.

【0008】回転子2は、互いに対向する爪型をした一
対の磁極11、12と両磁極11、12間に挟まれた非
磁性金属体13とによって形成されている。そしてこの
ものでは、励磁用コイル9の励磁により、一方の磁極1
1をN極に、他方の磁極12をS極に励磁した状態で回
転子を回転させると、図1に矢印で示すような磁路が形
成され、これに基づくステータコイル7の電磁誘導によ
り発電されるものであること等は何れも従来通りであ
る。尚、20はステータコイル7のコイル端部が接続さ
れるターミナル端子であって、該ターミナル端子20
は、中間部にシール材21aが介装された内外一対の絶
縁材21を介してケーシング1に内外貫通状に取付けら
れている。
The rotor 2 is formed of a pair of claw-shaped magnetic poles 11 and 12 facing each other and a non-magnetic metal body 13 sandwiched between the magnetic poles 11 and 12. In this structure, one of the magnetic poles 1 is excited by exciting the exciting coil 9.
When the rotor is rotated in a state in which 1 is an N pole and the other magnetic pole 12 is an S pole, a magnetic path as shown by an arrow in FIG. 1 is formed, and electromagnetic induction of the stator coil 7 based on the magnetic path generates electricity. All of the above are the same as conventional ones. Reference numeral 20 denotes a terminal terminal to which the coil end portion of the stator coil 7 is connected.
Is attached to the casing 1 in a penetrating manner inside and outside through a pair of inner and outer insulating materials 21 having a sealing material 21a in the middle.

【0009】扨、次ぎに、回転子2の製造方法について
説明する。先ず第一の工程であるが、前記一対の爪型磁
極11、12になる各母体11a、12aのあいだに非
磁性金属体13になる母体13aを挟む状態で、これら
をカプセルを構成する筒状部材14に入れた後、この筒
状部材14の両底面部を、小径中空筒状のガス排出体1
5aが突設された蓋体15で蓋をする。因みに、蓋体1
5の筒状部材14への固定は、ティグ溶接等の適宜溶接
手段を採用できる。このようにした後、カプセル内の空
気を、ガス排出体15aから排出してカプセル内を真空
状態にし、しかる後、ガス排出体15aの先端部を封止
する。
Next, a method of manufacturing the rotor 2 will be described. First, in the first step, a cylindrical body that forms a capsule with a mother body 13a that is a non-magnetic metal body 13 is sandwiched between the mother bodies 11a and 12a that form the pair of claw-shaped magnetic poles 11 and 12, respectively. After being placed in the member 14, the bottom surface portions of the tubular member 14 are attached to the small-diameter hollow tubular gas discharge body 1
The lid 15 is provided with a protruding projection 5a. By the way, the lid 1
For fixing 5 to the tubular member 14, appropriate welding means such as TIG welding can be adopted. After doing so, the air in the capsule is discharged from the gas discharger 15a to make the inside of the capsule a vacuum state, and thereafter, the tip of the gas discharger 15a is sealed.

【0010】次ぎに、第二の工程であるが、前記封止さ
れたガス排出体15aが設けられたままのものを、不活
性ガス、例えばアルゴンガスで満たされた加熱炉に入
れ、温度を1100℃、圧力を1200kg/cm2
上昇させ、この状態を数時間維持することにより、カプ
セル内の母体11a、12a、13aは、接触面同志が
相互拡散により固相接合するが、さらにカプセルを構成
する筒状部材14、蓋体15も対向する母体と固相接合
し、また、ガス排出体15aについては、拡散によりガ
ス排出路が塞がった中実状になる。しかる後、降温して
アルゴンガスを回収すると共に、カプセルを取り出す。
Next, in the second step, the one in which the sealed gas discharge body 15a is still provided is put into a heating furnace filled with an inert gas such as argon gas, and the temperature is raised. By raising the pressure to 1100 ° C. and the pressure to 1200 kg / cm 2 and maintaining this state for several hours, the mother bodies 11a, 12a, and 13a in the capsule are solid-phase bonded by their mutual contact surfaces by mutual diffusion. The constituting cylindrical member 14 and lid 15 are also solid-phase bonded to the opposing mother body, and the gas discharge body 15a is in a solid state in which the gas discharge passage is closed by diffusion. Then, the temperature is lowered to collect argon gas and the capsule is taken out.

【0011】最後に第三の工程であるが、前記取り出し
たカプセルを切削加工することになるが、この場合に、
ガス排出体15a相当部分を、回転子2の軸受3に軸支
される細径シャフト部2aとなるよう切削すると共に、
各母体11a、12a、13a部分についても必要な切
削加工を施し、これによって回転子2が製造される。
Finally, in the third step, the capsules taken out are cut and processed. In this case,
The portion corresponding to the gas discharge body 15a is cut so as to become the small-diameter shaft portion 2a axially supported by the bearing 3 of the rotor 2, and
The necessary cutting processing is performed also on the respective mother portions 11a, 12a, 13a, and the rotor 2 is manufactured by this.

【0012】叙述のごとく構成された本発明の実施例に
おいて、回転子2を固相接合方式を採用して製造するに
あたり、回転子2が軸受3によって軸支される細径シャ
フト部2aは、カプセル内を真空にするため蓋体15に
設けた小径のガス排出体15aをそのまま利用して形成
されるから、従来の磁極母体11a、12aを切削して
形成するもののように大きな切削代になってしまうこと
がない。この結果、細径シャフト部2aの切削工程の作
業性が向上するうえ、切削屑の大量発生も回避できる。
In the embodiment of the present invention constructed as described above, when the rotor 2 is manufactured by using the solid phase joining method, the small-diameter shaft portion 2a on which the rotor 2 is axially supported by the bearing 3 is Since it is formed by using the small-diameter gas discharge body 15a provided in the lid body 15 as it is to make the inside of the capsule a vacuum, it has a large cutting allowance like the one formed by cutting the conventional magnetic pole bodies 11a and 12a. There is no end. As a result, the workability of the cutting process of the small-diameter shaft portion 2a is improved, and a large amount of cutting chips can be avoided.

【0013】また、このものにおいて、ガス排出体15
aを非磁性金属体を用いて作成した場合に、細径シャフ
ト部2aは非磁性体となって、ここが磁路となることが
回避される。この結果、細径シャフト部2a、軸受3を
経由する磁路の形成がなくなって、軸受3、シール材等
の部材の品質保護と共に、該部位に、例えば前記実施例
のように回転子2の回転位置検知センサ19等のセンサ
類を設けたような場合に、これらセンサ類の磁気からの
保護が計れることになる。
Further, in this one, the gas discharge body 15
When a is made of a non-magnetic metal body, the small-diameter shaft portion 2a becomes a non-magnetic body, and it is avoided that this becomes a magnetic path. As a result, the formation of the magnetic path passing through the small-diameter shaft portion 2a and the bearing 3 is eliminated, and the quality of members such as the bearing 3 and the sealing material is protected, and at that portion, for example, as in the above-described embodiment, the rotor 2 is provided. When sensors such as the rotational position detection sensor 19 are provided, these sensors can be protected from magnetism.

【0014】尚、本発明は上記実施例に限定されること
は勿論なく、回転子の細径シャフト部の径を太いものに
形成する場合、カプセルの蓋体に形成されるガス排出体
に、磁性金属または非磁性金属で形成された棒体の一端
を挿入して、該棒体の挿入端部を母体に当接させた状態
にして前記第二行程を実施することで、母体と棒体とカ
プセルとが相互に固相接合することになって、太径のシ
ャフト部に形成することができる。
The present invention is not limited to the above embodiment, but when the diameter of the small-diameter shaft portion of the rotor is formed to be large, the gas discharge body formed on the lid of the capsule is By inserting one end of a rod body made of a magnetic metal or a non-magnetic metal and bringing the insertion end of the rod body into contact with the base body and performing the second step, the base body and the rod body And the capsule are solid-phase-bonded to each other, so that they can be formed on the shaft portion having a large diameter.

【0015】[0015]

【作用効果】以上要するに、本発明は叙述の如く構成さ
れたものであるから、軸受によって軸支される回転子の
細径シャフト部は、回転子を固相接合方式によって形成
する際に、カプセル内を真空にするため設けられる小径
のガス排出体が固相接合されることで形成されるので、
磁極部位を切削する従来のように切削代が大きくなって
しまうことがなくなって、細径シャフト部の切削工程を
作業性の良いものにできるうえ、切削屑も少なくでき
て、コスト的にも改善が計れる。
In summary, since the present invention is constructed as described above, the small-diameter shaft portion of the rotor which is rotatably supported by the bearing is a capsule when the rotor is formed by the solid phase joining method. Since a small-diameter gas exhaust body provided to create a vacuum inside is formed by solid-phase bonding,
Unlike the conventional method of cutting the magnetic pole part, the cutting allowance does not become large, making it possible to perform the work process of the small diameter shaft part with good workability and reduce the cutting waste, which also improves the cost. Can be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】爪型回転電機の一部断面側面図である。FIG. 1 is a partial cross-sectional side view of a claw-type rotating electric machine.

【図2】爪型回転電機の断面正面図である。FIG. 2 is a sectional front view of a claw-type rotating electric machine.

【図3】回転子の製造行程を示す説明図である。FIG. 3 is an explanatory view showing a manufacturing process of a rotor.

【符号の説明】[Explanation of symbols]

1 ケーシング 2 回転子 2a 細径シャフト部 3 軸受 4 ステータ 7 ステータコイル 11 磁極 11a 母体 12 磁極 13 非磁性金属体 14 筒状部材 15 蓋体 15a ガス排出体 16 冷却液注入口 17 冷却液排出口 DESCRIPTION OF SYMBOLS 1 Casing 2 Rotor 2a Small shaft part 3 Bearing 4 Stator 7 Stator coil 11 Magnetic pole 11a Base 12 Magnetic pole 13 Non-magnetic metal body 14 Cylindrical member 15 Lid 15a Gas discharge body 16 Coolant inlet 17 Coolant outlet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 円筒状のカプセル内に、非磁性金属体を
挟むようにして一対の磁極を真空状態にて封入する第一
の工程と、これを不活性ガス雰囲気下で加熱加圧して固
相接合する第二の工程と、固相接合されたものに必要な
切削加工を施す第三の工程を有して爪型磁極を製造する
にあたり、前記第一の工程では、カプセルの両底面部か
ら突設された筒状のガス排出体からカプセル内のガスを
排出して真空状態にした後、ガス排出体を封止する工程
を有し、第二の工程では、前記封止されたガス排出体を
含めて固相接合するものとし、第三の工程では、ガス排
出体を切削して爪型磁極の軸受に支持される細径シャフ
ト部に加工する工程を有していることを特徴とする爪型
回転電機における回転子の製造方法。
1. A first step of enclosing a pair of magnetic poles in a vacuum state in a cylindrical capsule so as to sandwich a non-magnetic metal body, and solid-state bonding by heating and pressing this in an inert gas atmosphere. In manufacturing the claw-shaped magnetic pole by including the second step of performing the solid cutting and the third step of performing the necessary cutting process on the solid-phase bonded product, in the first step, the protrusions are formed from both bottom surface portions of the capsule. There is a step of discharging the gas in the capsule from the installed cylindrical gas discharge body to make it in a vacuum state, and then sealing the gas discharge body. In the second step, the sealed gas discharge body is included. Solid phase joining is included, and the third step is characterized by including a step of cutting the gas discharge body to form a thin shaft portion supported by the bearing of the claw-shaped magnetic pole. A method for manufacturing a rotor in a claw-type rotating electric machine.
【請求項2】 請求項1において、カプセルは、非磁性
金属体で形成されていることを特徴とする爪型回転電機
における回転子の製造方法。
2. The method for manufacturing a rotor in a claw-type rotating electric machine according to claim 1, wherein the capsule is made of a non-magnetic metal body.
JP7129404A 1995-04-28 1995-04-28 Method for manufacturing rotor in claw-type rotating electric machine Pending JPH08308191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7129404A JPH08308191A (en) 1995-04-28 1995-04-28 Method for manufacturing rotor in claw-type rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7129404A JPH08308191A (en) 1995-04-28 1995-04-28 Method for manufacturing rotor in claw-type rotating electric machine

Publications (1)

Publication Number Publication Date
JPH08308191A true JPH08308191A (en) 1996-11-22

Family

ID=15008722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7129404A Pending JPH08308191A (en) 1995-04-28 1995-04-28 Method for manufacturing rotor in claw-type rotating electric machine

Country Status (1)

Country Link
JP (1) JPH08308191A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999017423A3 (en) * 1997-09-30 1999-05-20 Bosch Gmbh Robert Electric machine, especially a three-phase generator
JP2014005831A (en) * 2012-06-22 2014-01-16 Eskaef Manutic Mechatronic Turbocharger embedding electrical machine with dc coil
JP2014005832A (en) * 2012-06-22 2014-01-16 Eskaef Manutic Mechatronic Turbocharger embedding electrical machine with permanent magnets
EP3322071A1 (en) * 2015-02-18 2018-05-16 Nidec Motor Corporation Electric motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999017423A3 (en) * 1997-09-30 1999-05-20 Bosch Gmbh Robert Electric machine, especially a three-phase generator
JP2014005831A (en) * 2012-06-22 2014-01-16 Eskaef Manutic Mechatronic Turbocharger embedding electrical machine with dc coil
JP2014005832A (en) * 2012-06-22 2014-01-16 Eskaef Manutic Mechatronic Turbocharger embedding electrical machine with permanent magnets
EP3322071A1 (en) * 2015-02-18 2018-05-16 Nidec Motor Corporation Electric motor

Similar Documents

Publication Publication Date Title
CN100442637C (en) Rotor for axial gap motor and manufacturing method thereof
US8683673B2 (en) Method for manufacturing stators for rotary electric machines
US6552462B2 (en) Reluctance type rotating machine with permanent magnets
CN101088209B (en) Axial gap type motor
FR2490423A1 (en) ROTOR ELECTRIC MACHINE WITH PERMANENT MAGNETS WITH LAMINATED POLES
EP1450464A1 (en) AXIAL GAP TYPE DYNAMO−ELECTRIC MACHINE
JP2875497B2 (en) Motor stator
WO2003047070A1 (en) Axial gap type dynamo-electric machine
JP2011516017A (en) Integrated rotor pole piece
JPH09149572A (en) Permanent magnet type rotating electric machine
JP2009517989A (en) Rotor hub and assembly of permanent magnet powered electric machine
JPH08308191A (en) Method for manufacturing rotor in claw-type rotating electric machine
WO1996042132A1 (en) High speed synchronous reluctance motor-generator
JP5249897B2 (en) Iron core manufacturing method
JP3921185B2 (en) Electric machine
JPH04251553A (en) Ac generator
JP2004254433A (en) Manufacturing method of cage rotor
JP2001211615A (en) Rotor manufacturing method for squirrel-cage induction motor for high-speed rotation
JP5365991B2 (en) Method for manufacturing rotor, method for manufacturing axial gap type rotating electrical machine, rotor for axial gap type rotating electrical machine, and axial gap type rotating electrical machine
JP4262540B2 (en) Rotor for rotating electrical machine and method for manufacturing the same
JP2009232594A (en) Rotor for rotating electric machine and manufacturing method of rotating electric machine and rotor for rotating electric machine
JP2004266919A (en) Permanent magnet type rotating electric machine and method of manufacturing the same
JPH09117082A (en) Laminated rotor and manufacturing method thereof
JP2006166631A (en) Rotor structure for axial gap type dynamo-electric machine
JPH01248939A (en) Radial magnetic bearing device