JPH08304772A - Driving method for ferroelectric liquid crystal display panel - Google Patents
Driving method for ferroelectric liquid crystal display panelInfo
- Publication number
- JPH08304772A JPH08304772A JP10635695A JP10635695A JPH08304772A JP H08304772 A JPH08304772 A JP H08304772A JP 10635695 A JP10635695 A JP 10635695A JP 10635695 A JP10635695 A JP 10635695A JP H08304772 A JPH08304772 A JP H08304772A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- liquid crystal
- temperature
- driving
- waveform
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000005262 ferroelectric liquid crystals (FLCs) Substances 0.000 title claims abstract description 90
- 238000000034 method Methods 0.000 title claims abstract description 84
- 230000004044 response Effects 0.000 claims abstract description 21
- 239000004973 liquid crystal related substance Substances 0.000 claims abstract description 20
- 239000004990 Smectic liquid crystal Substances 0.000 claims abstract description 7
- 239000000463 material Substances 0.000 abstract description 9
- 230000004043 responsiveness Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- 239000011521 glass Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 230000010287 polarization Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000000565 sealant Substances 0.000 description 3
- 230000002269 spontaneous effect Effects 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 229940125904 compound 1 Drugs 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
- Liquid Crystal Display Device Control (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、強誘電性液晶表示パ
ネルの駆動方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of driving a ferroelectric liquid crystal display panel.
【0002】[0002]
【従来の技術】カイラルスメクチックC相液晶などの強
誘電性液晶は、メモリ性、高速応答性、広視野角などの
優れた特長を有しており、高精細大表示容量の液晶表示
素子への応用が盛んに研究されている。しかしながら、
大画面ディスプレイ等の実用化に際しては、最も大きな
問題の一つとして、駆動特性の温度依存性が挙げられ
る。すなわち、表示パネル内の各部の液晶動作温度は、
周囲温度の影響を受けて分布を生じ、そのディスプレイ
サイズに応じて温度差がより顕著になる。2. Description of the Related Art Ferroelectric liquid crystals such as chiral smectic C-phase liquid crystals have excellent characteristics such as memory property, high-speed response and wide viewing angle, and are suitable for liquid crystal display devices with high definition and large display capacity. The application is being actively studied. However,
One of the biggest problems in putting a large-screen display into practical use is temperature dependency of driving characteristics. That is, the liquid crystal operating temperature of each part in the display panel is
The distribution is generated under the influence of the ambient temperature, and the temperature difference becomes more remarkable depending on the display size.
【0003】その結果、温度依存性の大きな粘性や自発
分極等の材料物性に呼応して応答速度が変化し、駆動条
件を固定したままでは目的の表示状態へ制御ができなく
なり、表示品位を著しく低下させることとなった。As a result, the response speed changes in response to material properties such as viscosity having large temperature dependence and spontaneous polarization, and it becomes impossible to control the display state to the intended state if the driving conditions are fixed, and the display quality is remarkably increased. It will be lowered.
【0004】従来、この問題に対して、印加駆動波形の
パルス幅や、パルス振幅値を調整して温度補償する方法
が検討されてきた。例えば特開昭61−245140号
公報に記載されているように、パルス幅を温度変化に対
して調整する方法などが知られている。また、特開昭6
1−249024号公報に記載されているように、パル
ス振幅値を調整して温度補償を行う方法などが知られて
いる。To solve this problem, a method of adjusting the pulse width of the applied drive waveform or the pulse amplitude value to compensate for the temperature has been studied. For example, as described in Japanese Patent Laid-Open No. 61-245140, there is known a method of adjusting the pulse width with respect to temperature change. In addition, JP-A-6
As described in JP-A 1-249024, there is known a method of adjusting the pulse amplitude value to perform temperature compensation.
【0005】ところで、実用的な駆動電圧下で電圧−応
答速度(τ−V)特性に最小値を示すFLC材料があ
る。このτ−Vmin特性を利用した高速・広マージン
駆動法として、特開平1−24234号公報に記載のも
のなどが知られている。この駆動モードは、一般的に、
温度上昇により応答速度が速くなった場合、パルス幅を
短く、または駆動電圧を高くして、温度補償する。By the way, there is an FLC material which exhibits a minimum value in the voltage-response speed (τ-V) characteristic under a practical driving voltage. As a high-speed / wide-margin driving method utilizing this τ-Vmin characteristic, a method described in Japanese Patent Application Laid-Open No. 1-24234 is known. This drive mode is generally
When the response speed increases due to the temperature rise, the pulse width is shortened or the drive voltage is increased to compensate for the temperature.
【0006】右下がりのτ−Vカーブを有する従来の駆
動モードとは、温度上昇に対して駆動電圧を下げて補償
する点で逆の操作を行う。この理由は、図11に示すよ
うに、τ−Vminカーブが温度上昇につれて右下、す
なわち高電圧側にシフトすることにある。The operation opposite to the conventional drive mode having a τ-V curve that is decreasing to the right is performed in that the drive voltage is reduced and compensated for the temperature rise. The reason for this is that, as shown in FIG. 11, the τ-Vmin curve shifts to the lower right, that is, to the high voltage side as the temperature rises.
【0007】例えば、室温付近で最適な駆動条件に設定
しても、パルス幅だけの温度補償では安定した駆動マー
ジンが得られず、パネル内均一制御が困難になる。特に
温度上昇するにつれて駆動マージンの減少が著しく、パ
ルス振幅値の増大による補償がなければ、安定駆動させ
ることは非常に困難であった。For example, even if the optimum driving conditions are set near room temperature, a stable driving margin cannot be obtained by temperature compensation of only the pulse width, and uniform control within the panel becomes difficult. Particularly, as the temperature rises, the driving margin decreases remarkably, and stable compensation is very difficult without compensation by increasing the pulse amplitude value.
【0008】従来駆動モードと異なる点としては、特開
平1−24234号公報に記載のように、選択期間内の
ストロボ波形における第1スロット部分の振幅値だけを
増減することで、補償を行う方法が提案されている。As a difference from the conventional drive mode, as described in Japanese Patent Laid-Open No. 1-24234, a method of performing compensation by increasing or decreasing only the amplitude value of the first slot portion in the strobe waveform within the selection period. Is proposed.
【0009】[0009]
【発明が解決しようとする課題】しかしながら、いずれ
の振幅変化による補償法にも、実用上大きな問題がある
ことがわかった。まず、複数の異なる電圧値を必要とす
るために駆動回路が複雑化し、コストアップにつながる
こと、また温度上昇時には電圧の増大に加えてパルス幅
の減少(駆動周波数の高周波化)の結果、消費電力が著
しく増大し、パネルからの発熱が問題化してくることが
わかった。本質的に高周波、高電圧駆動は回路への負担
も大きく、耐久性の面でも好ましくない。However, it has been found that any compensation method based on the amplitude change has a serious problem in practical use. First, it requires multiple different voltage values, which complicates the drive circuit, leading to higher costs. Also, when the temperature rises, the voltage is increased and the pulse width is reduced (higher drive frequency), resulting in consumption. It was found that the electric power increased significantly and the heat generated from the panel became a problem. Inherently, high-frequency and high-voltage driving imposes a heavy burden on the circuit and is not preferable in terms of durability.
【0010】以上のことに鑑み、本発明は、走査電極に
温度補償電圧を印加して、FLCパネル内の強誘電性液
晶材料の電圧−応答速度の特性を温度補償することによ
り、駆動条件の高電圧化、高周波数化を大きく低減し、
かつ比較的簡単な方法によって、安価に実現できる強誘
電性液晶表示パネルの駆動方法を提供することを目的と
している。In view of the above, according to the present invention, a temperature compensation voltage is applied to the scanning electrodes to compensate the voltage-response speed characteristics of the ferroelectric liquid crystal material in the FLC panel by temperature compensation. Greatly reduces high voltage and high frequency,
Moreover, it is an object of the present invention to provide a driving method of a ferroelectric liquid crystal display panel which can be realized at low cost by a relatively simple method.
【0011】[0011]
【課題を解決するための手段】この発明は、互いに交差
する方向に配列した走査電極と信号電極との各交差部
に、2つの安定状態を持った強誘電性のスメクチック液
晶を介在させて各画素を構成し、画像情報データに基づ
く信号電圧を信号電極へ印加し、これと同期して選択電
圧波形または非選択電圧波形からなる走査電圧を走査電
極へ印加する強誘電性液晶表示パネルの駆動方法であっ
て、走査電極への選択電圧の印加時期の前あるいは後
に、その印加時期に対しある時間を隔てて、その選択電
圧とは実効的に逆極性の波形の温度補償電圧を走査電極
に印加し、温度によって変動する液晶の応答性を補償す
ることを特徴とする強誘電性液晶表示パネルの駆動方法
である。According to the present invention, a ferroelectric smectic liquid crystal having two stable states is interposed at each intersection of a scanning electrode and a signal electrode arranged in directions intersecting with each other. Driving a ferroelectric liquid crystal display panel that constitutes a pixel, applies a signal voltage based on image information data to a signal electrode, and applies a scanning voltage consisting of a selection voltage waveform or a non-selection voltage waveform to the scanning electrode in synchronization with this. In the method, a temperature compensation voltage having a waveform that is effectively opposite in polarity to the selection voltage is applied to the scan electrode before or after the selection voltage is applied to the scan electrode, with a certain time interval from the application time. A method of driving a ferroelectric liquid crystal display panel, characterized by compensating for the response of a liquid crystal that is applied and fluctuates depending on temperature.
【0012】上記構成においては、選択電圧の印加時期
に対する温度補償電圧の時間の隔たりは、液晶の温度が
高いほど短く、低いほど長く設定されることが好まし
く、また印加する温度補償電圧の波形は、画素状態を変
化させるしきい値以下の振幅値であってもよく、画素状
態を一方の安定状態に書き換えるしきい値以上のパルス
幅と振幅値を有するものであってもよい。In the above structure, the time lag of the temperature compensation voltage with respect to the application timing of the selection voltage is preferably set shorter as the temperature of the liquid crystal is higher and longer as the temperature of the liquid crystal is lower. The amplitude value may be equal to or smaller than the threshold value for changing the pixel state, or may be the pulse width and the amplitude value equal to or larger than the threshold value for rewriting the pixel state to one stable state.
【0013】具体的には、本発明は、選択電圧波形とは
逆極性の電圧波形を、温度変化に応じて調整されたm
(0以上の実数)倍のスロット時間(ts)の間隔をあ
けて走査電極に印加する強誘電性液晶表示パネルの駆動
方法である。Specifically, according to the present invention, a voltage waveform having a polarity opposite to that of the selection voltage waveform is adjusted according to a temperature change.
This is a driving method of a ferroelectric liquid crystal display panel in which a slot time (t s ) times (real number of 0 or more) times is applied at intervals.
【0014】すなわち、選択期間内に印加される波形と
は実効的に逆極性のパルス波形を、手動または温度検出
器を備えた温度制御回路により調整された時間だけ選択
期間前後に印加する。That is, a pulse waveform having an opposite polarity to the waveform applied during the selection period is applied before and after the selection period for a time adjusted manually or by a temperature control circuit having a temperature detector.
【0015】この場合、温度補償電圧の印加タイミング
mの値は、動作温度が高温では0に近く、低温では大き
くすることが好ましい。In this case, the value of the temperature compensation voltage application timing m is preferably close to 0 when the operating temperature is high and is large when the operating temperature is low.
【0016】また、この発明は、互いに交差する方向に
配列した走査電極と信号電極との各交差部に、2つの安
定状態を持った強誘電性のスメクチック液晶を介在させ
て各画素を構成し、画像情報データに基づく信号電圧を
信号電極へ印加し、これと同期して選択電圧波形または
非選択電圧波形からなる走査電圧を走査電極へ印加する
強誘電性液晶表示パネルの駆動方法であって、走査電極
に、選択期間が電圧ゼロの第1期間と、所定電圧の第2
期間からなる波形の電圧を印加するとともに、信号電極
に、少なくとも第1電圧とそれとは逆極性の第2電圧と
の2つの電圧を印加し、第1電圧と第2電圧との切り替
え時期を走査電圧の第1期間の終端と同期させ、この電
圧の切り替え時期を外部信号により変化させることを特
徴とする強誘電性液晶表示パネルの駆動方法である。Further, according to the present invention, each pixel is constructed by interposing a ferroelectric smectic liquid crystal having two stable states at each intersection of a scanning electrode and a signal electrode arranged in a direction intersecting with each other. A method of driving a ferroelectric liquid crystal display panel, wherein a signal voltage based on image information data is applied to a signal electrode, and a scanning voltage having a selection voltage waveform or a non-selection voltage waveform is applied to the scanning electrode in synchronization with the signal voltage. , A first period in which the selection period is zero voltage and a second period in which a predetermined voltage is applied to the scan electrode.
A voltage having a waveform consisting of a period is applied, and at least two voltages, that is, a first voltage and a second voltage having a polarity opposite to that of the first voltage are applied to the signal electrode, and the switching timing of the first voltage and the second voltage is scanned. The method of driving a ferroelectric liquid crystal display panel is characterized in that the voltage switching timing is changed by an external signal in synchronization with the end of the first period of the voltage.
【0017】上記構成においては、電圧の印加に際し、
第1電圧と第2電圧との切り替え時期を、液晶の温度変
化に応じて調整することが好ましく、この場合、選択期
間開始から、第1電圧と第2電圧との切り替え時期まで
の時間を、液晶の温度が高いほど長く、低いほど短く調
整することがより好ましい。In the above structure, when the voltage is applied,
It is preferable to adjust the switching timing of the first voltage and the second voltage according to the temperature change of the liquid crystal, and in this case, the time from the start of the selection period to the switching timing of the first voltage and the second voltage is It is more preferable that the higher the temperature of the liquid crystal is, the longer the temperature is, and the lower the temperature is, the shorter the temperature is adjusted.
【0018】具体的には、本発明は、走査電圧波形及び
信号電圧波形を形成する波形パターンデータをnビット
で記憶保持したメモリ回路から印加電圧信号を順次読み
出す駆動方法であって、走査電圧波形が、第1電圧を構
成するnより小さいビット数iが電圧ゼロであり、かつ
第2電圧を構成する(n−i)ビットが電圧|V1|で
あり、また、信号電圧波形が、第1電圧を構成するiビ
ットが電圧|V0|で、第2電圧を構成する(n/2)
ビットが第1電圧と逆極性の電圧|V0|で、第3電圧
を構成する(n/2−i)ビットが第1電圧と同極性の
電圧|V0|であって、iの値を温度制御信号等により
調整する強誘電性液晶表示パネルの駆動方法である。Specifically, the present invention is a driving method for sequentially reading an applied voltage signal from a memory circuit in which waveform pattern data forming a scanning voltage waveform and a signal voltage waveform is stored and held in n bits. However, the number i of bits smaller than n forming the first voltage is zero, the (n−i) bit forming the second voltage is voltage | V1 |, and the signal voltage waveform is the first The i bit forming the voltage is the voltage | V0 | and forms the second voltage (n / 2)
The bit is a voltage | V0 | having a polarity opposite to the first voltage, and the (n / 2-i) bit forming the third voltage is a voltage | V0 | having the same polarity as the first voltage, and the value of i is the temperature. This is a method of driving a ferroelectric liquid crystal display panel, which is adjusted by a control signal or the like.
【0019】この場合、印加波形パターンを決めるiの
値は、高温ではnに近く、低温では0に近づけることが
好ましい。また、従来のパルス幅や駆動電圧による補償
法と併用してもよい。In this case, it is preferable that the value of i that determines the applied waveform pattern is close to n at high temperature and close to 0 at low temperature. Further, it may be used in combination with a conventional compensation method using a pulse width or a driving voltage.
【0020】さらに、この発明は、上記2つの駆動方法
とを同時に用いて、強誘電性液晶表示パネルを駆動する
ことを特徴とする強誘電性液晶表示パネルの駆動方法で
ある。Furthermore, the present invention is a method for driving a ferroelectric liquid crystal display panel, characterized in that the ferroelectric liquid crystal display panel is driven by simultaneously using the above two driving methods.
【0021】[0021]
【作用】この発明によれば、温度補償電圧を印加した
り、走査電極と信号電極に印加する電圧波形の比率を変
化させることにより、高温領域において、駆動電圧の高
電圧化や駆動周波数の高周波化を抑えることができ、消
費電力の増大や発熱の問題を改善し、かつ表示品位及び
耐久性を向上させることができる。According to the present invention, by applying the temperature compensating voltage or changing the ratio of the voltage waveform applied to the scanning electrode and the signal electrode, the driving voltage is increased and the driving frequency is increased in the high temperature region. It is possible to suppress the increase in power consumption, improve the problem of increased power consumption and heat generation, and improve the display quality and durability.
【0022】本発明の駆動方法は、強誘電性液晶の分子
の位置を選択期間前後及び選択期間内で制御して、応答
速度が変化することを利用したものである。印加電圧と
応答速度との関係において応答速度が最小となる特定の
印加電圧Vminを有する(τ−Vmin特性)強誘電
性液晶は、誘電異方性が駆動特性に大きな影響を与えて
いることが知られている。The driving method of the present invention utilizes the fact that the response speed changes by controlling the position of the molecules of the ferroelectric liquid crystal before and after the selection period and within the selection period. Regarding the ferroelectric liquid crystal having a specific applied voltage Vmin that minimizes the response speed in the relationship between the applied voltage and the response speed (τ-Vmin characteristic), the dielectric anisotropy has a great influence on the drive characteristics. Are known.
【0023】従来における温度補償駆動方法は、強誘電
性液晶のスイッチング機構において自発分極が最も支配
的であるために、パルス幅とパルス振幅値の2パラメー
タを調整し、それにより液晶材料のスイッチングしきい
値変動に追従させることが基本的方法となっていた。そ
のため、特に高温領域での駆動条件が高電圧、高周波数
になることを抑制する有効な方法がなかった。In the conventional temperature compensation driving method, since the spontaneous polarization is most dominant in the switching mechanism of the ferroelectric liquid crystal, two parameters of the pulse width and the pulse amplitude value are adjusted to switch the liquid crystal material. The basic method was to follow the change in the threshold value. Therefore, there has been no effective method of suppressing the driving conditions from becoming a high voltage and a high frequency particularly in a high temperature region.
【0024】本発明の第1の強誘電性液晶表示パネルの
駆動方法では、選択期間におけるスイッチング制御前に
あらかじめ逆極性の電界を印加し、局所的な電圧実効値
を制御することができる。誘電異方性が負の強誘電性液
晶の場合、電圧実効値が大きいとみかけのチルト角が大
きくなり、応答速度を抑制することができる。In the first method for driving a ferroelectric liquid crystal display panel of the present invention, an electric field of opposite polarity can be applied in advance before switching control in the selection period to control the local effective voltage value. In the case of a ferroelectric liquid crystal having a negative dielectric anisotropy, the apparent tilt angle becomes large when the voltage effective value is large, and the response speed can be suppressed.
【0025】さらに、選択期間に近いタイミングで温度
補償パルス電圧を印加した場合には、このパルス電圧に
応答して分子ダイレクタ位置が選択期間内のスイッチン
グ方向と逆の方向に移動し、電圧実効値に加えて応答速
度へ影響を与えることができる。Further, when the temperature compensation pulse voltage is applied at a timing close to the selection period, the position of the molecular director moves in the direction opposite to the switching direction within the selection period in response to this pulse voltage, and the effective voltage value is increased. In addition, the response speed can be affected.
【0026】すなわち、高温動作領域では、局所的な電
圧実効値を大きくし、かつ自発分極により温度補償パル
ス電圧で選択電圧を印加する前の液晶分子の位置をスイ
ッチング方向とは逆方向に移動させておく。その結果、
パルス幅や振幅値の調整なしでも、温度補償パルス電圧
の印加タイミングの調整のみで、温度補償効果を得るこ
とができる。この他に、補償電圧の効果が現れる理由と
して、液晶層内のイオン挙動なども関っていると考えら
れるが詳細は分かっていない。That is, in the high temperature operation region, the local voltage effective value is increased and the position of the liquid crystal molecule before the selection voltage is applied by the temperature compensation pulse voltage by spontaneous polarization is moved in the direction opposite to the switching direction. Keep it. as a result,
The temperature compensation effect can be obtained only by adjusting the application timing of the temperature compensation pulse voltage without adjusting the pulse width or the amplitude value. Other than this, the reason why the effect of the compensation voltage appears is considered to be related to the ionic behavior in the liquid crystal layer, but the details are not known.
【0027】また、本発明の第2の強誘電性液晶表示パ
ネルの駆動方法では、選択期間内における波形パターン
を変化させている。τ−Vmin駆動法の大きな特徴
は、モノパルス駆動でも大きな駆動領域が得られる点で
ある。画素状態を書き換えたい時には第1電圧と第2電
圧を同極性にし、画素状態を保持したい時には第1電圧
と第2電圧を逆極性にすることで、両者の駆動電圧によ
る応答速度が大きく変わることが分かっている。Further, in the second method for driving the ferroelectric liquid crystal display panel of the present invention, the waveform pattern in the selection period is changed. A major feature of the τ-Vmin driving method is that a large driving area can be obtained even with monopulse driving. When the pixel state is desired to be rewritten, the first voltage and the second voltage have the same polarity, and when the pixel state is desired to be retained, the first voltage and the second voltage have opposite polarities, so that the response speeds of both drive voltages change significantly. I know.
【0028】一方、液晶の温度変化に対して駆動電圧を
変えないと、材料特性のVminが変動するため、高温
部では駆動領域が狭まり、低温部では駆動領域が広がる
傾向がある。本発明では、液晶の温度変化に応じて選択
期間内のゼロ電圧部の割合を調整し、高温領域では大き
く、低温領域では小さくして、必要十分な駆動マージン
を確保するよう調整している。特に、低温部では選択期
間内の書き換えパルス面積を大きくできるため、応答速
度の低下を補償することができる。On the other hand, if the drive voltage is not changed with respect to the temperature change of the liquid crystal, the Vmin of the material characteristics fluctuates, so that the drive region tends to narrow in the high temperature part and wide in the low temperature part. In the present invention, the proportion of the zero voltage portion within the selection period is adjusted according to the temperature change of the liquid crystal, and is adjusted to be large in the high temperature region and small in the low temperature region to ensure a necessary and sufficient drive margin. In particular, since the rewriting pulse area in the selection period can be increased in the low temperature portion, the reduction in response speed can be compensated.
【0029】[0029]
【実施例】以下、図面に示す実施例1〜4に基づいてこ
の発明を詳述する。なお、これによってこの発明が限定
されるものではない。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to Embodiments 1 to 4 shown in the drawings. The present invention is not limited to this.
【0030】〔実施例1〕図1は本発明の駆動方法に使
用される強誘電性液晶表示パネル(以下「FLCパネ
ル」という)の概略的な構成を示す断面図である。[Embodiment 1] FIG. 1 is a sectional view showing a schematic structure of a ferroelectric liquid crystal display panel (hereinafter referred to as "FLC panel") used in a driving method of the present invention.
【0031】このFLCパネル1は、2枚のガラス基板
2a,2bが互いに対向して配置され、一方のガラス基
板2aの表面には、インジウム錫酸化物(以下「IT
O」と略称する)からなる透明な信号電極Sが複数本互
いに平行に配置され、その上は、SiO2からなる透明
な絶縁膜3aが形成されている。In this FLC panel 1, two glass substrates 2a and 2b are arranged so as to face each other, and indium tin oxide (hereinafter referred to as "IT") is formed on the surface of one glass substrate 2a.
A plurality of transparent signal electrodes S made of "O" are arranged in parallel with each other, and a transparent insulating film 3a made of SiO 2 is formed thereon.
【0032】信号電極Sと対向するもう一方のガラス基
板2bの表面には、ITOからなる透明な走査電極L
が、信号電極Sと直交する向きに複数本互いに平行に配
置されており、その上は、SiO2からなる透明な絶縁
膜3bで被覆されている。各絶縁膜3a,3b上には、
ラビング処理により一軸配向処理が施された配向膜4
a,4bが形成される。配向膜4a,4bとしては、ポ
リイミド膜、またはポリビニルアルコールの有機高分子
膜が用いられる。On the surface of the other glass substrate 2b facing the signal electrode S, a transparent scanning electrode L made of ITO is formed.
Are arranged in parallel to each other in a direction orthogonal to the signal electrode S, and a transparent insulating film 3b made of SiO 2 is covered thereover. On each insulating film 3a, 3b,
Alignment film 4 uniaxially oriented by rubbing
a and 4b are formed. A polyimide film or an organic polymer film of polyvinyl alcohol is used as the alignment films 4a and 4b.
【0033】この2枚のガラス基板2a,2bは、一部
に注入口を残して封止剤5で貼り合わされ、その注入口
から配向膜4a,4bで挟まれる空間内にスメクチック
液晶である強誘電性液晶6が注入され、その注入口は封
止剤5で封止される。このようにして貼り合わせた2枚
のガラス基板2a,2bは、互いに偏光軸が直交するよ
うに配置した2枚の偏光板7a,7bで挟まれている。The two glass substrates 2a and 2b are bonded together with a sealant 5 leaving an injection port in a part, and a strong smectic liquid crystal is formed in the space sandwiched between the alignment films 4a and 4b from the injection port. Dielectric liquid crystal 6 is injected, and the injection port is sealed with sealant 5. The two glass substrates 2a and 2b thus bonded together are sandwiched by two polarizing plates 7a and 7b arranged so that their polarization axes are orthogonal to each other.
【0034】本実施例で用いた強誘電性液晶6の材料
は、メルク社製のFLC混合物SCE8にアキラル液晶
化合物1を10wt%添加したものであり、配向膜4
a,4bはチッソ社製のPSI−A−2101である。
このFLCパネルの電圧−応答速度の温度特性は図2に
示す通りである。The material of the ferroelectric liquid crystal 6 used in this example is the FLC mixture SCE8 manufactured by Merck & Co., Ltd. to which 10 wt% of the achiral liquid crystal compound 1 is added, and the alignment film 4 is used.
a and 4b are PSI-A-2101 manufactured by Chisso Corporation.
The temperature characteristic of voltage-response speed of this FLC panel is as shown in FIG.
【0035】図3はFLCパネルの概略的な構成を示す
平面図である。この図において、走査電極Lの各々は符
号Lに添字i(i=0〜F)を付加して区別し、信号電
極Sの各々は符号Sに添字j(j=0〜F)を付加して
区別している。また、以降の説明では、任意の走査電極
Liと任意の信号電極Sjが交差する部分の画素を符号
Aijで表わすものとする。FIG. 3 is a plan view showing a schematic structure of the FLC panel. In this figure, each of the scanning electrodes L is distinguished by adding a subscript i (i = 0 to F) to the code L, and each of the signal electrodes S is added to the code S by a subscript j (j = 0 to F). To distinguish. Further, in the following description, a pixel at a portion where an arbitrary scan electrode Li and an arbitrary signal electrode Sj intersect is represented by a symbol Aij.
【0036】この図に示すように、FLCパネル1の走
査電極Lには、走査側駆動回路8が接続され、信号電極
Sには、信号側駆動回路9が接続されている。As shown in the figure, the scanning electrode L of the FLC panel 1 is connected to the scanning side drive circuit 8, and the signal electrode S is connected to the signal side drive circuit 9.
【0037】走査側駆動回路8は、走査電極Lに電圧を
印加するための回路であり、シフトレジスタ10aとラ
ッチ11aとアナログスイッチ12aから構成され、Y
0,Y1信号により、選択電圧VC1、非選択電圧VC
0、温度補償電圧VC2のいずれかの電圧を走査電極L
に印加する。The scanning side driving circuit 8 is a circuit for applying a voltage to the scanning electrode L, and is composed of a shift register 10a, a latch 11a and an analog switch 12a, and Y
0 and Y1 signals, select voltage VC1, non-select voltage VC
0 or the temperature compensation voltage VC2 is applied to the scan electrode L.
Apply to.
【0038】また、信号側駆動回路9は、信号電極Sに
電圧を印加するための回路であり、シフトレジスタ10
bとラッチ11bとアナログスイッチ12bから構成さ
れ、例えば黒を表示する場合には、黒書き換え電圧VS
1を印加し、白を表示する場合には白書き換え電圧VS
0を印加する。The signal side drive circuit 9 is a circuit for applying a voltage to the signal electrode S, and the shift register 10
b, a latch 11b, and an analog switch 12b, for example, when displaying black, the black rewriting voltage VS
When 1 is applied and white is displayed, the white rewriting voltage VS
0 is applied.
【0039】図4は本発明の駆動方法でFLCパネルを
駆動するための温度検出回路を含むFLC表示装置の概
略的な構成を示すブロック図である。FIG. 4 is a block diagram showing a schematic structure of an FLC display device including a temperature detection circuit for driving an FLC panel by the driving method of the present invention.
【0040】この図において、1はFLCパネル、22
はFLCパネル1に設けられた温度センサ、23は温度
センサ22によって検出された温度に基づいて温度補償
電圧の印加タイミング信号を出力する温度補償回路、2
4は走査電圧波形及び信号電圧波形を形成するための波
形パターンデータを偶数のnビットで記憶保持したメモ
リ回路、25は温度補償回路23の信号とメモリ回路2
4からの信号に基づいてFLCパネル1に駆動電圧波形
を与える駆動電圧波形制御回路である。この駆動電圧波
形制御回路25は、上述の走査側駆動回路8と信号側駆
動回路9を含むものである。In this figure, 1 is an FLC panel, 22
Is a temperature sensor provided in the FLC panel 1, 23 is a temperature compensation circuit that outputs an application timing signal of a temperature compensation voltage based on the temperature detected by the temperature sensor 22, 2
Reference numeral 4 denotes a memory circuit that stores and holds waveform pattern data for forming a scanning voltage waveform and a signal voltage waveform in an even number of n bits, and 25 denotes a signal of the temperature compensation circuit 23 and the memory circuit 2.
4 is a drive voltage waveform control circuit for applying a drive voltage waveform to the FLC panel 1 based on the signal from the signal No. 4. The drive voltage waveform control circuit 25 includes the scan side drive circuit 8 and the signal side drive circuit 9 described above.
【0041】本実施例の温度補償は、温度によって変化
するFLCパネル1内の液晶材料の電圧−応答速度の特
性を補償するものである。The temperature compensation of this embodiment compensates for the voltage-response speed characteristic of the liquid crystal material in the FLC panel 1 which changes with temperature.
【0042】このFLC表示装置では、選択電圧波形と
は逆極性の温度補償電圧波形を、温度変化に応じて調整
されたm(mは0以上の実数)倍のスロット時間(t
s)の間隔をあけて走査電極Lに印加する駆動方法で、
FLCパネル1を駆動し、温度補償を行うことが可能で
ある。以下、この駆動方法を補償電圧別途印加駆動方法
という。In this FLC display device, a temperature compensation voltage waveform having a polarity opposite to that of the selection voltage waveform is multiplied by m (m is a real number of 0 or more) times the slot time (t) adjusted according to the temperature change.
s) is applied to the scanning electrodes L at intervals,
It is possible to drive the FLC panel 1 and perform temperature compensation. Hereinafter, this driving method will be referred to as a compensation voltage separate application driving method.
【0043】また、走査電圧波形及び信号電圧波形を形
成する波形パターンデータを偶数のn(nは偶数の整
数)ビットで記憶保持したメモリ回路4から印加電圧信
号を順次読み出す駆動方法であって、走査電圧波形が、
第1電圧を構成するnより小さいビット数i(iはnよ
り小さい偶数の整数)が電圧ゼロであり、かつ第2電圧
を構成する(n−i)ビットが電圧|V1|であり、信
号電圧波形が、第1電圧を構成するiビットが電圧|V
0|で、第2電圧を構成する(n/2)ビットが第1電
圧と逆極性の電圧|V0|で、第3電圧を構成する(n
/2−i)ビットが第1電圧と同極性の電圧|V0|で
あって、iの値を温度制御信号等により調整する駆動方
法で、FLCパネル1を駆動し、温度補償を行うことが
可能である。以下、この駆動方法を補償電圧合成印加駆
動方法という。A driving method for sequentially reading the applied voltage signal from the memory circuit 4 in which the waveform pattern data forming the scanning voltage waveform and the signal voltage waveform is stored and held in even n (n is an even integer) bits, The scanning voltage waveform is
The number i of bits smaller than n forming the first voltage (i is an even integer smaller than n) is zero voltage, and the (n−i) bits forming the second voltage is voltage | V1 | In the voltage waveform, the i bit forming the first voltage is the voltage | V
0 | constitutes the second voltage, and the (n / 2) bit constituting the third voltage is the voltage | V0 | having the opposite polarity to the first voltage.
/ 2-i) The bit is a voltage | V0 | having the same polarity as the first voltage, and the FLC panel 1 can be driven and temperature compensation can be performed by a driving method in which the value of i is adjusted by a temperature control signal or the like. It is possible. Hereinafter, this driving method is referred to as a compensation voltage synthesis application driving method.
【0044】さらに、上記補償電圧別途印加駆動方法と
補償電圧合成印加駆動方法との双方の駆動方法を組み合
わせて、FLCパネル1を駆動し、温度補償を行うこと
が可能である。以下、この駆動方法を補償電圧組み合わ
せ印加駆動方法という。Furthermore, it is possible to drive the FLC panel 1 and perform temperature compensation by combining both of the above-mentioned separate driving method of compensation voltage and driving method of combined compensation voltage. Hereinafter, this driving method is referred to as a compensation voltage combination application driving method.
【0045】このFLC表示装置を用いて、補償電圧別
途印加駆動方法でFLCパネル1を駆動する場合には、
メモリ回路24は用いず、温度補償回路23と駆動電圧
波形制御回路25を用いる。When this FLC display device is used to drive the FLC panel 1 by the method of separately applying compensation voltage,
The memory circuit 24 is not used, but the temperature compensation circuit 23 and the drive voltage waveform control circuit 25 are used.
【0046】すなわち、FLCパネル1に備え付けた温
度センサ22からの信号を温度補償回路23へ伝送し、
ここであらかじめ設定された温度補償パラメータに変換
した後、駆動電圧波形制御回路25へ温度補償電圧の印
加タイミング信号を伝送し、これに基づいて、駆動電圧
波形制御回路25からFLCパネル1に駆動電圧波形を
与える。That is, the signal from the temperature sensor 22 provided in the FLC panel 1 is transmitted to the temperature compensation circuit 23,
Here, after converting to the temperature compensation parameter set in advance, the timing signal for applying the temperature compensation voltage is transmitted to the drive voltage waveform control circuit 25, and based on this, the drive voltage waveform control circuit 25 drives the FLC panel 1 to drive voltage. Give a waveform.
【0047】また、このFLC表示装置を用いて、補償
電圧合成印加駆動方法でFLCパネル1を駆動する場合
には、温度補償回路23とメモリ回路24と駆動電圧波
形制御回路25を用いる。When the FLC panel 1 is driven by this FLC display device by the compensation voltage synthesis application driving method, the temperature compensation circuit 23, the memory circuit 24, and the drive voltage waveform control circuit 25 are used.
【0048】すなわち、FLCパネル1に備え付けた温
度センサ22からの信号を温度補償回路23へ伝送し、
温度補償回路23により、メモリ回路24からの出力波
形をコントロールする。つまり、メモリ回路24には、
走査側駆動回路8と信号側駆動回路9のアナログスイッ
チ12a,12bへ供給される電圧VCおよび電圧VS
の波形パターンを保持しているので、この出力パターン
を温度補償回路23によりコントロールし、これに基づ
いて、駆動電圧波形制御回路25からFLCパネル1に
駆動電圧波形を与える。That is, the signal from the temperature sensor 22 provided in the FLC panel 1 is transmitted to the temperature compensation circuit 23,
The temperature compensation circuit 23 controls the output waveform from the memory circuit 24. That is, in the memory circuit 24,
The voltage VC and the voltage VS supplied to the analog switches 12a and 12b of the scanning side driving circuit 8 and the signal side driving circuit 9.
Since the output voltage pattern is held, the output voltage pattern is controlled by the temperature compensating circuit 23, and the driving voltage waveform is applied from the driving voltage waveform control circuit 25 to the FLC panel 1 based on this.
【0049】さらに、このFLC表示装置を用いて、補
償電圧組み合わせ印加駆動方法でFLCパネル1を駆動
する場合には、温度補償回路23とメモリ回路24と駆
動電圧波形制御回路25を用い、駆動電圧波形制御回路
25からFLCパネル1に対し、補償電圧別途印加駆動
方法と補償電圧合成印加駆動方法とを組み合わせた駆動
電圧波形を与える。Further, when the FLC panel 1 is driven by the compensation voltage combination application driving method using this FLC display device, the temperature compensation circuit 23, the memory circuit 24 and the drive voltage waveform control circuit 25 are used to drive the drive voltage. The waveform control circuit 25 provides the FLC panel 1 with a drive voltage waveform that is a combination of the separate compensation voltage application drive method and the compensation voltage composite application drive method.
【0050】図5及び図6は補償電圧別途印加駆動方法
でFLCパネルを駆動する場合の走査電極と信号電極と
画素に印加される電圧波形を示した波形図である。図5
は黒書き換え用の電圧波形を示し、図6は白書き換え用
の電圧波形を示している。5 and 6 are waveform diagrams showing voltage waveforms applied to the scanning electrodes, the signal electrodes and the pixels when the FLC panel is driven by the separate compensation voltage driving method. Figure 5
Shows a voltage waveform for black rewriting, and FIG. 6 shows a voltage waveform for white rewriting.
【0051】これらの図に示すように、黒書き換え時に
は、走査電極Lに対して、選択期間には図5の(1)の
選択電圧波形を、非選択期間には図5の(2)の非選択
電圧波形を、温度補償期間には図5の(3)の温度補償
電圧波形を印加する。As shown in these figures, at the time of black rewriting, for the scanning electrode L, the selection voltage waveform of (1) of FIG. 5 is selected during the selection period, and the selection voltage waveform of (2) of FIG. 5 is selected during the non-selection period. As the non-selection voltage waveform, the temperature compensation voltage waveform of (3) in FIG. 5 is applied during the temperature compensation period.
【0052】この図5の(3)の温度補償電圧波形を印
加するまでの期間を、図4に示した温度補償回路23に
より決定し、駆動電圧波形制御回路25によりコントロ
ールして、FLCパネル1に駆動電圧波形及び温度補償
電圧波形を与える。The period until the temperature compensating voltage waveform of (3) in FIG. 5 is applied is determined by the temperature compensating circuit 23 shown in FIG. A drive voltage waveform and a temperature compensation voltage waveform are given to.
【0053】また、白書き換え時には、走査電極Lに対
して、選択期間には図6の(1)の選択電圧波形を、非
選択期間には図6の(2)の非選択電圧波形を、温度補
償期間には図6の(3)の温度補償電圧波形を印加す
る。Further, at the time of white rewriting, for the scanning electrode L, the selection voltage waveform of (1) of FIG. 6 is selected during the selection period, and the non-selection voltage waveform of (2) of FIG. 6 is selected during the non-selection period. During the temperature compensation period, the temperature compensation voltage waveform of (3) in FIG. 6 is applied.
【0054】そして、この図6の(3)の温度補償電圧
波形を印加するまでの期間を図4に示した温度補償回路
23により決定し、駆動電圧波形制御回路25によりコ
ントロールして、FLCパネル1に駆動電圧波形及び温
度補償電圧波形を与える。Then, the period until the temperature compensating voltage waveform of (3) in FIG. 6 is applied is determined by the temperature compensating circuit 23 shown in FIG. 4, and is controlled by the drive voltage waveform controlling circuit 25 to make the FLC panel. 1, the drive voltage waveform and the temperature compensation voltage waveform are given.
【0055】このように、図5に示した電圧波形を黒書
き換えに使用し、図6に示した電圧波形を白書き換えに
使用することで、駆動特性の温度補償を行いながら、F
LCパネル1を目的の画素情報に書き換えることができ
る。As described above, the voltage waveform shown in FIG. 5 is used for black rewriting and the voltage waveform shown in FIG. 6 is used for white rewriting, so that F
The LC panel 1 can be rewritten with the target pixel information.
【0056】ここで、図5の(3)および図6の(3)
で示した温度補償電圧波形は、画素状態を変化させるし
きい値以下の電圧である。また、本実施例では、温度補
償電圧波形は、選択電圧波形の前に印加したが、温度補
償の状況に応じて、選択電圧波形の後に印加するように
してもよい。Here, (3) in FIG. 5 and (3) in FIG.
The temperature compensation voltage waveform indicated by is a voltage equal to or lower than the threshold value that changes the pixel state. Further, in the present embodiment, the temperature compensation voltage waveform is applied before the selection voltage waveform, but it may be applied after the selection voltage waveform depending on the temperature compensation situation.
【0057】本駆動電圧波形を用いて本FLC表示装置
を動作させた場合に、実際に画素Aijに印加される走
査信号側の駆動電圧波形を図7の(a)に示す。図7の
(a)の駆動電圧波形を用いて、温度が高くなった場合
には、温度補償電圧波形との間隔m×ts(ts:スロ
ットパルス幅、mは0以上の実数)を小さくし、温度が
低くなった場合には、温度補償電圧波形との間隔m×t
sを大きくして、本FLC表示装置を動作させた。FIG. 7A shows a drive voltage waveform on the scanning signal side that is actually applied to the pixel Aij when the present FLC display device is operated using the main drive voltage waveform. Using the drive voltage waveform of FIG. 7A, when the temperature rises, the interval m × ts (ts: slot pulse width, m is a real number of 0 or more) with the temperature compensation voltage waveform is reduced. , When the temperature becomes low, the distance m × t from the temperature compensation voltage waveform
This FLC display device was operated by increasing s.
【0058】このようにして、本FLC表示装置を動作
させたところ、温度補償電圧のない通常の駆動方法と比
較して、高温側で5℃以上広い動作温度領域で駆動条件
を得ることができた。When the present FLC display device is operated in this manner, driving conditions can be obtained in a wide operating temperature range of 5 ° C. or more on the high temperature side, as compared with a normal driving method without a temperature compensation voltage. It was
【0059】〔実施例2〕本実施例で用いたFLC表示
装置は、実施例1と同じものである。実施例1の補償電
圧別途印加駆動方法は、温度補償電圧を除くと特開平1
−24234号公報に記載の方法と同じであるが、温度
補償電圧の効果はこの駆動方法に限定されるものではな
く、特開平5−249434号公報に記載のブランキン
グパルスを用いた駆動方法においても適用可能であっ
た。この駆動電圧波形を図7の(b)に示す。[Embodiment 2] The FLC display device used in this embodiment is the same as that in Embodiment 1. The method for separately applying the compensation voltage according to the first embodiment excludes the temperature compensation voltage.
However, the effect of the temperature compensation voltage is not limited to this driving method, and in the driving method using the blanking pulse described in JP-A-5-249434. Was also applicable. This drive voltage waveform is shown in FIG.
【0060】ここで印加した温度補償電圧波形は、画素
状態を変化させるしきい値以下の電圧である。また、こ
の温度補償電圧波形は、温度補償の状況に応じて、選択
電圧波形の前又は後に印加する。The temperature compensation voltage waveform applied here is a voltage equal to or lower than the threshold value for changing the pixel state. Further, this temperature compensation voltage waveform is applied before or after the selection voltage waveform depending on the situation of temperature compensation.
【0061】図7の(b)の駆動電圧波形を用いて、温
度が高くなった場合には、温度補償電圧波形との間隔m
×tsを小さくし、温度が低くなった場合には、温度補
償電圧波形との間隔m×tsを大きくして、本FLC表
示装置を動作させたところ、温度補償電圧を用いない通
常の駆動法と比べて、3℃以上広い駆動条件を得ること
ができた。Using the drive voltage waveform of FIG. 7B, when the temperature rises, the distance m from the temperature compensation voltage waveform is m.
When × ts is decreased and the temperature is lowered, the interval m × ts with the temperature compensation voltage waveform is increased and the FLC display device is operated. As a result, a normal driving method using no temperature compensation voltage is used. Compared with, it was possible to obtain a wider driving condition than 3 ° C.
【0062】なお、選択期間後(選択電圧波形印加後)
に温度補償電圧を用いる必要がないFLC材料であれ
ば、ブランキングパルス自身を温度補償電圧とし、図4
に示した温度補償回路23によりブランキング間隔を調
整して、温度補償に用いることができる。After the selection period (after applying the selection voltage waveform)
If the FLC material does not need to use the temperature compensation voltage, the blanking pulse itself is used as the temperature compensation voltage.
The blanking interval can be adjusted by the temperature compensation circuit 23 shown in FIG.
【0063】このように、ブランキングパルス自身を温
度補償電圧として用いる場合には、印加する温度補償電
圧波形は、画素全体を一方の安定状態に書き換えるしき
い値以上のパルス幅と振幅値を有したものである。As described above, when the blanking pulse itself is used as the temperature compensation voltage, the temperature compensation voltage waveform to be applied has a pulse width and an amplitude value equal to or more than the threshold value for rewriting the entire pixel into one stable state. It was done.
【0064】〔実施例3〕図8及び図9は補償電圧合成
印加駆動方法でFLCパネルを駆動する場合の走査電極
と信号電極と画素に印加される電圧波形を示した波形図
である。図8は信号電極に印加される信号側電圧波形が
書き換え用の電圧波形を示し、図9は非書き換え用の電
圧波形を示している。本実施例で用いたFLC表示装置
は、実施例1と同じものであるので、その説明は省略す
る。[Embodiment 3] FIGS. 8 and 9 are waveform charts showing voltage waveforms applied to the scanning electrodes, the signal electrodes and the pixels when the FLC panel is driven by the compensation voltage synthesis application driving method. FIG. 8 shows a voltage waveform for rewriting the signal side voltage waveform applied to the signal electrode, and FIG. 9 shows a voltage waveform for non-rewriting. The FLC display device used in this example is the same as that in Example 1, and therefore its description is omitted.
【0065】この補償電圧合成印加駆動方法において
は、温度補償回路23により、走査側駆動回路8と信号
側駆動回路9のアナログスイッチ12a,12bへ供給
される電圧VCおよび電圧VSの波形パターンを保持し
ているメモリ回路24の出力パターンをコントロールす
る。In this compensating voltage composition application driving method, the temperature compensating circuit 23 holds the waveform patterns of the voltage VC and the voltage VS supplied to the analog switches 12a and 12b of the scanning side driving circuit 8 and the signal side driving circuit 9. The output pattern of the operating memory circuit 24 is controlled.
【0066】すなわち、この補償電圧合成印加駆動方法
では、走査電圧波形が、第1電圧を構成するnより小さ
いビット数iが電圧ゼロであり、かつ第2電圧を構成す
る(n−i)ビットが電圧|V1|であり、また信号電
圧波形が、第1電圧を構成するiビットが電圧|V0|
で、第2電圧を構成する(n/2)ビットが第1電圧と
逆極性の電圧|V0|で、第3電圧を構成する(n/2
−i)ビットが第1電圧と同極性の電圧|V0|であっ
て、印加波形パターンを決めるiの値は、高温ではnに
近く、低温では0に近づけるようにしている。That is, in this compensation voltage synthesis application driving method, the scanning voltage waveform has a bit number i smaller than n forming the first voltage and having a voltage of zero, and (n−i) bits forming the second voltage. Is the voltage | V1 |, and the signal voltage waveform is such that the i bit forming the first voltage has the voltage | V0 |
Then, the (n / 2) bit forming the second voltage is a voltage | V0 | having a polarity opposite to that of the first voltage and forming a third voltage (n / 2).
-I) The bit is a voltage | V0 | having the same polarity as the first voltage, and the value of i that determines the applied waveform pattern is close to n at high temperatures and close to 0 at low temperatures.
【0067】具体的には、図8および図9に示すよう
に、選択時間幅の波形パターンデータを24ビットに分
解して保持し、温度変化に応じて駆動電圧波形のパター
ンを波形パターン(a)〜波形パターン(e)に変えら
れるようにしている。Specifically, as shown in FIGS. 8 and 9, the waveform pattern data of the selected time width is decomposed into 24 bits and held, and the drive voltage waveform pattern is converted into the waveform pattern (a ) -Wave pattern (e) can be changed.
【0068】駆動温度が低い場合には、駆動電圧波形の
パターンを、波形パターン(a)に近づけ、駆動温度が
高い場合には、波形パターンデータをシフトおよびロー
テイトさせて、駆動電圧波形のパターンを、波形パター
ン(e)に近づけるようにした。When the driving temperature is low, the pattern of the driving voltage waveform is brought close to the waveform pattern (a), and when the driving temperature is high, the waveform pattern data is shifted and rotated to change the driving voltage waveform pattern. , So as to be close to the waveform pattern (e).
【0069】ただし、波形パターン(e)は、走査側電
極に波形が存在しないため駆動条件を得られず、実際に
使用されることはない。本実施例では、24ビット中4
ビット以上電圧V1がないと駆動できなかった。実際に
画素Aijに印加した駆動電圧波形を図10に示す。However, the waveform pattern (e) is not actually used because the driving condition cannot be obtained because the waveform does not exist on the scanning side electrode. In this embodiment, 4 out of 24 bits
It could not be driven unless the voltage V1 was more than a bit. The driving voltage waveform actually applied to the pixel Aij is shown in FIG.
【0070】図10を含めた温度補償駆動電圧波形を用
いることで、温度が変化しても、波形パターン(c)の
波形のみ使用する従来駆動方法と比較して、5℃以上動
作温度領域を広げることができた。By using the temperature-compensated drive voltage waveform including FIG. 10, even if the temperature changes, the operating temperature range of 5 ° C. or more can be maintained as compared with the conventional drive method in which only the waveform of the waveform pattern (c) is used. I was able to spread it.
【0071】〔実施例4〕本実施例では、本FLC表示
装置を用いて、補償電圧組み合わせ印加駆動方法でFL
Cパネル1を駆動した。すなわち、実施例1で用いた補
償電圧別途印加駆動方法と、実施例3で用いた補償電圧
合成印加駆動方法とを同時に使用し、温度補償回路23
とメモリ回路24と駆動電圧波形制御回路25を用い
て、駆動電圧波形制御回路25からFLCパネル1に対
し、補償電圧別途印加駆動方法と補償電圧合成印加駆動
方法とを組み合わせた駆動電圧波形を与えた。[Embodiment 4] In the present embodiment, the FLC display device of the present invention is used to perform FL with a compensation voltage combination application driving method.
C panel 1 was driven. That is, the temperature compensation circuit 23 is used by simultaneously using the separate compensation voltage driving method used in the first embodiment and the compensation voltage synthesis application driving method used in the third embodiment.
Using the memory circuit 24 and the drive voltage waveform control circuit 25, the drive voltage waveform control circuit 25 provides the FLC panel 1 with a drive voltage waveform that is a combination of the separate compensation voltage application drive method and the compensation voltage composite application drive method. It was
【0072】具体的には、図5および図6の印加電圧波
形(1)、印加電圧波形(4)、印加電圧波形(5)
を、それぞれ、図8および図9の印加電圧波形(1)、
印加電圧波形(2a)、印加電圧波形(2b)に置き換
えて、温度が高くなった場合には、温度補償電圧波形と
の間隔m×tsを小さくし、かつ印加電圧波形を波形パ
ターン(e)に近づけ、温度が低くなった場合には、温
度補償電圧波形との間隔m×tsを大きく、かつ印加電
圧波形を波形パターン(a)に近づけて、本FLC表示
装置を動作させたところ、温度補償のない従来駆動方法
と比較して、駆動電圧や駆動周波数を変えることなく、
10℃以上動作温度領域を広くすることができた。駆動
周波数の調整を併用した場合、本発明の温度補償法を用
いないものと比べて、高温部において2倍程度駆動周波
数を抑えることができ、消費電力や発熱問題を改善する
ことができた。Specifically, the applied voltage waveform (1), the applied voltage waveform (4) and the applied voltage waveform (5) shown in FIGS.
Are applied voltage waveforms (1) of FIG. 8 and FIG. 9, respectively.
When the temperature rises by replacing the applied voltage waveform (2a) and the applied voltage waveform (2b), the interval m × ts with the temperature compensation voltage waveform is reduced, and the applied voltage waveform is a waveform pattern (e). When the temperature becomes low, the interval m × ts from the temperature-compensated voltage waveform is increased, and the applied voltage waveform is brought close to the waveform pattern (a). Compared with the conventional drive method without compensation, without changing the drive voltage or drive frequency,
It was possible to widen the operating temperature range of 10 ° C. or higher. When the drive frequency adjustment was also used, the drive frequency could be suppressed about twice as much in the high temperature part as compared with the case where the temperature compensation method of the present invention was not used, and the power consumption and heat generation problems could be improved.
【0073】[0073]
【発明の効果】この発明によれば、高温領域において、
駆動電圧の高電圧化や駆動周波数の高周波化を抑えるこ
とができ、消費電力の増大や発熱の問題を改善し、かつ
表示品位及び耐久性を向上させることができる。According to the present invention, in the high temperature range,
It is possible to suppress an increase in driving voltage and an increase in driving frequency, improve power consumption and heat generation, and improve display quality and durability.
【図1】本発明の駆動方法に使用されるFLCパネルの
概略的な構成を示す断面図である。FIG. 1 is a cross-sectional view showing a schematic configuration of an FLC panel used in a driving method of the present invention.
【図2】本発明の駆動方法に使用されるFLCパネルの
電圧−応答速度の温度特性を示すグラフ(τ−Vmin
カーブの温度依存性を示す特性図)である。FIG. 2 is a graph (τ-Vmin) showing temperature characteristics of voltage-response speed of the FLC panel used in the driving method of the present invention.
It is a characteristic diagram which shows the temperature dependence of a curve.
【図3】本発明の駆動方法に使用されるFLCパネルの
概略的な構成を示す平面図である。FIG. 3 is a plan view showing a schematic configuration of an FLC panel used in the driving method of the present invention.
【図4】本発明の駆動方法でFLCパネルを駆動するた
めの温度検出回路を含むFLC表示装置の概略的な構成
を示すブロック図である。FIG. 4 is a block diagram showing a schematic configuration of an FLC display device including a temperature detection circuit for driving an FLC panel by the driving method of the present invention.
【図5】本発明の補償電圧別途印加駆動方法でFLCパ
ネルを駆動する場合の走査電極と信号電極と画素に印加
される電圧波形を示した波形図である。FIG. 5 is a waveform diagram showing voltage waveforms applied to the scan electrodes, the signal electrodes and the pixels when the FLC panel is driven by the separate compensation voltage driving method of the present invention.
【図6】本発明の補償電圧別途印加駆動方法でFLCパ
ネルを駆動する場合の走査電極と信号電極と画素に印加
される電圧波形を示した波形図である。FIG. 6 is a waveform diagram showing voltage waveforms applied to the scan electrodes, the signal electrodes and the pixels when the FLC panel is driven by the separate compensation voltage driving method of the present invention.
【図7】本発明の補償電圧別途印加駆動方法でFLC表
示装置を動作させた場合に実際に画素に印加される走査
信号側の駆動電圧波形を示す波形図である。FIG. 7 is a waveform diagram showing a driving voltage waveform on the scanning signal side that is actually applied to a pixel when the FLC display device is operated by the separate compensation voltage driving method of the present invention.
【図8】本発明の補償電圧合成印加駆動方法でFLCパ
ネルを駆動する場合の走査電極と信号電極と画素に印加
される電圧波形を示した波形図である。FIG. 8 is a waveform diagram showing voltage waveforms applied to a scanning electrode, a signal electrode and a pixel when a FLC panel is driven by the compensation voltage synthesis application driving method of the present invention.
【図9】本発明の補償電圧合成印加駆動方法でFLCパ
ネルを駆動する場合の走査電極と信号電極と画素に印加
される電圧波形を示した波形図である。FIG. 9 is a waveform diagram showing voltage waveforms applied to the scan electrodes, the signal electrodes and the pixels when the FLC panel is driven by the compensation voltage synthesis application driving method of the present invention.
【図10】本発明の補償電圧合成印加駆動方法でFLC
表示装置を動作させた場合に実際に画素に印加される走
査信号側の駆動電圧波形を示す波形図である。FIG. 10 shows a FLC according to the compensation voltage synthesis application driving method of the present invention.
FIG. 9 is a waveform diagram showing a driving voltage waveform on the scanning signal side that is actually applied to a pixel when the display device is operated.
【図11】従来例におけるFLCパネルの電圧−応答速
度の温度特性を示すグラフ(τ−Vminカーブの温度
依存性を示す特性図)である。FIG. 11 is a graph showing temperature characteristics of voltage-response speed of a FLC panel in a conventional example (characteristic diagram showing temperature dependence of τ-Vmin curve).
1 FLCパネル 2a,2b ガラス基板 3a,3b 絶縁膜 4a,4b 配向膜 5 封止剤 6 強誘電性液晶 7a,7b 偏光板 8 走査側駆動回路 9 信号側駆動回路 10a,10b シフトレジスタ 11a,11b ラッチ 12a,12b アナログスイッチ 22 温度センサ 23 温度補償回路 24 メモリ回路 25 駆動電圧波形制御回路 L 走査電極 S 信号電極 1 FLC panel 2a, 2b Glass substrate 3a, 3b Insulating film 4a, 4b Alignment film 5 Sealant 6 Ferroelectric liquid crystal 7a, 7b Polarizing plate 8 Scanning side driving circuit 9 Signal side driving circuit 10a, 10b Shift register 11a, 11b Latches 12a, 12b Analog switch 22 Temperature sensor 23 Temperature compensation circuit 24 Memory circuit 25 Drive voltage waveform control circuit L Scan electrode S Signal electrode
Claims (8)
と信号電極との各交差部に、2つの安定状態を持った強
誘電性のスメクチック液晶を介在させて各画素を構成
し、画像情報データに基づく信号電圧を信号電極へ印加
し、これと同期して選択電圧波形または非選択電圧波形
からなる走査電圧を走査電極へ印加する強誘電性液晶表
示パネルの駆動方法であって、 走査電極への選択電圧の印加時期の前あるいは後に、そ
の印加時期に対しある時間を隔てて、その選択電圧とは
実効的に逆極性の波形の温度補償電圧を走査電極に印加
し、温度によって変動する液晶の応答性を補償すること
を特徴とする強誘電性液晶表示パネルの駆動方法。1. A pixel is formed by interposing a ferroelectric smectic liquid crystal having two stable states at each intersection of a scanning electrode and a signal electrode arranged in a direction intersecting with each other to form image information data. A method of driving a ferroelectric liquid crystal display panel, wherein a signal voltage based on the above is applied to a signal electrode, and a scanning voltage having a selection voltage waveform or a non-selection voltage waveform is applied to the scanning electrode in synchronization with the signal voltage. Before or after the selection voltage is applied, a temperature compensation voltage having a waveform having a polarity opposite to that of the selection voltage is applied to the scanning electrode at a certain time with respect to the selection time, and the liquid crystal changes depending on the temperature. A method for driving a ferroelectric liquid crystal display panel, characterized by compensating for the response of the device.
圧の時間の隔たりが、液晶の温度が高いほど短く、低い
ほど長く設定されることを特徴とする請求項1記載の強
誘電性液晶表示パネルの駆動方法。2. The ferroelectric liquid crystal display panel according to claim 1, wherein the time lag of the temperature compensation voltage with respect to the application timing of the selection voltage is set shorter when the temperature of the liquid crystal is higher and longer when the temperature of the liquid crystal is lower. Driving method.
させるしきい値以下の振幅値である請求項1記載の強誘
電性液晶表示パネルの駆動方法。3. The method for driving a ferroelectric liquid crystal display panel according to claim 1, wherein the waveform of the temperature compensation voltage has an amplitude value equal to or less than a threshold value for changing a pixel state.
の安定状態に書き換えるしきい値以上のパルス幅と振幅
値を有する請求項1記載の強誘電性液晶表示パネルの駆
動方法。4. The method for driving a ferroelectric liquid crystal display panel according to claim 1, wherein the waveform of the temperature compensation voltage has a pulse width and an amplitude value which are equal to or more than a threshold value for rewriting the pixel state into one stable state.
と信号電極との各交差部に、2つの安定状態を持った強
誘電性のスメクチック液晶を介在させて各画素を構成
し、画像情報データに基づく信号電圧を信号電極へ印加
し、これと同期して選択電圧波形または非選択電圧波形
からなる走査電圧を走査電極へ印加する強誘電性液晶表
示パネルの駆動方法であって、 走査電極に、選択期間が電圧ゼロの第1期間と、所定電
圧の第2期間からなる波形の電圧を印加するとともに、 信号電極に、少なくとも第1電圧とそれとは逆極性の第
2電圧との2つの電圧を印加し、第1電圧と第2電圧と
の切り替え時期を走査電圧の第1期間の終端と同期さ
せ、この電圧の切り替え時期を外部信号により変化させ
ることを特徴とする強誘電性液晶表示パネルの駆動方
法。5. A pixel is constructed by interposing a ferroelectric smectic liquid crystal having two stable states at each intersection of a scanning electrode and a signal electrode arranged in a direction intersecting with each other, thereby forming image information data. A driving method of a ferroelectric liquid crystal display panel, wherein a signal voltage based on the above is applied to a signal electrode, and a scanning voltage having a selection voltage waveform or a non-selection voltage waveform is applied to the scanning electrode in synchronization with the signal voltage. , A voltage having a waveform consisting of a first period in which the selection period is zero voltage and a second period of a predetermined voltage is applied, and at least two voltages, that is, a first voltage and a second voltage of opposite polarity to the signal electrode, are applied to the signal electrode. Is applied to synchronize the switching timing of the first voltage and the second voltage with the end of the first period of the scanning voltage, and the switching timing of this voltage is changed by an external signal. of Dynamic way.
との切り替え時期を、温度変化に応じて調整することを
特徴とする請求項5記載の強誘電性液晶表示パネルの駆
動方法。6. The method of driving a ferroelectric liquid crystal display panel according to claim 5, wherein the switching timing of the first voltage and the second voltage is adjusted according to the temperature change when the voltage is applied.
との切り替え時期までの時間を、温度が高いほど長く、
低いほど短く調整することを特徴とする請求項6記載の
強誘電性液晶表示パネルの駆動方法。7. The time from the start of the selection period to the timing of switching between the first voltage and the second voltage is longer as the temperature is higher,
7. The method for driving a ferroelectric liquid crystal display panel according to claim 6, wherein the lower the value, the shorter the adjustment.
の駆動方法と請求項5記載の強誘電性液晶表示パネルの
駆動方法とを同時に用いて、強誘電性液晶表示パネルを
駆動することを特徴とする強誘電性液晶表示パネルの駆
動方法。8. A ferroelectric liquid crystal display panel is driven by using the method for driving a ferroelectric liquid crystal display panel according to claim 1 and the method for driving a ferroelectric liquid crystal display panel according to claim 5 at the same time. A method for driving a ferroelectric liquid crystal display panel, which is characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07106356A JP3142740B2 (en) | 1995-04-28 | 1995-04-28 | Driving method of ferroelectric liquid crystal display panel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07106356A JP3142740B2 (en) | 1995-04-28 | 1995-04-28 | Driving method of ferroelectric liquid crystal display panel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08304772A true JPH08304772A (en) | 1996-11-22 |
JP3142740B2 JP3142740B2 (en) | 2001-03-07 |
Family
ID=14431489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07106356A Expired - Fee Related JP3142740B2 (en) | 1995-04-28 | 1995-04-28 | Driving method of ferroelectric liquid crystal display panel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3142740B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010045560A (en) * | 1999-11-05 | 2001-06-05 | 윤종용 | Apparatus for controlling temperature of FLC pannel |
US6833886B2 (en) | 2001-03-29 | 2004-12-21 | Fujitsu Display Technologies Corporation | Liquid crystal display control circuit that performs drive compensation for high-speed response |
JP2008026734A (en) * | 2006-07-24 | 2008-02-07 | Kyocera Corp | Driving method of image display device |
CN102169680A (en) * | 2011-03-04 | 2011-08-31 | 深圳市华星光电技术有限公司 | Liquid crystal display module and adjustment method of response speed thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013234355A (en) * | 2012-05-09 | 2013-11-21 | Suzuki Sangyo Kk | Hydrogen gas generation device |
-
1995
- 1995-04-28 JP JP07106356A patent/JP3142740B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010045560A (en) * | 1999-11-05 | 2001-06-05 | 윤종용 | Apparatus for controlling temperature of FLC pannel |
US6833886B2 (en) | 2001-03-29 | 2004-12-21 | Fujitsu Display Technologies Corporation | Liquid crystal display control circuit that performs drive compensation for high-speed response |
JP2008026734A (en) * | 2006-07-24 | 2008-02-07 | Kyocera Corp | Driving method of image display device |
CN102169680A (en) * | 2011-03-04 | 2011-08-31 | 深圳市华星光电技术有限公司 | Liquid crystal display module and adjustment method of response speed thereof |
CN102169680B (en) | 2011-03-04 | 2013-02-06 | 深圳市华星光电技术有限公司 | Liquid crystal display module and its response speed adjustment method |
Also Published As
Publication number | Publication date |
---|---|
JP3142740B2 (en) | 2001-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3342341B2 (en) | Liquid crystal device and driving method of liquid crystal device | |
JPH07120722A (en) | Liquid crystal display element and its driving method | |
EP0542518B1 (en) | Liquid crystal element and driving method thereof | |
JP2001311934A (en) | Liquid crystal element | |
JP3142740B2 (en) | Driving method of ferroelectric liquid crystal display panel | |
JP3171713B2 (en) | Antiferroelectric liquid crystal display | |
KR100324438B1 (en) | Liquid crystal device and method of addressing liquid crystal device | |
JPH06202082A (en) | Driving method for antiferroelectric liquid crystal display | |
US5841419A (en) | Control method for ferroelectric liquid crystal matrix display | |
JPH07333580A (en) | Ferroelectric liquid crystal display device and method for driving ferroelectric liquid crystal display element | |
JP2000019485A (en) | Method for driving liquid crystal device | |
KR100326453B1 (en) | Driving Method of Ferroelectric Liquid Crystal Display | |
JP2984496B2 (en) | Liquid crystal display device | |
JP2531683B2 (en) | Liquid crystal device | |
JPS62134691A (en) | Liquid crystal unit | |
JP3093511B2 (en) | Display device | |
JP2000029000A (en) | Method for driving antiferroelectric liquid crystal display device | |
JPH0448366B2 (en) | ||
JP2849741B2 (en) | Ferroelectric electro-optic element | |
JP2000347160A (en) | Ferroelectric liquid crystal device | |
JPH11258574A (en) | Antiferroelectric liquid crystal display | |
JPS63249130A (en) | Liquid crystal device | |
JPH0743676A (en) | Liquid crystal display device | |
JPH08152598A (en) | Liquid crystal device and its driving method | |
JPH061311B2 (en) | Liquid crystal device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |