[go: up one dir, main page]

JPH08306905A - Electronic device manufacturing method and electronic device - Google Patents

Electronic device manufacturing method and electronic device

Info

Publication number
JPH08306905A
JPH08306905A JP7112817A JP11281795A JPH08306905A JP H08306905 A JPH08306905 A JP H08306905A JP 7112817 A JP7112817 A JP 7112817A JP 11281795 A JP11281795 A JP 11281795A JP H08306905 A JPH08306905 A JP H08306905A
Authority
JP
Japan
Prior art keywords
film
semiconductor
laminated film
electronic device
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7112817A
Other languages
Japanese (ja)
Other versions
JP3734183B2 (en
Inventor
Hiroshi Fukuda
宏 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11281795A priority Critical patent/JP3734183B2/en
Publication of JPH08306905A publication Critical patent/JPH08306905A/en
Application granted granted Critical
Publication of JP3734183B2 publication Critical patent/JP3734183B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/40FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
    • H10D30/402Single electron transistors; Coulomb blockade transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D48/00Individual devices not covered by groups H10D1/00 - H10D44/00
    • H10D48/30Devices controlled by electric currents or voltages
    • H10D48/32Devices controlled by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H10D48/36Unipolar devices
    • H10D48/362Unipolar transistors having ohmic electrodes on emitter-like, base-like, and collector-like regions, e.g. hot electron transistors [HET], metal base transistors [MBT], resonant tunnelling transistors [RTT], bulk barrier transistors [BBT], planar doped barrier transistors [PDBT] or charge injection transistors [CHINT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/81Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation
    • H10D62/812Single quantum well structures
    • H10D62/814Quantum box structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

(57)【要約】 【構成】基板1上に半導体又は金属薄膜2と絶縁薄膜3
を含む積層膜4を形成し、これを加工した後、側面から
酸化又はエッチングして、積層膜4中に0次元量子箱,
一次元量子細線、もしくは微小トンネル接合11,12
を有する一次元量子細線9を形成する。 【効果】従来のSi集積回路製造に用いられている半導
体微細加工装置とデバイス製造装置を用いて、数nmの
寸法及び寸法精度をもつ室温動作可能な単一電子素子や
各種量子効果を用いた電子デバイスが得られる。
(57) [Summary] [Structure] Semiconductor or metal thin film 2 and insulating thin film 3 on substrate 1.
After forming a laminated film 4 containing, and oxidizing or etching from the side surface, a zero-dimensional quantum box,
One-dimensional quantum wire or micro tunnel junction 11, 12
A one-dimensional quantum thin wire 9 having is formed. [Effect] Using a semiconductor microfabrication apparatus and a device manufacturing apparatus used for manufacturing a conventional Si integrated circuit, a single electron element capable of operating at room temperature and having various dimensions and dimensional accuracy of several nm and various quantum effects were used. An electronic device is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、単一電子素子,各種量
子効果素子等に好適な電子デバイスの製造方法、および
これにより製作された電子デバイスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electronic device suitable for a single electronic element, various quantum effect elements, etc., and an electronic device manufactured by the method.

【0002】[0002]

【従来の技術】Si集積回路(LSI)等の電子デバイ
スの性能を向上するため、回路を構成する素子の微細化
が進んでいる。しかし、これらのデバイスで現在主に用
いられているMOSトランジスタでは、消費電力の増大
を抑えつつ、微細化による集積度及び動作速度を向上す
るには限界がある。
2. Description of the Related Art In order to improve the performance of electronic devices such as Si integrated circuits (LSI), miniaturization of elements constituting circuits has been advanced. However, in the MOS transistor currently mainly used in these devices, there is a limit in improving the degree of integration and operating speed by miniaturization while suppressing increase in power consumption.

【0003】近年、これを解決するため、新しい動作原
理に基づく電子素子として、単一電子素子等が提案され
ている。これらの素子が理想的に実現されれば、電力遅
延積を大幅に向上することができるものと予想されてい
る。単一電子素子については、例えば、応用物理,第6
3巻,第12号(1994年),第1232頁から12
38頁に論じられている。又、電子を数nmの領域に三
次元的に閉じ込める0次元量子箱を用いると、量子効果
により発光素子等の性能を大幅に向上できるものと考え
られている。さらに、一次元量子細線を用いて一次元の
電子ガスを形成すると電子の移動度が大幅に増大し、高
速のスイッチング素子が実現できるものと考えられてい
る。これら、量子効果素子については、例えば、電子情
報通信学会誌,第77巻,第11号(1994年),第
1117頁から第1124頁に論じられている。
In order to solve this problem, a single electronic element or the like has recently been proposed as an electronic element based on a new operating principle. If these elements are ideally realized, it is expected that the power delay product can be greatly improved. For single electronic devices, see, for example, Applied Physics, 6th
Volume 3, Issue 12 (1994), pages 1232-12
Discussed on page 38. Further, it is considered that if a 0-dimensional quantum box that three-dimensionally confine electrons in a region of several nm is used, the performance of a light emitting device or the like can be significantly improved by the quantum effect. Furthermore, it is considered that when a one-dimensional electron gas is formed by using a one-dimensional quantum wire, the mobility of electrons is significantly increased and a high-speed switching element can be realized. These quantum effect elements are discussed in, for example, the Institute of Electronics, Information and Communication Engineers, Vol. 77, No. 11 (1994), pp. 1117 to 1124.

【0004】[0004]

【発明が解決しようとする課題】しかし、論文にも論じ
られている様に、単一電子素子を室温で動作させるため
には、現在の主流のMOSトランジスタの寸法である数
百nmより一から二桁小さい寸法数nmのデバイス構造
を精度よく加工しなければならない。0次元量子箱,一
次元量子細線等の量子効果素子についても同様である。
However, as discussed in the paper, in order to operate a single-electron device at room temperature, the size of several hundreds nm, which is the size of the current mainstream MOS transistors, should be reduced from one to several hundred nm. A device structure with a dimension several nanometers smaller by two orders of magnitude must be processed accurately. The same applies to quantum effect devices such as a 0-dimensional quantum box and a 1-dimensional quantum wire.

【0005】現在のところ、このような超微細加工を可
能とする加工装置は存在せず、しかも、これを再現性よ
く大量生産できるような見通しは殆ど無い。
At present, there is no processing apparatus capable of performing such ultra-fine processing, and there is almost no prospect of mass production of this with high reproducibility.

【0006】本発明の目的は、従来のSi集積回路製造
に用いられている半導体微細加工装置とデバイス製造装
置を用いて、単一電子素子や各種量子効果素子を室温で
動作させるのに必要な数nmの寸法を精度よく加工する
ことが可能な電子デバイスの製造方法と、これにより作
製される素子構造を有する電子デバイスを提供すること
にある。
An object of the present invention is to operate a single electron element and various quantum effect elements at room temperature by using a semiconductor microfabrication apparatus and a device manufacturing apparatus used for manufacturing a conventional Si integrated circuit. An object of the present invention is to provide an electronic device manufacturing method capable of accurately processing a dimension of several nm and an electronic device having an element structure manufactured by the method.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明は基板上に半導体又は金属薄膜と絶縁薄膜を
含む積層膜を形成し、これをパターン状に加工した後側
面から酸化して酸化領域を形成し、積層膜中に上記酸化
領域に囲まれた0次元量子箱もしくは微小トンネル接合
を有する一次元量子細線や、上記酸化領域及び絶縁薄膜
に挾まれた半導体又は金属領域からなる0次元量子箱も
しくは一次元量子細線を形成する。
In order to achieve the above object, the present invention forms a laminated film containing a semiconductor or metal thin film and an insulating thin film on a substrate, processes it into a pattern and then oxidizes it from the side surface. A one-dimensional quantum wire that forms an oxide region and is surrounded by the oxide region in the laminated film and has a zero-dimensional quantum box or a minute tunnel junction, and a semiconductor or metal region sandwiched between the oxide region and the insulating thin film. Form a one-dimensional quantum box or one-dimensional quantum wire.

【0008】柱状に加工した積層膜を側面から酸化する
と、柱の中心に途中に微小トンネル接合もしくは0次元
量子箱を含み基板にほぼ垂直方向に伸びる半導体又は金
属細線が得られる。複数の絶縁膜で半導体又は金属薄膜
を挾んだ積層膜を横長の直方体に加工して、これを側面
から酸化すると、直方体中に前記基板にほぼ平行な方向
に伸びる半導体又は金属細線が得られる。
When the laminated film processed into a columnar shape is oxidized from the side surface, a semiconductor or metal thin wire including a minute tunnel junction or a 0-dimensional quantum box in the center of the pillar and extending in a direction substantially perpendicular to the substrate is obtained. By processing a laminated film sandwiching a semiconductor or metal thin film with a plurality of insulating films into a horizontally long rectangular parallelepiped and oxidizing it from the side surface, a semiconductor or metal thin wire extending in a direction substantially parallel to the substrate can be obtained in the rectangular parallelepiped. .

【0009】絶縁薄膜及び二つの絶縁薄膜により挾まれ
る半導体又は金属膜の膜厚は、各々20nm以下である
ことが望ましい。又、上記酸化を、酸化速度が半導体又
は金属のバルクにおける値の五分の一以下になるまで行
うことにより、安定に超微細構造が得られる。なお、酸
化の代わりに積層膜の側面をサイドエッチングすること
により、上記の様々な構造を形成してもよい。
The film thickness of the semiconductor thin film or the metal film sandwiched by the two insulating thin films is preferably 20 nm or less. Further, by carrying out the above-mentioned oxidation until the oxidation rate becomes one fifth or less of the value in the bulk of the semiconductor or metal, a stable ultrafine structure can be obtained. Note that the above various structures may be formed by side etching the side surfaces of the stacked film instead of oxidation.

【0010】又、上記別の目的は、電子デバイスにおい
て半導体又は金属薄膜及び絶縁薄膜を含む積層膜パター
ンを側面から酸化することにより、上記積層膜中に微小
トンネル接合を有する一次元量子細線を形成したり、又
は、酸化された領域と絶縁薄膜により囲まれた半導体又
は金属領域を0次元量子箱もしくは一次元量子細線とす
ることにより達成される。基板に垂直な柱状の絶縁物の
中心に、途中にトンネル接合、電子蓄積ノード(0次元
量子箱)等を持った半導体/金属細線や、直方体状の絶
縁物の中心に基板に平行な方向に伸びる半導体/金属細
線が得られる。これらの細線の直径、電子蓄積ノード又
は0次元量子箱の寸法は、20nm以下とすることが好
ましい。上記半導体としてはシリコン等を用いることが
できる。又、上記細線や電子蓄積ノードの周辺にゲート
電極を形成する等してもよい。
Another object is to oxidize a laminated film pattern including a semiconductor or metal thin film and an insulating thin film from the side surface in an electronic device to form a one-dimensional quantum wire having a minute tunnel junction in the laminated film. Or a semiconductor or metal region surrounded by the oxidized region and the insulating thin film is a zero-dimensional quantum box or a one-dimensional quantum wire. A semiconductor / metal thin wire with a tunnel junction, an electron storage node (0-dimensional quantum box), etc. in the middle of a columnar insulator perpendicular to the substrate, or a direction parallel to the substrate at the center of a rectangular parallelepiped insulator. Stretching semiconductor / metal wires are obtained. The diameter of these thin wires and the dimensions of the electron storage node or the 0-dimensional quantum box are preferably 20 nm or less. Silicon or the like can be used as the semiconductor. Further, a gate electrode may be formed around the thin wire or the electron storage node.

【0011】[0011]

【作用】既存の成膜技術,電子線描画法及び異方性エッ
チングを用いると、基板1上に図1(a)に示すような
シリコン膜2及び絶縁膜3を含む積層膜4からなる直径
数十nmの円柱5を加工できる。この積層構造を有する
円柱5を側面から酸化する。ここで、図には示さない
が、酸化を側面のみから行うために、円柱5の上面には
例えばシリコン窒化膜等の酸化防止膜を形成するものと
する。これにより、積層膜のシリコン部分のみが周囲か
ら酸化され、絶縁膜はそのままの状態で残される。これ
は、図1(b)に示すように酸化がシリコン酸化膜中の
酸素の拡散速度で律速されるため、酸化領域6と未酸化
領域7の境界8が絶縁膜の有無によらず円柱4表面に垂
直方向に柱の中心に向かって進むためである。従って、
適当な酸化時間の後、図1(c)に示すように、円柱4
の中心にシリコン細線9中に極めて微小なシリコンの島
10を二つのトンネル接合11,12で挾んだ構造が得
られる。
When the existing film forming technique, electron beam drawing method and anisotropic etching are used, the diameter of the laminated film 4 including the silicon film 2 and the insulating film 3 as shown in FIG. A cylinder 5 with a size of several tens of nm can be processed. The cylinder 5 having this laminated structure is oxidized from the side surface. Here, although not shown in the drawing, an oxidation prevention film such as a silicon nitride film is formed on the upper surface of the column 5 in order to perform the oxidation only from the side surface. As a result, only the silicon portion of the laminated film is oxidized from the surroundings, and the insulating film remains as it is. This is because the oxidation is rate-controlled by the diffusion rate of oxygen in the silicon oxide film, as shown in FIG. 1B, so that the boundary 8 between the oxidized region 6 and the unoxidized region 7 does not depend on the presence or absence of the insulating film. This is because it advances toward the center of the pillar in a direction perpendicular to the surface. Therefore,
After a suitable oxidation time, as shown in FIG.
A structure in which an extremely minute silicon island 10 is sandwiched by two tunnel junctions 11 and 12 in a silicon thin wire 9 at the center of the is obtained.

【0012】このようにして形成された島10は、単一
電子を捕獲する電子トラップとして作用するため、図1
(c)の構造を単一電子素子の基本要素として用いるこ
とができる。但し、この構造を単一電子素子に適用する
ためには、Si柱の上下に配線を接合する必要がある。
又、島の周囲に適当なゲート電極を設けることが好まし
い。これらの具体的な方法については、実施例で論じ
る。
The island 10 thus formed acts as an electron trap for trapping a single electron.
The structure of (c) can be used as a basic element of a single electronic device. However, in order to apply this structure to a single-electron device, it is necessary to join wirings above and below the Si pillar.
It is also preferable to provide a suitable gate electrode around the island. These specific methods are discussed in the examples.

【0013】なお、Si柱を周囲から酸化すると、酸化
が進むにつれ酸化速度が減少し自己整合的に柱状Si細
線が得られることが、文献(ジャーナル オブ バキュ
ームサイエンス アンド テクノロジー,第B11巻
(1993年),2532頁から2537頁(Journal
of vacuum science and technology, Vol. B11 (1993)
pp.2532−2537))により知られている。
It should be noted that, when the Si pillar is oxidized from the surroundings, the oxidation rate decreases as the oxidation progresses, and columnar Si thin wires can be obtained in a self-aligned manner (Journal of Vacuum Science and Technology, Vol. B11 (1993). ), Pages 2532 to 2537 (Journal
of vacuum science and technology, Vol. B11 (1993)
pp.2532-2537)).

【0014】酸化時間とSi柱周囲の酸化領域厚さ(図
1(b)中t)の関係の一例を図2に示す。この関係は
パターン形状や酸化条件に依存するため、細線直径を所
望の値とするためにはこれらの条件を最適化することが
望ましい。しかし、酸化の進行が飽和する時点で最終的
に得られる細線直径は酸化前の積層膜パターンの寸法に
あまり依存しないため、酸化を十分な時間行うことによ
り、元のパターンの寸法ばらつきによらず比較的安定に
一定の直径の細線が得られる。このためには、一般に酸
化速度がバルクの値の五分の一以下になるまで酸化する
ことが好ましい。いずれにせよ、本発明における細線や
島の直径は、極めて精度よく制御可能である。
FIG. 2 shows an example of the relationship between the oxidation time and the thickness of the oxidized region around the Si pillar (t in FIG. 1B). Since this relationship depends on the pattern shape and the oxidation conditions, it is desirable to optimize these conditions in order to make the diameter of the thin wire a desired value. However, since the fine wire diameter finally obtained when the progress of oxidation saturates does not depend much on the dimensions of the laminated film pattern before oxidation, by performing the oxidation for a sufficient time, it is possible to obtain the same regardless of the variations in the dimensions of the original pattern. A thin wire having a constant diameter can be obtained relatively stably. For this purpose, it is generally preferable to oxidize until the oxidation rate becomes one fifth or less of the bulk value. In any case, the diameters of the thin wires and islands in the present invention can be controlled extremely accurately.

【0015】又、絶縁膜の厚さやこれで挾む島の厚さ
は、積層膜の形成条件によりやはり精度よく制御可能で
ある。従って、従来のリソグラフィを用いて横方向にト
ンネル接合や島を形成する方法では到底得られないよう
な超微細構造を、接合の性質や島の容量を精度よく制御
しつつ実現することができる。又、酸化膜厚と自己整合
的に形成される細線の直径は、基板の広い領域で極めて
均一に形成できる。このため基板内で電気特性のばらつ
きが抑えられ、多数の素子を集積する場合にも好まし
い。
Further, the thickness of the insulating film and the thickness of the island sandwiched by the insulating film can be accurately controlled by the conditions for forming the laminated film. Therefore, it is possible to realize an ultrafine structure that cannot be obtained by the conventional method of forming a tunnel junction or an island in the lateral direction using lithography while accurately controlling the junction property and the island capacitance. Further, the diameter of the thin wire formed in self-alignment with the oxide film thickness can be formed extremely uniformly over a wide area of the substrate. Therefore, variations in electrical characteristics are suppressed in the substrate, which is also preferable when a large number of elements are integrated.

【0016】以上、シリコンと酸化膜について説明した
が、シリコンに限らず他の半導体又は金属を用いてもよ
く、又、酸化膜についても他の絶縁膜(窒化膜,フッ化
カルシウム,アルミナ等)でもよい。更に、異種の半導
体を積層してもよい。例えばバンド構造の異なる半導体
を積層した半導体ヘテロ構造中に本発明により細線を形
成することも可能で、この場合も類似の効果を得ること
ができる。又、絶縁膜と半導体層を多数積層すれば、多
数の島を縦方向に並べることができ、極めて高密度かつ
三次元的に0次元量子箱を形成することができる。この
ような構造は、様々な発光素子としても有用である。
Although silicon and an oxide film have been described above, other semiconductors or metals may be used instead of silicon, and other insulating films (nitride film, calcium fluoride, alumina, etc.) may be used for the oxide film. But it's okay. Further, different kinds of semiconductors may be stacked. For example, it is possible to form a thin wire in a semiconductor heterostructure in which semiconductors having different band structures are laminated, and similar effects can be obtained in this case as well. Also, by stacking a large number of insulating films and semiconductor layers, a large number of islands can be arranged in the vertical direction, and it is possible to form a three-dimensional zero-dimensional quantum box with extremely high density. Such a structure is also useful as various light emitting devices.

【0017】又、酸化を行う積層膜パターンを横長の立
方体等にすれば、その内部には基板にほぼ平行な方向に
伸びる半導体又は金属細線が得られる。このような構造
は、例えば電界効果トランジスタの一次元チャンネルと
して用いることができる。この他にも積層膜のパターン
を工夫することにより様々な微細構造を得ることができ
る。いずれにせよ、室温において単一電子効果もしくは
量子効果を得るためには、絶縁薄膜又は二つの絶縁薄膜
により挾まれる半導体又は金属膜の膜厚は、各々20n
m以下であることが好ましい。
If the laminated film pattern to be oxidized is formed into a horizontally long cube or the like, a semiconductor or a metal thin wire extending in a direction substantially parallel to the substrate can be obtained inside. Such a structure can be used, for example, as a one-dimensional channel of a field effect transistor. In addition to this, various fine structures can be obtained by devising the pattern of the laminated film. In any case, in order to obtain the single electron effect or the quantum effect at room temperature, the film thickness of the semiconductor or metal film sandwiched by the insulating thin film or the two insulating thin films is 20 n
m or less.

【0018】なお、酸化の代わりに積層膜の側面をサイ
ドエッチングしても、類似の構造が得られるが、この場
合一般に絶縁膜と半導体/金属膜のエッチング速度が異
なる点に注意する必要がある。理想的には両者のエッチ
ング速度は等しいことが望ましいが、所望の構造を得る
ためには少なくとも絶縁膜のエッチング速度は半導体/
金属膜のエッチング速度より遅い必要がある。
A similar structure can be obtained by side-etching the side surface of the laminated film instead of oxidation, but in this case, it should be noted that generally the etching rates of the insulating film and the semiconductor / metal film are different. . Ideally, both etching rates should be equal, but in order to obtain the desired structure, at least the etching rate of the insulating film
It must be slower than the etching rate of the metal film.

【0019】[0019]

【実施例】【Example】

(実施例1)以下、本発明の一実施例を図3を用いて説
明する。通常のイオン打ち込みによりウエル21形成を
形成したSi基板22上に、基板側から順に、ポリシリ
コン膜23(膜厚100nm),シリコン酸化膜24
(膜厚10nm),ポリシリコン膜25(膜厚10n
m),シリコン酸化膜26(膜厚10nm),ポリシリ
コン膜27(膜厚100nm),シリコン窒化膜28
(膜厚100nm)からなる積層膜29を形成した(図3
(a))。さらに積層膜上に、電子線用ネガ型レジスト膜
30を形成した後、電子線描画装置を用いてドット状に
パターン描画し、所定の現像を行って直径50nm円柱
状のレジストパターン31を得た(図3(b))。
(Embodiment 1) An embodiment of the present invention will be described below with reference to FIG. On the Si substrate 22 in which the well 21 is formed by normal ion implantation, a polysilicon film 23 (film thickness 100 nm) and a silicon oxide film 24 are sequentially arranged from the substrate side.
(Film thickness 10 nm), polysilicon film 25 (film thickness 10 n
m), silicon oxide film 26 (film thickness 10 nm), polysilicon film 27 (film thickness 100 nm), silicon nitride film 28
A laminated film 29 made of (film thickness 100 nm) was formed (FIG. 3).
(a)). Further, after forming a negative resist film 30 for electron beam on the laminated film, a dot-shaped pattern was drawn by using an electron beam drawing apparatus, and predetermined development was performed to obtain a resist pattern 31 having a cylindrical shape with a diameter of 50 nm. (Fig. 3 (b)).

【0020】次に、上記レジストパターンをマスクとし
て下地積層膜を異方性ドライエッチングして、積層膜の
柱状構造32を形成した(図3(c))。その後、積層
膜の柱状構造32及びSi基板32の露出部分を850
度Cで5時間ドライ酸化して、柱の中心を残した円筒部
分を含む領域にシリコン酸化膜33を形成した。酸化が
進むにつれ酸化速度が減少するため、柱の中心部に自己
整合的に直径20nmのシリコン細線34が形成され
た。シリコン酸化膜24,26がシリコン細線34を横
切るため、シリコン細線34中に微小トンネル接合3
5,36とシリコンの島領域37が形成された(図3
(d))。
Next, the underlying laminated film was anisotropically dry-etched using the resist pattern as a mask to form a columnar structure 32 of the laminated film (FIG. 3C). Then, the columnar structure 32 of the laminated film and the exposed portion of the Si substrate 32 are removed by 850
Dry oxidation was performed at a temperature of C for 5 hours to form a silicon oxide film 33 in a region including a cylindrical portion that left the center of the column. Since the oxidation rate decreased as the oxidation proceeded, a silicon thin wire 34 having a diameter of 20 nm was formed in the center of the column in a self-aligned manner. Since the silicon oxide films 24 and 26 cross the silicon thin wire 34, the minute tunnel junction 3 is formed in the silicon thin wire 34.
5, 36 and island regions 37 of silicon were formed (FIG. 3).
(D)).

【0021】なお、細線や島領域中に多結晶粒界が存在
しないように、ポリシリコンを比較的大きな粒径が得ら
れる条件で形成した。従って、細線と島領域は実質的に
単結晶からなると考えてよい。又、柱の上部及び下部
は、各々窒化膜キャップと基板により酸素供給が抑えら
れるため、細線の直径が太くなった。これは、細線と外
部配線を接続する上で好ましい。
Polysilicon was formed under the condition that a relatively large grain size was obtained so that no polycrystalline grain boundaries existed in the thin lines or the island regions. Therefore, it may be considered that the thin line and the island region are substantially made of a single crystal. Moreover, since the oxygen supply was suppressed by the nitride film cap and the substrate, the diameter of the thin wire was increased in the upper part and the lower part of the pillar, respectively. This is preferable for connecting the thin wire and the external wiring.

【0022】次に、シリコン細線34上部にソース電極
38を、又シリコン細線下部が接続するウエル21にド
レイン電極39を接続した。又、シリコン島を囲むよう
に円筒の外側部分にゲートを形成し、これにゲート電極
40を接続した(図3(e))。これらの電極形成は、通
常のシリコンLSIプロセスで用いられている様々な手
法を用いることができる。ここでは、サイドウォールに
よりゲートを形成したが、他の方法を用いてもよい。細
線に電極を接続する場合には、この間に過大な接触抵抗
等が生じないよう十分な注意を要する。ゲートと島の間
の距離を小さくする必要がある場合には、シリコン酸化
膜23をエッチングして、細線を囲む円筒状シリコン酸
化膜を薄くしてもよい。
Next, the source electrode 38 was connected to the upper portion of the silicon thin wire 34, and the drain electrode 39 was connected to the well 21 connected to the lower portion of the silicon thin wire. Further, a gate was formed on the outer side of the cylinder so as to surround the silicon island, and the gate electrode 40 was connected to this (FIG. 3 (e)). For forming these electrodes, various methods used in a normal silicon LSI process can be used. Although the gate is formed by the sidewall here, another method may be used. When connecting the electrodes to the thin wires, sufficient care must be taken not to cause excessive contact resistance or the like between them. When it is necessary to reduce the distance between the gate and the island, the silicon oxide film 23 may be etched to thin the cylindrical silicon oxide film surrounding the thin line.

【0023】素子の特性を室温で調べた結果、ドレイン
電圧に対して細線を流れる電流のコンダクタンスが振動
するクーロン階段が観測され、素子が単一電子トランジ
スタとして作用することを確認した。又、ゲート電圧に
よりソース,ドレイン間のコンダクタンスを制御するこ
とができた。従って、これを3端子素子として回路を形
成することができる。
As a result of examining the characteristics of the device at room temperature, a Coulomb staircase in which the conductance of the current flowing through the thin wire with respect to the drain voltage oscillates was observed, and it was confirmed that the device functions as a single electron transistor. Moreover, the conductance between the source and the drain could be controlled by the gate voltage. Therefore, a circuit can be formed by using this as a three-terminal element.

【0024】又、本実施例の素子は、基板上の広い領域
に多数形成したが、シリコン及び酸化膜の厚さと自己整
合的に形成される細線の直径は、基板内で極めて均一で
あった。このため、基板内で均一な電気特性が得られ
た。
A large number of the elements of this example were formed in a wide area on the substrate, but the diameter of the thin wire formed in self-alignment with the thickness of the silicon and oxide film was extremely uniform within the substrate. . Therefore, uniform electrical characteristics were obtained within the substrate.

【0025】(実施例2)図4に本発明の第2の実施例
を示す。Si基板50上に、膜厚10nmのポリシリコ
ン膜51及び膜厚10nmのシリコン酸化膜52からな
る多層膜を20層とシリコン窒化膜53からなる積層膜
54を形成した。次に、これを実施例1と同様の方法で
パターニングして積層膜に複数の穴状パターン55を形
成した(図4(a))。但し、図4では20層中の一部
のみを表示している。さらに、これを酸化したところ穴
の側面から酸化が進み、最終的に最近接の穴の間は酸化
領域が接して、四つの穴を結ぶ対角線の交点位置に元の
積層膜構造56が残った(図4(b))。酸化は、積層
膜の残存領域の平面方向寸法Lが約10nmとなる時点
で停止するようにした。
(Embodiment 2) FIG. 4 shows a second embodiment of the present invention. On the Si substrate 50, 20 layers of a multilayer film composed of a polysilicon film 51 having a film thickness of 10 nm and a silicon oxide film 52 having a film thickness of 10 nm and a laminated film 54 composed of a silicon nitride film 53 were formed. Next, this was patterned in the same manner as in Example 1 to form a plurality of hole-shaped patterns 55 in the laminated film (FIG. 4A). However, in FIG. 4, only a part of the 20 layers is displayed. Further, when this was oxidized, the oxidation proceeded from the side surface of the hole, and finally the oxidized region contacted between the closest holes, and the original laminated film structure 56 remained at the intersection of the diagonal lines connecting the four holes. (FIG.4 (b)). The oxidation was stopped when the dimension L in the plane direction of the remaining region of the laminated film became about 10 nm.

【0026】結果として、ほぼ1辺10nmの立方体状
のシリコン0次元量子箱57が基板に垂直な方向に20
nmの周期で並んだ構造が得られた。膜厚や層数は本実
施例の値に限定しないが、量子箱の寸法は20nm以下
とすることが好ましい。
As a result, a cubic silicon 0-dimensional quantum box 57 having a side length of 10 nm is formed in a direction 20 perpendicular to the substrate.
A structure arranged with a period of nm was obtained. Although the film thickness and the number of layers are not limited to the values in this embodiment, the size of the quantum box is preferably 20 nm or less.

【0027】本実施例によって得られた構造に光励起を
行いホトルミネッセンスを測定したところ、可視領域に
発光が観測された。
When the photoluminescence was measured by subjecting the structure obtained in this example to photoexcitation, luminescence was observed in the visible region.

【0028】(実施例3)図5に本発明の第3の実施例
を示す。Si基板60上に、膜厚10nmのポリシリコ
ン膜61及び膜厚10nmのシリコン酸化膜62からな
る多層膜を20層とシリコン窒化膜(図示せず)からな
る積層膜を形成した。次に、これを実施例1と同様の方
法によりパターニングして直方体構造64に加工した
後、直方体の一対の側面65を窒化膜(図示せず)で覆
った(図5(a))。但し、図5では20層中の一部の
みを表示している。窒化膜に覆われていない残り一対の
側面より積層膜内のポリシリコンを酸化して、直方体の
中心部に長手方向にのびる積層膜構造を残した。酸化は
積層膜の残存領域の(平面方向)幅Wが約10nmとな
る時点で停止するようにした。さらに窒化膜を除去して
図5(b)に示す構造を得た。ほぼ断面が10nm角、
直方体の中心部長手方向に伸びるシリコン一次元量子細
線67が、基板に垂直な方向に20nmの周期で20本
で並んだ構造が得られた。但し、図5(b)では直方体
の断面を模式的に示している。次に、酸化膜,窒化膜の
上から量子細線67をまたぐ様にゲート電極68を形成
するとともに、量子細線群の両端にソース69及びドレ
イン70電極を接続した(図5(c))。
(Embodiment 3) FIG. 5 shows a third embodiment of the present invention. On the Si substrate 60, 20 layers of a multilayer film composed of a polysilicon film 61 having a film thickness of 10 nm and a silicon oxide film 62 having a film thickness of 10 nm and a laminated film composed of a silicon nitride film (not shown) were formed. Next, this was patterned by the same method as in Example 1 to be processed into a rectangular parallelepiped structure 64, and then a pair of side surfaces 65 of the rectangular parallelepiped was covered with a nitride film (not shown) (FIG. 5A). However, in FIG. 5, only a part of the 20 layers is displayed. The polysilicon in the laminated film was oxidized from the remaining pair of side surfaces not covered with the nitride film, leaving a laminated film structure extending in the longitudinal direction at the center of the rectangular parallelepiped. The oxidation was stopped when the width W (planar direction) of the remaining region of the laminated film became about 10 nm. Further, the nitride film was removed to obtain the structure shown in FIG. The cross section is approximately 10 nm square,
A structure was obtained in which 20 silicon one-dimensional quantum wires 67 extending in the longitudinal direction of the central part of the rectangular parallelepiped were arranged in a direction perpendicular to the substrate at a cycle of 20 nm. However, in FIG. 5B, a cross section of a rectangular parallelepiped is schematically shown. Next, a gate electrode 68 was formed on the oxide film and the nitride film so as to straddle the quantum wire 67, and a source 69 and a drain 70 electrodes were connected to both ends of the quantum wire group (FIG. 5C).

【0029】上記素子の電気的特性を調べた結果、極め
て高速のトランジスタ作用が確認された。これは、一次
元量子細線67からなるチャンネル内の電子の移動度が
極めて大きいためと考えられる。又、チャンネル長さを
小さくしても顕著な短チャンネル効果は認められなかっ
た。従って、素子の微細化にも適している。
As a result of examining the electric characteristics of the above-mentioned device, an extremely high speed transistor action was confirmed. It is considered that this is because the mobility of electrons in the channel formed by the one-dimensional quantum wire 67 is extremely high. Moreover, no remarkable short channel effect was observed even if the channel length was reduced. Therefore, it is also suitable for miniaturization of elements.

【0030】なお、前記直方体の側面を覆う窒化膜は細
線チャンネルとゲート及びドレイン電極を接続しやすく
するためにチャンネル端の細線太さを大きくするために
用いたが、チャンネル長が短い場合には用いない方が好
ましい。この場合、酸化後にエッチングにより直方体の
端を除去して細線を外部に取り出すことが望ましい。細
線と電極の接続には十分な注意が必要であることは実施
例2と同様である。又、ゲートとチャンネル間の距離を
近づける必要がある場合には酸化膜をサイドエッチング
すればよい。積層膜の構造と各層の膜厚は本実施例で用
いたものに限らない。但し、高速性能を得るためには、
半導体層の膜厚は20nm以下にすることが好ましい。
又、十分な相互コンダクタンスを得るためには細線の本
数は多いことが望ましい。積層膜として、半導体ヘテロ
接合構造を用いてもよい。
The nitride film covering the side surface of the rectangular parallelepiped was used to increase the thickness of the thin wire at the end of the channel in order to facilitate connection between the thin wire channel and the gate and drain electrodes. It is preferable not to use it. In this case, it is desirable to remove the end of the rectangular parallelepiped by etching after oxidation to take out the thin wire to the outside. As in the second embodiment, it is necessary to pay sufficient attention to the connection between the thin wire and the electrode. If it is necessary to reduce the distance between the gate and the channel, the oxide film may be side-etched. The structure of the laminated film and the film thickness of each layer are not limited to those used in this embodiment. However, in order to obtain high-speed performance,
The thickness of the semiconductor layer is preferably 20 nm or less.
Further, in order to obtain sufficient transconductance, it is desirable that the number of thin wires is large. A semiconductor heterojunction structure may be used as the laminated film.

【0031】本実施例におけるチャンネルとゲートの位
置関係は、SOI−MOSトランジスタの一形態として
提案されているDELTA構造に類似している。しか
し、DELTAにおけるチャンネルは通常のMOSFE
T同様ゲート酸化膜に沿って生じるのに対して、本実施
例ではゲートの挾む絶縁膜の中央の極めて限られた領域
のみに生じる。本実施例では、チャンネルの側面はシリ
コンとその酸化膜の界面で決まるためきわめて平滑であ
り、界面における電子の散乱の影響は小さい。
The positional relationship between the channel and the gate in this embodiment is similar to the DELTA structure proposed as one form of the SOI-MOS transistor. However, the channel in DELTA is normal MOSFE
Like T, it occurs along the gate oxide film, but in the present embodiment, it occurs only in a very limited region in the center of the insulating film across the gate. In this embodiment, the side surface of the channel is extremely smooth because it is determined by the interface between silicon and its oxide film, and the influence of electron scattering at the interface is small.

【0032】[0032]

【発明の効果】本発明によれば、基板上に半導体又は金
属薄膜と絶縁薄膜を含む積層膜を形成し、これを加工し
た後側面から酸化して酸化領域を形成し、積層膜中に上
記酸化領域に囲まれた0次元量子箱もしくは微小トンネ
ル接合を有する一次元量子細線や、酸化領域及び絶縁薄
膜に挾まれた半導体又は金属領域からなる0次元量子箱
もしくは一次元量子細線を形成することにより、従来の
Si集積回路製造に用いられている半導体微細加工装置
とデバイス製造装置を用いて、単一電子素子や各種量子
効果素子等の電子デバイスを室温で動作させるのに必要
な数nmの寸法を精度よく加工することが可能となる。
According to the present invention, a laminated film including a semiconductor or metal thin film and an insulating thin film is formed on a substrate, which is processed and then oxidized from the side surface to form an oxidized region. Forming a one-dimensional quantum wire having a zero-dimensional quantum box or a minute tunnel junction surrounded by an oxide region, and a zero-dimensional quantum box or one-dimensional quantum wire consisting of a semiconductor or metal region sandwiched between an oxide region and an insulating thin film Therefore, by using the semiconductor microfabrication apparatus and device manufacturing apparatus used in the conventional Si integrated circuit manufacturing, it is possible to reduce the number of nanometers required for operating electronic devices such as single electronic elements and various quantum effect elements at room temperature. It is possible to process the dimensions with high precision.

【0033】又、電子デバイスにおいて、筒状の絶縁膜
パターンの中心部に基板に垂直な柱状の半導体又は金属
細線と、その途中にトンネル接合又は量子箱を設ける
か、又は、直方体状の絶縁膜パターンの中心部の長手方
向に、基板に平行に伸びる半導体又は金属細線を設ける
ことにより、従来の電子デバイスの性能を大幅に上回る
電子デバイスが得られる。
In an electronic device, a columnar semiconductor or metal thin wire perpendicular to the substrate and a tunnel junction or a quantum box are provided in the middle of a cylindrical insulating film pattern, or a rectangular parallelepiped insulating film is provided. By providing a semiconductor or metal thin wire extending parallel to the substrate in the longitudinal direction of the central portion of the pattern, an electronic device having performance significantly exceeding that of a conventional electronic device can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理を示す模式図。FIG. 1 is a schematic diagram showing the principle of the present invention.

【図2】本発明による電子デバイスの製造方法の特性
図。
FIG. 2 is a characteristic diagram of a method for manufacturing an electronic device according to the present invention.

【図3】本発明の一実施例による電子デバイスの製造工
程を模式的に示す説明図。
FIG. 3 is an explanatory view schematically showing a manufacturing process of an electronic device according to an embodiment of the present invention.

【図4】本発明の別の実施例による電子デバイスの製造
工程を模式的に示す説明図。
FIG. 4 is an explanatory view schematically showing a manufacturing process of an electronic device according to another embodiment of the present invention.

【図5】本発明の別の実施例による電子デバイスの製造
工程を模式的に示す説明図。
FIG. 5 is an explanatory view schematically showing a manufacturing process of an electronic device according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…基板、2…シリコン膜、3…絶縁膜、4…積層膜、
5…円柱、6…酸化領域、7…未酸化領域、8…境界、
9…シリコン細線、10…島、11,12…トンネル接
合。
1 ... Substrate, 2 ... Silicon film, 3 ... Insulating film, 4 ... Laminated film,
5 ... Cylinder, 6 ... Oxidized region, 7 ... Unoxidized region, 8 ... Boundary,
9 ... Silicon fine wire, 10 ... Island, 11, 12 ... Tunnel junction.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】基板上に、半導体又は金属薄膜、及び絶縁
薄膜を含む積層膜を形成する工程、上記積層膜を加工し
て積層膜パターンを形成する工程、上記積層膜パターン
を側面から酸化して、上記積層膜中に、微小トンネル接
合を有する一次元量子細線、又は上記酸化により形成さ
れた酸化領域及び上記絶縁薄膜に挾まれた半導体又は金
属領域からなる0次元量子箱もしくは一次元量子細線を
形成する工程を含むことを特徴とする電子デバイスの製
造方法。
1. A step of forming a laminated film including a semiconductor or metal thin film and an insulating thin film on a substrate, a step of processing the laminated film to form a laminated film pattern, and oxidizing the laminated film pattern from a side surface. In the laminated film, a one-dimensional quantum wire having a minute tunnel junction, or a zero-dimensional quantum box or one-dimensional quantum wire composed of an oxide region formed by the oxidation and a semiconductor or metal region sandwiched by the insulating thin film. A method of manufacturing an electronic device, comprising:
【請求項2】上記積層膜パターンは上記基板にほぼ垂直
な柱状であり、上記柱状積層膜を側面から酸化すること
により、上記柱の中心に上記基板にほぼ垂直方向に伸び
る微小トンネル接合もしくは0次元量子箱を含む半導体
細線又は金属細線を形成する請求項1に記載の電子デバ
イスの製造方法。
2. The laminated film pattern is a column that is substantially vertical to the substrate, and by oxidizing the columnar laminated film from the side surface, a minute tunnel junction or 0 extending in the direction substantially perpendicular to the substrate is formed at the center of the column. The method for manufacturing an electronic device according to claim 1, wherein a semiconductor thin wire or a metal thin wire including a dimensional quantum box is formed.
【請求項3】上記積層膜は複数の絶縁膜で半導体又は金
属薄膜を挾んだ構造を持ち、上記積層膜パターンは横長
の直方体であり、上記直方体積層膜を側面から酸化する
ことにより、上記直方体の中に上記基板にほぼ平行な方
向に伸びる半導体細線又は金属細線を形成する請求項1
に記載の電子デバイスの製造方法。
3. The laminated film has a structure in which a semiconductor or a metal thin film is sandwiched by a plurality of insulating films, the laminated film pattern is a horizontally long rectangular parallelepiped, and the rectangular parallelepiped laminated film is oxidized from a side surface thereof, A semiconductor thin wire or a metal thin wire extending in a direction substantially parallel to the substrate is formed in the rectangular parallelepiped.
A method for manufacturing an electronic device according to.
【請求項4】上記積層膜は、上記基板側から順にSi
膜,絶縁薄膜,Si膜,絶縁薄膜,Si膜を含み、上記
絶縁薄膜又は二つの上記絶縁薄膜により挾まれる上記S
i膜の膜厚は、各々20nm以下である請求項1に記載
の電子デバイスの製造方法。
4. The laminated film is made of Si in order from the substrate side.
S, which includes a film, an insulating thin film, a Si film, an insulating thin film, and a Si film, and which is sandwiched by the insulating thin film or two insulating thin films
The method of manufacturing an electronic device according to claim 1, wherein each of the i films has a thickness of 20 nm or less.
【請求項5】上記酸化は、酸化速度が上記半導体又は金
属のバルクにおける値の五分の一以下になるまで行う請
求項1,2,3または4に記載の電子デバイスの製造方
法。
5. The method for manufacturing an electronic device according to claim 1, wherein the oxidation is performed until the oxidation rate becomes one fifth or less of the value in the bulk of the semiconductor or metal.
【請求項6】基板上に、半導体又は金属薄膜、及び絶縁
薄膜を含む積層膜を形成する工程、上記積層膜を加工し
て積層膜パターンを形成する工程、上記積層膜パターン
を側面からエッチングして、上記積層膜中に、微小トン
ネル接合を有する一次元量子細線、又は上記酸化により
形成された酸化領域及び上記絶縁薄膜に挾まれた半導体
又は金属領域からなる0次元量子箱もしくは一次元量子
細線を形成する工程を含むことを特徴とする電子デバイ
スの製造方法。
6. A step of forming a laminated film including a semiconductor or metal thin film and an insulating thin film on a substrate, a step of processing the laminated film to form a laminated film pattern, and etching the laminated film pattern from a side surface. In the laminated film, a one-dimensional quantum wire having a minute tunnel junction, or a zero-dimensional quantum box or one-dimensional quantum wire composed of an oxide region formed by the oxidation and a semiconductor or metal region sandwiched by the insulating thin film. A method of manufacturing an electronic device, comprising:
【請求項7】基板上に形成された半導体又は金属薄膜及
び絶縁薄膜を含む積層膜からなるパターンを側面から酸
化することにより上記積層膜中に形成された微小トンネ
ル接合を有する一次元量子細線、又は、上記酸化により
形成された酸化領域及び上記絶縁薄膜に挾まれた半導体
又は金属領域からなる0次元量子箱もしくは一次元量子
細線を含むことを特徴とする電子デバイス。
7. A one-dimensional quantum wire having a minute tunnel junction formed in a laminated film by oxidizing a pattern made of a laminated film including a semiconductor or metal thin film and an insulating thin film formed on a substrate from a side surface, Alternatively, an electronic device comprising a 0-dimensional quantum box or a 1-dimensional quantum wire formed of a semiconductor region or a metal region sandwiched by the oxidized region and the insulating thin film formed by the oxidation.
【請求項8】上記基板に上記垂直な柱状の半導体又は金
属細線とこれを囲む筒状の絶縁領域を有し、上記細線は
途中にトンネル接合、又は複数のトンネル接合で挾まれ
た電子蓄積ノード、又は0次元量子箱を含む請求項5に
記載の電子デバイス。
8. An electron storage node having the vertical columnar semiconductor or metal thin wire and a cylindrical insulating region surrounding the thin wire on the substrate, the thin wire being sandwiched in the middle by a tunnel junction or a plurality of tunnel junctions. Or the electronic device according to claim 5, comprising a 0-dimensional quantum box.
【請求項9】上記基板に平行な方向に伸びる半導体又は
金属細線とこれを囲む絶縁領域を有する請求項5に記載
の電子デバイス。
9. The electronic device according to claim 5, further comprising a semiconductor or metal fine wire extending in a direction parallel to the substrate and an insulating region surrounding the fine wire.
【請求項10】上記細線の直径、電子蓄積ノード又は0
次元量子箱の寸法は、20nm以下である請求項5,6
または7に記載の電子デバイス。
10. The diameter of the thin wire, the electron storage node or 0.
The dimension quantum box has a dimension of 20 nm or less.
Or the electronic device according to 7.
【請求項11】上記半導体はシリコンである請求項5,
6または7に記載の電子デバイス。
11. The semiconductor according to claim 5, wherein the semiconductor is silicon.
The electronic device according to 6 or 7.
【請求項12】上記筒状の絶縁領域の外側に上記細線を
囲むようにゲート電極が形成されている請求項6に記載
の電子デバイス。
12. The electronic device according to claim 6, wherein a gate electrode is formed outside the cylindrical insulating region so as to surround the thin wire.
【請求項13】上記絶縁領域の外側に上記細線をまたぐ
ようにゲート電極が形成されている請求項7に記載の電
子デバイス。
13. The electronic device according to claim 7, wherein a gate electrode is formed outside the insulating region so as to straddle the thin wire.
JP11281795A 1995-05-11 1995-05-11 Electronic device manufacturing method and electronic device Expired - Fee Related JP3734183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11281795A JP3734183B2 (en) 1995-05-11 1995-05-11 Electronic device manufacturing method and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11281795A JP3734183B2 (en) 1995-05-11 1995-05-11 Electronic device manufacturing method and electronic device

Publications (2)

Publication Number Publication Date
JPH08306905A true JPH08306905A (en) 1996-11-22
JP3734183B2 JP3734183B2 (en) 2006-01-11

Family

ID=14596285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11281795A Expired - Fee Related JP3734183B2 (en) 1995-05-11 1995-05-11 Electronic device manufacturing method and electronic device

Country Status (1)

Country Link
JP (1) JP3734183B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140810A (en) * 1997-07-18 1999-02-12 Hitachi Ltd Controllable conduction device
US5945686A (en) * 1997-04-28 1999-08-31 Hitachi, Ltd. Tunneling electronic device
WO2001006542A3 (en) * 1999-07-16 2001-07-19 Infineon Technologies Ag Method for producing a vertical semiconductor transistor component element and a vertical semiconductor transistor component
US7132713B2 (en) 1997-07-18 2006-11-07 Hitachi, Ltd. Controllable conduction device with electrostatic barrier
JP2015046600A (en) * 2002-09-30 2015-03-12 ナノシス・インク. Large-area nanoenabled macro electronic substrate, and use therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5945686A (en) * 1997-04-28 1999-08-31 Hitachi, Ltd. Tunneling electronic device
US6127246A (en) * 1997-04-28 2000-10-03 Hitachi, Ltd. Method of making an electronic device and the same
US6221720B1 (en) 1997-04-28 2001-04-24 Hitachi, Ltd. Method of making an electronic device and the same
JPH1140810A (en) * 1997-07-18 1999-02-12 Hitachi Ltd Controllable conduction device
US7132713B2 (en) 1997-07-18 2006-11-07 Hitachi, Ltd. Controllable conduction device with electrostatic barrier
WO2001006542A3 (en) * 1999-07-16 2001-07-19 Infineon Technologies Ag Method for producing a vertical semiconductor transistor component element and a vertical semiconductor transistor component
US6909141B2 (en) 1999-07-16 2005-06-21 Infineon Technologies Ag Method for producing a vertical semiconductor transistor component and vertical semiconductor transistor component
JP2015046600A (en) * 2002-09-30 2015-03-12 ナノシス・インク. Large-area nanoenabled macro electronic substrate, and use therefor

Also Published As

Publication number Publication date
JP3734183B2 (en) 2006-01-11

Similar Documents

Publication Publication Date Title
US8569741B2 (en) Electronic arrangements for passivated silicon nanowires
US8641912B2 (en) Method for fabricating monolithic two-dimensional nanostructures
US6570220B2 (en) Fabrication of deep submicron structures and quantum wire transistors using hard-mask transistor width definition
TWI463565B (en) Method for forming top-down solid tantalum nanostructure using conformal nitride and structure thereof
EP2313915B1 (en) A lithographic process using a nanowire mask, and nanoscale devices fabricated using the process
CN101807668A (en) Self-aligned nanotube field effect transistor and method of fabricating same
JP2009513007A (en) Field effect transistor (FET) having reverse source / drain metal contact and method of manufacturing the same
US20100062587A1 (en) Method to manufacture silicon quantum islands and single-electron devices
US9406823B2 (en) Methods for fabricating self-aligning semiconductor hetereostructures using nanowires
CN102354669B (en) Fabrication method of silicon nanowire device
US6221720B1 (en) Method of making an electronic device and the same
JP3734183B2 (en) Electronic device manufacturing method and electronic device
US5972744A (en) Quantum effect device, method of manufacturing the same
US10854724B2 (en) One-dimensional nanostructure growth on graphene and devices thereof
US20060113616A1 (en) Selective spacer layer deposition method for forming spacers with different widths
EP0577137B1 (en) A quantum effect device and a method of producing the same
JP3196858B2 (en) Method for manufacturing semiconductor device
CN116508136A (en) Vertical Field Effect Transistor with Cross-Linked Fin Arrangement
JP2812244B2 (en) Fabrication method of single electron tunnel device
JP3166704B2 (en) Single electronic device and method of manufacturing the same
JP3641092B2 (en) Coulomb blockade element and manufacturing method thereof
JP3107681B2 (en) Etching control method for recess structure FET
JP4648061B2 (en) Electric field modulation type single electron transistor
JPH0590567A (en) One electron tunnel transistor circuit and manufacture thereof
JP3329627B2 (en) Semiconductor element

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051014

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees