JPH08304694A - Focus detector - Google Patents
Focus detectorInfo
- Publication number
- JPH08304694A JPH08304694A JP11487195A JP11487195A JPH08304694A JP H08304694 A JPH08304694 A JP H08304694A JP 11487195 A JP11487195 A JP 11487195A JP 11487195 A JP11487195 A JP 11487195A JP H08304694 A JPH08304694 A JP H08304694A
- Authority
- JP
- Japan
- Prior art keywords
- light
- focus
- subject
- detecting means
- focus detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 24
- 230000001678 irradiating effect Effects 0.000 claims abstract description 4
- 238000001514 detection method Methods 0.000 claims description 33
- 238000005259 measurement Methods 0.000 claims description 10
- 230000010485 coping Effects 0.000 abstract 1
- 238000006073 displacement reaction Methods 0.000 description 18
- 238000003384 imaging method Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 9
- 230000010287 polarization Effects 0.000 description 8
- 238000007796 conventional method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 2
- 201000009310 astigmatism Diseases 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- Focusing (AREA)
- Automatic Focus Adjustment (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、顕微鏡若しくは光学測
定機器等に用いられる被検体に対して合焦を行う焦点検
出装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a focus detecting device used for a microscope, an optical measuring instrument or the like for focusing on a subject.
【0002】[0002]
【従来の技術】プローブ光を対物レンズを通して被検体
の測定面(以下、被測定面という)に照射し、その被測
定面からの反射光に基づいて、被検体に対し焦点検出を
行う焦点検出装置が従来から知られている。この種の焦
点検出装置としては、幾つかの構成が知られているが、
これらのうち代表的な装置について以下に説明する。2. Description of the Related Art Focus detection for irradiating a measurement surface (hereinafter referred to as a measurement surface) of a subject with a probe light through an objective lens and performing focus detection for the subject based on light reflected from the measurement surface. Devices are known in the art. Although several configurations are known as this type of focus detection device,
Representative devices among these will be described below.
【0003】図3は、従来の焦点検出装置の構成を示す
図である。この図に示すように、まず半導体レーザ1か
ら出射されたレーザビームは、偏光ビームスプリッタ2
に入射する。偏光ビームスプリッタ2で反射された光
は、1/4波長板3を介して結像レンズ4で平行光束に
され、対物レンズ5を介して被測定面6に集光される。
そして、この被測定面6で反射された反射光は、再度、
対物レンズ5,結像レンズ4及び1/4波長板3を介し
て偏光ビームスプリッタ2に入射する。このとき、前記
入射光は1/4波長板3を透過した際、その偏光の方向
が90度ずらされる。従って、この入射光は、偏光ビー
ムスプリッタ2を透過し、ビームスプリッタ7によって
二方向に振り分けられる。そして、この一方の光線は、
結像レンズ4の集光点Pより距離Lだけ前方に配置され
た第一の絞り8を介して第一の受光素子9に照射され、
又、他方の光線は、結像レンズ4の集光点Pより距離L
だけ後方に配置された第二の絞り10を介して第二の受
光素子11に照射されるようになっている。FIG. 3 is a diagram showing the structure of a conventional focus detection device. As shown in this figure, first, the laser beam emitted from the semiconductor laser 1 is transmitted through the polarization beam splitter 2
Incident on. The light reflected by the polarization beam splitter 2 is collimated by the imaging lens 4 via the quarter-wave plate 3 and is condensed on the surface 6 to be measured via the objective lens 5.
Then, the reflected light reflected by the measured surface 6 is again
It enters the polarization beam splitter 2 through the objective lens 5, the imaging lens 4 and the quarter-wave plate 3. At this time, when the incident light is transmitted through the quarter wavelength plate 3, the polarization direction thereof is shifted by 90 degrees. Therefore, this incident light passes through the polarization beam splitter 2 and is split into two directions by the beam splitter 7. And this one ray is
The first light receiving element 9 is irradiated with light through the first diaphragm 8 which is arranged in front of the focusing point P of the imaging lens 4 by a distance L,
Further, the other light ray has a distance L from the condensing point P of the imaging lens 4.
The second light receiving element 11 is irradiated with light through the second diaphragm 10 arranged only at the rear.
【0004】第一の受光素子9及び第二の受光素子11
は、夫々受光した被測定面6からの反射光の光量に対応
した電気信号を生成して信号処理系12へ送出する機能
を有している。又、この信号処理系12は、入力された
各信号に対して所定の演算を行い、被測定面6の変位に
応じた変位信号を出力する機能を備えている。今、第一
の受光素子9及び第二の受光素子10から信号処理系1
2に向けて、図4(a)に示すような特性を有する電気
信号B,Aが夫々送出されたとすると、信号処理系12
によって被測定面6の変位を検知する信号として(A−
B)/(A+B)の演算が行われ、図4(b)に示すよ
うな合焦点Fにおいて0となる変位信号が求められる。
そして、この変位信号が0となる、即ち、{(A−B)
/(A+B)}=0を満たす位置に被測定面6がくるよ
うに、被測定面6自体若しくは焦点検出装置を移動させ
て、合焦動作を行っている。First light receiving element 9 and second light receiving element 11
Has a function of generating an electric signal corresponding to the amount of the reflected light from the measured surface 6 which is respectively received, and sending the electric signal to the signal processing system 12. Further, the signal processing system 12 has a function of performing a predetermined calculation on each input signal and outputting a displacement signal according to the displacement of the surface 6 to be measured. Now, from the first light receiving element 9 and the second light receiving element 10 to the signal processing system 1
Suppose that the electric signals B and A having the characteristics shown in FIG.
As a signal for detecting the displacement of the measured surface 6 by (A-
B) / (A + B) is calculated, and a displacement signal that becomes 0 at the focal point F as shown in FIG. 4B is obtained.
Then, this displacement signal becomes 0, that is, {(A−B)
Focusing operation is performed by moving the measured surface 6 itself or the focus detection device so that the measured surface 6 comes to a position that satisfies / (A + B)} = 0.
【0005】又、図4(a)に示したグラフからも明ら
かなように、合焦点Fから離れた位置に被測定面6があ
る場合には、生成される信号A,Bの出力レベルは低く
なるため、電気的影響,光学ノイズの影響を受け易くな
る。これにより、被測定面6が真の合焦点F以外に位置
するときでも、{(A−B)/(A+B)}=0という
判定結果を生む場合がある。(以下、擬合焦という)。
そこで、このような擬合焦の発生を防止するために、図
4(c)に示すように、信号(A+B)に対してしきい
値Tを設定し、光量レベルがしきい値Tより低下したよ
うな場合、即ち、被測定面6が合焦点Fよりある程度以
上離れた場合には、合焦判定を行わないようにして、合
焦動作範囲を限定している。Further, as is clear from the graph shown in FIG. 4A, when the measured surface 6 is located at a position away from the focal point F, the output levels of the generated signals A and B are Since it becomes low, it is easily affected by electrical and optical noises. As a result, even when the surface 6 to be measured is located at a position other than the true focal point F, a determination result of {(A−B) / (A + B)} = 0 may occur. (Hereafter referred to as pseudo focus).
Therefore, in order to prevent the occurrence of such pseudo focusing, a threshold value T is set for the signal (A + B) as shown in FIG. In such a case, that is, when the surface 6 to be measured is separated from the focus F by a certain amount or more, the focus determination is not performed and the focus operation range is limited.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、従来の
焦点検出装置では、装置が有する光学部材での反射光ノ
イズ、電気的ノイズ若しくは光学部材の調整度等によ
り、合焦点Fの判定に誤差を生じる場合がある。この合
焦誤差は、特に焦点検出装置を、被測定面に対して合焦
させたときの対物レンズ若しくは被検体の高さの位置を
測定することで被検体の高さ方向の寸法を測定する光学
測定機器に用いた場合に、測定精度上問題となる。However, in the conventional focus detection device, an error occurs in the determination of the in-focus point F due to the reflected light noise at the optical member of the device, the electrical noise, the adjustment degree of the optical member, or the like. There are cases. This focusing error is measured in the height direction of the subject by measuring the position of the objective lens or the height of the subject when the focus detection device is focused on the surface to be measured. When used in an optical measuring device, it causes a problem in measurement accuracy.
【0007】このようなノイズ等を考慮した現実的な場
面で、より正確な合焦判定を行うためには、後述のよう
に、合焦点F近傍における変位信号の傾きを大きくとり
(図5参照)、同量のノイズに対し被測定面の変位を小
さく制御できるようにすればよい。これを実行するため
の装置構成としては、焦点検出装置に備えられた光学系
の倍率、即ち、図3に示した従来例においては対物レン
ズ5及び結像レンズ4による倍率を、大きく設定すれば
よい。これにより、被測定面6の変位に対する受光素子
11側の結像レンズ4の集光点Pの移動量が大きくな
り、変位信号の合焦点F近傍での傾きを大きくすること
ができるようになる。In order to make a more accurate focus determination in a realistic scene taking such noise into consideration, a large inclination of the displacement signal in the vicinity of the focus point F is set as described later (see FIG. 5). ), The displacement of the measured surface can be controlled to be small with respect to the same amount of noise. As a device configuration for executing this, if the magnification of the optical system provided in the focus detection device, that is, the magnification by the objective lens 5 and the imaging lens 4 in the conventional example shown in FIG. Good. As a result, the amount of movement of the condensing point P of the imaging lens 4 on the side of the light receiving element 11 with respect to the displacement of the surface 6 to be measured increases, and the inclination of the displacement signal near the focal point F can be increased. .
【0008】図5(a),(b)には前述の従来例にお
ける光学系の倍率変化とその変位信号に対する効果が示
されている。しかしながら、従来の装置構成において
は、焦点検出装置の光学系の倍率を大きくすると、光検
出器出力も図5(a)に示す如く変化し、合焦点F近傍
の狭い領域に圧縮されてしまうことになる。又、前述の
信号(A+B)も同様に変化する。このため、実質上合
焦動作を行える範囲が狭い領域に限定されてしまう。FIGS. 5 (a) and 5 (b) show the effect of the magnification change of the optical system and its displacement signal in the above-mentioned conventional example. However, in the conventional device configuration, when the magnification of the optical system of the focus detection device is increased, the photodetector output also changes as shown in FIG. 5A, and the output is compressed into a narrow region near the in-focus point F. become. Further, the above-mentioned signal (A + B) also changes similarly. Therefore, the range in which the focusing operation can be substantially performed is limited to a narrow region.
【0009】以上のように、従来の焦点検出装置では、
正確な合焦判定と、より広い領域に亘る合焦動作とを同
時に実現することは困難であった。このことは、特に焦
点検出装置の光学測定機器への適用において、測定精度
の高さと測定可能な高さ方向範囲の広さとが両立できな
いという問題となっていた。As described above, in the conventional focus detection device,
It has been difficult to realize accurate focus determination and focus operation over a wider area at the same time. This has been a problem in that the high accuracy of measurement and the wide range of the measurable height direction are not compatible with each other particularly when the focus detection device is applied to the optical measurement device.
【0010】そこで、本発明は、上記のような従来技術
の有する問題点に鑑みなさたものであり、合焦判定の正
確さを確保しつつ、被検体の高さ方向に沿う広い領域に
亘る合焦動作を行うことができ、様々な形状を有する被
検体への対応が可能な焦点検出装置を提供することを目
的とする。Therefore, the present invention has been made in view of the above problems of the prior art, and covers a wide area along the height direction of the subject while ensuring the accuracy of focus determination. An object of the present invention is to provide a focus detection device which can perform a focusing operation and can deal with objects having various shapes.
【0011】[0011]
【課題を解決するための手段】上記目的を達成するため
に、本発明による焦点検出装置は、測定光を光学系を介
して被検体に照射しその反射光から被検体に焦点を合わ
せる焦点検出手段と、前記光学系を介し前記被検体から
の反射光の光量から前記被検体が合焦位置から所定距離
範囲内にあることを検出する位置検出手段と、を備えて
いる。又、本発明による焦点検出装置の焦点検出手段
は、光出射手段と、この光出射手段からの測定光を被検
体に照射し被検体から反射光を集光させる光学系と、前
記反射光を分割する光分割手段と、前記反射光の集光位
置に対して前側及び後側に夫々配置された第一,第二の
光検出手段と、信号処理系と、から構成されていること
を特徴とする。更に、本発明による装置の位置検出手段
は、前記光学系の結像位置に配置された光検出手段と、
この光検出手段からの出力にしきい値を設定するしきい
値設定手段と、から構成されていることを特徴とする。In order to achieve the above object, a focus detection apparatus according to the present invention is a focus detection apparatus which irradiates a subject with measurement light through an optical system and focuses the subject on the reflected light. And means for detecting that the subject is within a predetermined distance range from the in-focus position based on the amount of light reflected from the subject through the optical system. Further, the focus detection means of the focus detection apparatus according to the present invention comprises a light emitting means, an optical system for irradiating the subject with the measurement light from the light emitting means and condensing the reflected light from the subject, and the reflected light. A light splitting means for splitting, first and second light detecting means respectively arranged on the front side and the rear side of the condensing position of the reflected light, and a signal processing system. And Further, the position detecting means of the device according to the present invention comprises a light detecting means arranged at an image forming position of the optical system,
And a threshold value setting means for setting a threshold value to the output from the light detection means.
【0012】[0012]
【作用】本発明の焦点検出装置では、焦点検出手段とは
別に位置検出手段が設けられており、この位置検出手段
により被検体の被測定面が合焦点から所定量離れている
ことを検出することができる。そのため、位置検出手段
による検出可能範囲を、焦点検出手段の合焦検出可能範
囲を含むさらに広い範囲に設定することにより、位置検
出手段の検出結果に基づいて被測定面を焦点検出手段に
よる合焦動作可能な範囲内に追い込むことが可能とな
り、合焦可能な範囲が実質的に拡張される。In the focus detecting apparatus of the present invention, the position detecting means is provided separately from the focus detecting means, and this position detecting means detects that the measured surface of the subject is away from the in-focus point by a predetermined amount. be able to. Therefore, by setting the detectable range of the position detecting means to a wider range including the focus detectable range of the focus detecting means, the surface to be measured is focused by the focus detecting means based on the detection result of the position detecting means. It becomes possible to drive into the operable range, and the focusable range is substantially expanded.
【0013】[0013]
【実施例】以下、図示した実施例に基づき本発明を詳細
に説明する。The present invention will be described in detail below with reference to the illustrated embodiments.
【0014】図1は、本発明の焦点検出装置の構成を示
す図である。本発明の装置では、図1に示すように、レ
ーザ出射手段(光源)20から出射されたレーザビーム
は、偏光ビームスプリッタ21によって反射され、1/
4波長板22を介して結像レンズ23へ入射する。そし
て、この入射光は、結像レンズ23で平行光束にされ、
対物レンズ24を介して被測定面25に集光される。次
に、被測定面25で反射された光は、再度、対物レンズ
24,結像レンズ23及び1/4波長板22を透過した
後、偏光ビームスプリッタ21を透過し、ビームスプリ
ッタ36に導かれ、ここで、二方向の光路に分割される
ようになっている。前記二方向に分割された光のうち、
一方は、ビームスプリッタ36を透過した後、ビームス
プリッタ26へ導かれ、ここで再び二方向の光路に分割
される。そして、その一方の光は、ビームスプリッタ2
6を透過した後、結像レンズ23の集光点Qより前方に
配置された第一の絞り27を介して第一の受光素子28
に入射する。又、ビームスプリッタ26により反射され
た光は、結像レンズ23の集光点Qより後方に配置され
た第二の絞り29を介して、第二の受光素子30に入射
するように構成されている。FIG. 1 is a diagram showing the structure of a focus detection device according to the present invention. In the apparatus of the present invention, as shown in FIG. 1, the laser beam emitted from the laser emission means (light source) 20 is reflected by the polarization beam splitter 21,
The light enters the imaging lens 23 via the four-wave plate 22. Then, this incident light is made into a parallel light flux by the imaging lens 23,
It is condensed on the measured surface 25 via the objective lens 24. Next, the light reflected on the surface 25 to be measured again passes through the objective lens 24, the imaging lens 23, and the quarter-wave plate 22, and then passes through the polarization beam splitter 21 and is guided to the beam splitter 36. , Here, the optical path is divided into two optical paths. Of the light split in the two directions,
One of the light beams passes through the beam splitter 36 and is then guided to the beam splitter 26 where it is split into two optical paths again. Then, one of the lights is transmitted to the beam splitter 2
After passing through 6, the first light receiving element 28 is passed through the first diaphragm 27 arranged in front of the condensing point Q of the imaging lens 23.
Incident on. Further, the light reflected by the beam splitter 26 is configured to be incident on the second light receiving element 30 via the second diaphragm 29 arranged behind the converging point Q of the imaging lens 23. There is.
【0015】第一の受光素子28及び第二の受光素子3
0は、光電変換素子であり、夫々受光した被測定面25
からの反射光に対応した電気信号B及びAを生成し、こ
れらの電気信号を信号処理系31に送出する機能を備え
ている。そして、信号処理系31は、入力された信号
A,Bに対し(A−B)/(A+B)の演算を行って、
被測定面25の変位に対応した変位信号を生成する機能
を備えている。The first light receiving element 28 and the second light receiving element 3
Reference numeral 0 denotes a photoelectric conversion element, which is a surface to be measured 25 that receives light.
It has a function of generating electric signals B and A corresponding to the reflected light from and outputting the electric signals to the signal processing system 31. Then, the signal processing system 31 performs an operation of (A−B) / (A + B) on the input signals A and B,
It has a function of generating a displacement signal corresponding to the displacement of the measured surface 25.
【0016】一方、前記ビームスプリッタ36により反
射された光は、結像レンズ23の集光点Qの位置に配置
された第三の絞り37を介して第三の受光素子38に導
かれる。この第三の受光素子38も第一の受光素子28
及び第二の受光素子30と同様の光電変換素子である。
この第三の受光素子38から出力される信号Cは比較器
34へ送出され、ここでしきい値電圧発生器35から送
出されるしきい値電圧T1 と比較され、合焦動作の範囲
を定める信号が出力されるようになっている。On the other hand, the light reflected by the beam splitter 36 is guided to the third light receiving element 38 via the third diaphragm 37 arranged at the position of the condensing point Q of the imaging lens 23. This third light receiving element 38 is also the first light receiving element 28.
And a photoelectric conversion element similar to the second light receiving element 30.
The signal C output from the third light receiving element 38 is sent to the comparator 34, where it is compared with the threshold voltage T 1 sent from the threshold voltage generator 35 to determine the range of the focusing operation. The specified signal is output.
【0017】次に、図2に基づき、本発明の焦点検出装
置の動作説明を行う。同図(a)は従来の方法による合
焦動作範囲の設定方法を説明するためのグラフであり、
同図(b)は本発明の装置による合焦動作範囲の設定方
法を説明するためのグラフである。Next, the operation of the focus detection device of the present invention will be described with reference to FIG. FIG. 6A is a graph for explaining a method of setting a focusing operation range by a conventional method,
FIG. 3B is a graph for explaining the method of setting the focus operation range by the device of the present invention.
【0018】まず、図2(a)に示すように、ほぼ山形
のカーブを成す信号(A+B)に対し擬合焦を避けるた
めのしきい値T1 を設定して、この値を下回らない信号
(A+B)のレベルの範囲を変位信号{(A−B)/
(A+B)}の有効範囲と定め、この範囲内では従来と
同じ方法で合焦動作を行なう。First, as shown in FIG. 2 (a), a threshold value T 1 for avoiding pseudo focusing is set for a signal (A + B) forming a substantially mountain-shaped curve, and a signal which does not fall below this value is set. The range of the level of (A + B) is the displacement signal {(A−B) /
(A + B)} is set as the effective range, and the focusing operation is performed in this range by the same method as the conventional method.
【0019】又、信号(A+B)がしきい値T1 より小
さい場合は、第3の受光素子38からの出力信号Cに対
し比較器34にてしきい値電圧発生器35から出力され
るしきい値T2 により、レベル判定を行うことにより、
合焦点Fを含み、合焦点Fから所定量離れるまでの範囲
を識別する事ができる。合焦動作については、この合焦
点Fを含む範囲内で、被測定面25若しくは焦点検出装
置を移動させ、従来の合焦動作範囲内に追い込む事で、
行なう事が出来る。例えば、図2(b)に示すように、
被測定面又は焦点検出装置を一度+方向に動かして、合
焦点Fより所定量離れた事をしきい値T2 によるレベル
判定で識別した場合移動方向を逆転させれば、従来の合
焦動作範囲内に入れる事が出来、変位信号(A−B)/
(A+B)により、従来と同様な方法で合焦に至らしめ
られる。この場合、信号Cのカーブは、第三の絞り37
の径の大きさを変えることにより、変位信号{(A−
B)/(A+B)}に影響を与えることなく拡縮するこ
とができ、しきい値T2 と合わせて、従来より広い合焦
動作範囲を任意に設定できる。If the signal (A + B) is smaller than the threshold value T 1 , the comparator 34 outputs the signal C from the third light receiving element 38 to the threshold voltage generator 35. By judging the level based on the threshold value T 2 ,
It is possible to identify the range including the focal point F and moving away from the focal point F by a predetermined amount. Regarding the focusing operation, by moving the surface to be measured 25 or the focus detection device within the range including the in-focus point F to bring it into the conventional focusing operation range,
You can do it. For example, as shown in FIG.
If the surface to be measured or the focus detection device is once moved in the + direction and it is identified by the level judgment by the threshold value T 2 that the predetermined distance from the in-focus point F is detected, the conventional focusing operation can be performed by reversing the moving direction. It can be put in the range, displacement signal (A-B) /
By (A + B), focusing can be achieved by a method similar to the conventional method. In this case, the curve of the signal C is the third aperture 37
The displacement signal {(A-
B) / (A + B)} can be enlarged or reduced without affecting, and a wider focusing operation range than before can be arbitrarily set together with the threshold value T 2 .
【0020】このように、本発明の装置では、信号Cと
しきい値T2 とを用いることによって、図2(a),
(b)に示すように、変位信号に影響を与えることなく
従来の方法による合焦動作範囲を超える合焦動作範囲を
任意に設定することが可能となる。従って、合焦精度確
保のために光学系倍率を高くしても広い合焦動作範囲が
確保でき、正確な合焦判定を広い合焦動作範囲をもって
実現できる。尚、焦点検出手段としては、実施例で説明
した方式に限らず、瞳分割法,非点収差法などの周知の
他の方式も適用することができる。[0020] Thus, the apparatus of the present invention provides that the use of the signal C and the threshold value T 2, FIG. 2 (a), the
As shown in (b), it becomes possible to arbitrarily set a focusing operation range exceeding the focusing operation range by the conventional method without affecting the displacement signal. Therefore, a wide focusing operation range can be secured even if the optical system magnification is increased to secure focusing accuracy, and accurate focusing determination can be realized with a wide focusing operation range. Note that the focus detection means is not limited to the method described in the embodiment, and other known methods such as the pupil division method and the astigmatism method can be applied.
【0021】[0021]
【発明の効果】上述のように、本発明の焦点検出装置
は、合焦判定の正確さを確保しつつ合焦動作をより広い
領域に亘って行うことができ、様々な形状を有する被検
体への対応も可能であるという利点を有している。As described above, the focus detection device of the present invention can perform the focusing operation over a wider area while ensuring the accuracy of the focusing determination, and the object having various shapes can be obtained. It has the advantage that it is also possible to deal with.
【図1】本発明による焦点検出装置の一実施例の構成を
示す図である。FIG. 1 is a diagram showing a configuration of an embodiment of a focus detection device according to the present invention.
【図2】本発明による焦点検出装置の作用を説明するた
めのグラフであり、(a)は従来方法が適用される合焦
動作可能範囲を示すグラフ、(b)は本発明により拡大
された合焦動作可能範囲を示すグラフである。2A and 2B are graphs for explaining the operation of the focus detection apparatus according to the present invention, in which FIG. 2A is a graph showing a focus operation range in which a conventional method is applied, and FIG. 2B is enlarged according to the present invention. It is a graph which shows the focus operation possible range.
【図3】従来の焦点検出装置の構成を示す図である。FIG. 3 is a diagram showing a configuration of a conventional focus detection device.
【図4】(a)は図3に示した装置に備えられている受
光素子による出力信号の特性を示すグラフ、(b)は
(a)に示した信号に基づき信号処理系により出力され
る合焦判定のための変位信号を示すグラフ、(c)は
(a)に示した信号としきい値とにより合焦動作範囲が
決定される方法を説明するためのグラフである。4A is a graph showing characteristics of an output signal by a light receiving element provided in the device shown in FIG. 3, and FIG. 4B is output by a signal processing system based on the signal shown in FIG. FIG. 6C is a graph showing a displacement signal for focus determination, and FIG. 7C is a graph for explaining a method of determining a focus operation range based on the signal shown in FIG.
【図5】(a)は従来の焦点検出装置の光学系の倍率変
化とその光検出器出力との関係を示すグラフ、(b)は
(a)の場合における合焦判定のための変位信号の変化
の様子を示すグラフである。5A is a graph showing a relationship between a magnification change of an optical system of a conventional focus detection device and its photodetector output, and FIG. 5B is a displacement signal for focusing determination in the case of FIG. 5A. 3 is a graph showing the state of change of.
20 レーザ出射手段 21 偏光ビームスプリッタ 22 1/4波長板 23 結像レンズ 24 対物レンズ 25 被測定面 26,36 ビームスプリッタ 27 第一の絞り 28 第一の受光素子 29 第二の絞り 30 第二の受光素子 31 信号処理系 34 比較器 35 しきい値電圧発生器 37 第三の絞り 38 第三の受光素子 P,Q 集光点 20 laser emitting means 21 polarization beam splitter 22 quarter wave plate 23 imaging lens 24 objective lens 25 surface to be measured 26, 36 beam splitter 27 first diaphragm 28 first light receiving element 29 second diaphragm 30 second Light receiving element 31 Signal processing system 34 Comparator 35 Threshold voltage generator 37 Third diaphragm 38 Third light receiving element P, Q Focusing point
Claims (3)
その反射光から該被検体に焦点を合わせる焦点検出手段
と、前記光学系を介し前記被検体からの反射光の光量か
ら前記被検体が合焦位置から所定距離範囲内にあること
を検出する位置検出手段と、が備えられていることを特
徴とする焦点検出装置。1. A focus detection unit that irradiates a subject with measurement light through an optical system and focuses the subject on the reflected light, and from the amount of light reflected from the subject through the optical system. A focus detection apparatus comprising: a position detection unit that detects that the subject is within a predetermined distance range from the in-focus position.
光出射手段からの測定光を被検体に照射し該被検体から
の反射光を集光させる光学系と、前記反射光を分割する
光分割手段と、前記反射光の集光位置に対して前側及び
後側に夫々配置された第一,第二の光検出手段と、信号
処理系と、から構成されていることを特徴とする請求項
1に記載の焦点検出装置。2. The focus detecting means divides the reflected light, a light emitting means, an optical system for irradiating the subject with the measurement light from the light emitting means and condensing the reflected light from the subject. A light splitting means, first and second light detecting means respectively arranged on the front side and the rear side with respect to the condensing position of the reflected light, and a signal processing system. The focus detection device according to claim 1.
位置に配置された光検出手段と、該光検出手段からの出
力にしきい値を設定するしきい値設定手段と、から構成
されていることを特徴とする請求項1に記載の焦点検出
装置。3. The position detecting means comprises a light detecting means arranged at an image forming position of the optical system, and a threshold value setting means for setting a threshold value to an output from the light detecting means. The focus detection device according to claim 1, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11487195A JPH08304694A (en) | 1995-05-12 | 1995-05-12 | Focus detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11487195A JPH08304694A (en) | 1995-05-12 | 1995-05-12 | Focus detector |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08304694A true JPH08304694A (en) | 1996-11-22 |
Family
ID=14648780
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11487195A Pending JPH08304694A (en) | 1995-05-12 | 1995-05-12 | Focus detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08304694A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6549290B2 (en) | 1998-09-22 | 2003-04-15 | Olympus Optical Co., Ltd. | Method and apparatus for aligning target object |
WO2008010469A1 (en) * | 2006-07-19 | 2008-01-24 | Toyota Jidosha Kabushiki Kaisha | Laser processing system and laser processing method |
-
1995
- 1995-05-12 JP JP11487195A patent/JPH08304694A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6549290B2 (en) | 1998-09-22 | 2003-04-15 | Olympus Optical Co., Ltd. | Method and apparatus for aligning target object |
WO2008010469A1 (en) * | 2006-07-19 | 2008-01-24 | Toyota Jidosha Kabushiki Kaisha | Laser processing system and laser processing method |
US8164027B2 (en) | 2006-07-19 | 2012-04-24 | Toyota Jidosha Kabushiki Kaisha | Laser processing system and laser processing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11578964B2 (en) | Optical coherence tomography apparatus and image generation method using the same | |
JPH08304694A (en) | Focus detector | |
JPH11201718A (en) | Sensor device and distance measuring equipment | |
JPH1089953A (en) | Focus detecting apparatus | |
JPH08334317A (en) | Measuring microscope | |
JP3542171B2 (en) | Microscope equipment | |
JPH11337812A (en) | Autofocus device | |
JPH0843717A (en) | Focus detector | |
JPH1090591A (en) | Focus detector | |
JPH10133117A (en) | Microscope equipped with focus detecting device | |
JPH08220418A (en) | Autofocus microscope | |
JPS61242779A (en) | Method of detecting inclination and focus of laser beam in laser beam machining device | |
JPH11264928A (en) | Focusing device | |
JPH10148505A (en) | Optical displacement gauge and method for measuring displacement using it | |
JP6608249B2 (en) | Optical pickup device | |
JPH063578A (en) | Focus detecting device | |
JPH09113794A (en) | Automatic focusing device | |
JP2006293222A (en) | Focus-detecting device | |
JP3204726B2 (en) | Edge sensor | |
JPH09318313A (en) | Focus detector | |
JP2025093660A (en) | Laser Processing Equipment | |
JP2564799Y2 (en) | 3D shape measuring device | |
JPH1096625A (en) | Focus detector | |
JPH08327334A (en) | Gap measuring apparatus | |
JPH01263610A (en) | Focusing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040630 |
|
A131 | Notification of reasons for refusal |
Effective date: 20040706 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Effective date: 20040906 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041130 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050621 |