[go: up one dir, main page]

JPH08301842A - Fluorinated vitamin d derivative and its production - Google Patents

Fluorinated vitamin d derivative and its production

Info

Publication number
JPH08301842A
JPH08301842A JP8045230A JP4523096A JPH08301842A JP H08301842 A JPH08301842 A JP H08301842A JP 8045230 A JP8045230 A JP 8045230A JP 4523096 A JP4523096 A JP 4523096A JP H08301842 A JPH08301842 A JP H08301842A
Authority
JP
Japan
Prior art keywords
group
hydrogen atom
general formula
vitamin
fluorinated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8045230A
Other languages
Japanese (ja)
Inventor
Sachiko Yamada
幸子 山田
Masato Shimizu
正人 清水
Yukiko Iwasaki
由紀子 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP8045230A priority Critical patent/JPH08301842A/en
Publication of JPH08301842A publication Critical patent/JPH08301842A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE: To obtain a new fluorinated vitamin D derivative having in vivo Ca controlling action or differentiating-inducing action of tumor cell and useful as a treating medicine for rickets having renal insufficiency, osteoporosis, etc., and psoriasis. CONSTITUTION: This fluorinated vitamin D derivative is expressed by formula I (R<1> is a 2-9C alkyl having an arbitrary substituent group; R<2> is H or hydroxyl group), e.g. (6S, 19R)-19-fluorinated vitamin D3 -SO2 adduct. The compound of formula I is obtained by carrying out reaction of a fluorinated vitamin D-SO2 adduct of formula II (R<2> is H or a protected hydroxyl group; R<5> is a protecting group of hydroxyl group; R<6> is F and R<7> is H or R<6> is H and R<7> is F) in the order of desulfonating step, a deprotecting group step and photoisomerization step. The compound of formula II is obtained by reacting a compound of formula III with N-fluorodibenzene-sulfonamide in an organic solvent in the presence of an alkali metal amide of formula IV (R<8> and R<9> are each trialkylsilyl, etc.; M is an alkali metal atom) and a base activating agent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は新規なビタミンD誘
導体およびその製造方法に関する。ビタミンD誘導体は
生体内カルシウム調節作用あるいは腫瘍細胞の分化誘導
作用を有し、腎不全性くる病、骨粗鬆症等および乾癬症
の治療薬として有用である。
TECHNICAL FIELD The present invention relates to a novel vitamin D derivative and a method for producing the same. The vitamin D derivative has a calcium regulating action in vivo or a tumor cell differentiation inducing action, and is useful as a therapeutic drug for renal failure rickets, osteoporosis and the like and psoriasis.

【0002】[0002]

【従来の技術】1α-ヒドロキシビタミンD3および1
α,25-ジヒドロキシビタミンD3は活性型ビタミンD製
剤として、現在腎不全性くる病、骨粗鬆症、骨軟化症等
の骨代謝性疾患に用いられている。また、これら活性型
ビタミンD類はヒト表皮のケラチノサイトの増殖を抑制
することが発見され(Endocrinology,113,1950(198
3))、乾癬症治療薬としての期待も高まっている。一
方、これらの化合物の側鎖部分をフッ素で修飾したビタ
ミンD誘導体として、化学式(VI)
PRIOR ART 1α-Hydroxyvitamin D 3 and 1
α, 25-dihydroxyvitamin D 3 is currently used as an active vitamin D preparation for bone metabolic diseases such as renal insufficiency rickets, osteoporosis and osteomalacia. In addition, these active vitamin Ds were found to suppress the growth of keratinocytes in human epidermis (Endocrinology, 113, 1950 (198
3)), expectations for it as a drug for psoriasis are also increasing. On the other hand, as the vitamin D derivative in which the side chain portion of these compounds is modified with fluorine,

【化7】 で表わされる26,26,26,27,27,27-ヘキサフルオロ-1α,
25-ジヒドロキシビタミンD3(特公平3-48903)あるい
は化学式(VII)
[Chemical 7] 26,26,26,27,27,27-hexafluoro-1α, represented by
25-dihydroxyvitamin D 3 (Japanese Patent Publication No. 3-48903) or chemical formula (VII)

【化8】 で表わされる24,24-ジフルオロ-1α,25-ジヒドロキシ
ビタミンD3(特公昭61-48501)等が公知であり、これ
らはともに従来の活性型ビタミンD類と比較して非常に
強力な腸管カルシウム吸収作用およびヒト前骨髄性白血
病細胞株HL−60の分化誘導作用を示すことが知られ
ている。
Embedded image 24,24-difluoro-1α, 25-dihydroxyvitamin D 3 (Japanese Patent Publication No. 61-48501) and the like are known, both of which are extremely potent intestinal calcium compared with conventional active vitamin Ds. It is known to exhibit an absorption action and a differentiation inducing action of the human promyelocytic leukemia cell line HL-60.

【0003】また、ビタミンD共役トリエン部分をフッ
素修飾した化合物としては、化学式(VIII)
Further, a compound in which the vitamin D conjugated triene moiety is modified with fluorine is represented by the chemical formula (VIII)

【化9】 で表わされる6-フルオロビタミンD3(J.Org.Chem.,5
0,2007(1985))が公知であり、これは in vivoでビタ
ミンDアンタゴニストとして作用することが知られてい
る。
[Chemical 9] 6-fluorovitamin D 3 represented by (J.Org.Chem., 5
0, 2007 (1985)), which is known to act as a vitamin D antagonist in vivo.

【0004】[0004]

【発明が解決しようとする課題】上記化学式(VI)、
(VII)、(VIII)に示すビタミンD誘導体は多彩な生
理活性のため、治療薬として多方面への応用が考えられ
ているが、同様の作用が期待される共役トリエン部分の
19位がフッ素で修飾されている一般式(I)の化合物
は、合成が困難であり、これまで製造されなかった。本
発明の目的は、これまで製造が困難であった一般式
(I)で表わされる新規なフッ素化ビタミンD誘導体、
その中間体およびそれらの製造方法を提供することであ
る。
The above chemical formula (VI),
Since the vitamin D derivatives shown in (VII) and (VIII) have various physiological activities, they are expected to be applied to various fields as therapeutic agents.
The compound of the general formula (I) in which the 19-position is modified with fluorine is difficult to synthesize, and thus far has not been produced. The object of the present invention is to provide a novel fluorinated vitamin D derivative represented by the general formula (I), which has been difficult to produce up to now.
It is an object of the present invention to provide an intermediate and a method for producing them.

【0005】[0005]

【課題を解決するための手段】本発明は、以下の[1]
〜[11]よりなる。 [1]一般式(I)
The present invention provides the following [1].
~ [11]. [1] General formula (I)

【化10】 (式中、R1は任意の置換基を有する炭素数2から9の
アルキル基を示し、R2は水素原子あるいは水酸基を示
す。)で表わされるフッ素化ビタミンD誘導体。 [2]一般式(II)
[Chemical 10] (In the formula, R 1 represents an alkyl group having an arbitrary substituent and having 2 to 9 carbon atoms, and R 2 represents a hydrogen atom or a hydroxyl group.) A fluorinated vitamin D derivative. [2] General formula (II)

【化11】 (式中、R1は任意の置換基を有する炭素数2から9の
アルキル基であり、R2は水素原子、水酸基、あるいは
保護された水酸基のいずれかを示し、R3はフッ素原子
かつR4は水素原子、あるいはR3は水素原子かつR4
フッ素原子を示し、R5は水素原子あるいは水酸基の保
護基を示す。)で表わされるフッ素化 (5E)-ビタミンD
誘導体。 [3]一般式(III)
[Chemical 11] (In the formula, R 1 is an alkyl group having 2 to 9 carbon atoms and having an arbitrary substituent, R 2 is either a hydrogen atom, a hydroxyl group or a protected hydroxyl group, and R 3 is a fluorine atom and R Fluorinated (5E) -vitamin D represented by 4 is a hydrogen atom, or R 3 is a hydrogen atom and R 4 is a fluorine atom, and R 5 is a hydrogen atom or a hydroxyl-protecting group.
Derivative. [3] General formula (III)

【化12】 (式中、R1は任意の置換基を有する炭素数2から9の
アルキル基であり、R2は水素原子、水酸基、あるいは
保護された水酸基のいずれかを示し、R5は水素原子あ
るいは水酸基の保護基を示し、R6はフッ素原子かつR7
は水素原子、あるいはR6は水素原子かつR7はフッ素原
子を示す。)で表わされるフッ素化ビタミンD-SO2
加体。 [4]R2が水素原子、水酸基、トリアルキルシリルオ
キシ基、メトキシメトキシ基、メトキシエトキシメトキ
シ基、あるいはテトラヒドロピラニルオキシ基であり、
5が水素原子、トリアルキルシリル基、メトキシメチ
ル基、メトキシエトキシエチル基、あるいはテトラヒド
ロピラニル基である[2]に記載の一般式(II)で示さ
れるフッ素化 (5E)-ビタミンD誘導体。 [5]R2が水素原子、水酸基、トリアルキルシリルオ
キシ基、メトキシメトキシ基、メトキシエトキシメトキ
シ基、あるいはテトラヒドロピラニルオキシ基であり、
5が水素原子、トリアルキルシリル基、メトキシメチ
ル基、メトキシエトキシエチル基、あるいはテトラヒド
ロピラニル基である[3]に記載の一般式(III)で示
されるフッ素化ビタミンD-SO2付加体。 [6]一般式(III')
[Chemical 12] (In the formula, R 1 is an alkyl group having 2 to 9 carbon atoms having an arbitrary substituent, R 2 is either a hydrogen atom, a hydroxyl group or a protected hydroxyl group, and R 5 is a hydrogen atom or a hydroxyl group. R 6 is a fluorine atom and R 7
Is a hydrogen atom, or R 6 is a hydrogen atom and R 7 is a fluorine atom. ) Fluorinated vitamin D-SO 2 adduct represented by [4] R 2 is a hydrogen atom, a hydroxyl group, a trialkylsilyloxy group, a methoxymethoxy group, a methoxyethoxymethoxy group, or a tetrahydropyranyloxy group,
Fluorinated (5E) -vitamin D derivative represented by the general formula (II) according to [2], wherein R 5 is hydrogen atom, trialkylsilyl group, methoxymethyl group, methoxyethoxyethyl group or tetrahydropyranyl group. . [5] R 2 is a hydrogen atom, a hydroxyl group, a trialkylsilyloxy group, a methoxymethoxy group, a methoxyethoxymethoxy group, or a tetrahydropyranyloxy group,
Fluorinated vitamin D-SO 2 adduct represented by the general formula (III) according to [3], wherein R 5 is a hydrogen atom, a trialkylsilyl group, a methoxymethyl group, a methoxyethoxyethyl group, or a tetrahydropyranyl group. . [6] General formula (III ′)

【化13】 (式中、R1は任意の置換基を有する炭素数2から9の
アルキル基であり、R2は水素原子、あるいは保護され
た水酸基を示し、R5は水酸基の保護基を示し、R6はフ
ッ素原子かつR7は水素原子、あるいはR6は水素原子か
つR7はフッ素原子を示す。)で表わされるフッ素化ビ
タミンD-SO2付加体より一般式(I)のフッ素化ビタ
ミンD誘導体を製造する方法において、脱SO2化工
程、脱保護基工程、光異性化工程の順に反応を行うこと
を特徴とする一般式(I)のフッ素化ビタミンD誘導体
の製造方法。 [7]一般式(III')で表わされるフッ素化ビタミンD
-SO2付加体より一般式(I)のフッ素化ビタミンD誘
導体を製造する方法において、脱保護基工程、脱SO 2
化工程、光異性化工程の順に反応を行うことを特徴とす
る一般式(I)のフッ素化ビタミンD誘導体の製造方
法。 [8]光異性化工程が有機溶媒中、光増感剤の存在下、
光照射して反応させることを特徴とする[6]または
[7]に記載の一般式(I)のフッ素化ビタミンD誘導
体の製造方法。 [9]脱保護基工程が有機溶媒中で、フッ素陰イオン、
酸、もしくはトリアルキルシリルハライドの存在下に反
応させることを特徴とする[6]または[7]に記載の
一般式(I)のフッ素化ビタミンD誘導体の製造方法。 [10]脱SO2化工程が有機溶媒中、アルカリ金属塩
の存在下、加熱して反応させることを特徴とする[6]
または[7]に記載の一般式(I)のフッ素化ビタミン
D誘導体の製造方法。 [11]一般式(IV)
[Chemical 13](In the formula, R1Has 2 to 9 carbon atoms and has an arbitrary substituent
An alkyl group, R2Is a hydrogen atom, or is protected
Shows a hydroxyl group, RFiveRepresents a protective group for hydroxyl group, R6Is
Fluorine atom and R7Is a hydrogen atom or R6Is a hydrogen atom
Tsu R7Represents a fluorine atom. ) Fluorinated vinyl represented by
Tamin D-SO2Fluorinated bitters of general formula (I) derived from adducts
In a method for producing a Min D derivative, de-SO2Chemical engineering
The deprotection group process and the photoisomerization process in this order.
Fluorinated vitamin D derivative of general formula (I) characterized by
Manufacturing method. [7] Fluorinated vitamin D represented by general formula (III ′)
-SO2Induction of fluorinated vitamin D of general formula (I) from adduct
In the method for producing a conductor, a deprotecting group step, a de-SO 2
It is characterized in that the reaction is carried out in the order of the photoisomerization step and the photoisomerization step.
Method for producing fluorinated vitamin D derivative of general formula (I)
Law. [8] In the photoisomerization step in an organic solvent in the presence of a photosensitizer,
Characterized by irradiating light to react [6] or
Fluorinated vitamin D derivative of the general formula (I) according to [7]
Body manufacturing method. [9] The deprotecting group step is performed in an organic solvent using a fluorine anion,
In the presence of acid or trialkylsilyl halide,
[6] or [7] characterized in that
A method for producing a fluorinated vitamin D derivative of the general formula (I). [10] De-SO2Alkali metal salt in organic solvent
[6] characterized by reacting by heating in the presence of
Alternatively, the fluorinated vitamin of the general formula (I) according to [7]
Method for producing D derivative. [11] General formula (IV)

【化14】 (式中、R1は任意の置換基を有する炭素数2から9の
アルキル基であり、R2は水素原子あるいは保護された
水酸基であり、R5は水酸基の保護基を示す。)で示さ
れる化合物を、有機溶媒中、一般式(V)
Embedded image (In the formula, R 1 is an alkyl group having 2 to 9 carbon atoms having an arbitrary substituent, R 2 is a hydrogen atom or a protected hydroxyl group, and R 5 is a hydroxyl-protecting group.) The compound of formula (V)

【化15】 (式中、R8、R9は同一でも異なっていてもよく、トリ
アルキルシリル基あるいは炭素数1から4の任意のアル
キル基を示し、Mはアルカリ金属原子を示す。)で表わ
されるアルカリ金属アミドおよび塩基活性化剤の存在
下、N−フルオロジベンゼンスルホンアミドと反応させ
ることを特徴とする一般式(III')のフッ素化ビタミン
D-SO2付加体の製造方法。
[Chemical 15] (In the formula, R 8 and R 9 may be the same or different and each represents a trialkylsilyl group or an arbitrary alkyl group having 1 to 4 carbon atoms, and M represents an alkali metal atom.) A method for producing a fluorinated vitamin D-SO 2 adduct of general formula (III '), which comprises reacting with N-fluorodibenzenesulfonamide in the presence of an amide and a base activator.

【0006】本発明において、一般式(I)、(II)、
(III)、(II')、(II'')、(III')および(II
I'')で表されるビタミンD誘導体の、R1は任意の置換
基を有する炭素数2から9のアルキル基である。炭素数
2から9のアルキル基は、例えば、エチル基、プロピル
基、ブチル基、オクチル基、ノニル基などである。任意
の置換基は、例えば、水酸基、ハロゲン原子、ニトリル
基、ホルミル基などである。また、R1はビタミンD2
るいはビタミンD3の側鎖でもよい。本発明の説明にお
いて、化合物(II')は、一般式(II)で表される化合
物のうちR2が水素原子あるいは保護された水酸基であ
り、R5が水酸基の保護基である化合物である。化合物
(II'')は、一般式(II)で表される化合物のうちR2
が水素原子あるいは水酸基であり、R5が水素原子であ
る化合物である。化合物(III')は、一般式(III)で
表される化合物のうちR2が水素原子あるいは保護され
た水酸基であり、R5が水酸基の保護基である化合物で
ある。化合物(III'')は、一般式(III)で表される化
合物のうちR2が水素原子あるいは水酸基であり、R5
水素原子である化合物である。
In the present invention, the general formulas (I), (II),
(III), (II '), (II''),(III') and (II
In the vitamin D derivative represented by I ″), R 1 is an alkyl group having 2 to 9 carbon atoms and having an arbitrary substituent. The alkyl group having 2 to 9 carbon atoms is, for example, an ethyl group, a propyl group, a butyl group, an octyl group or a nonyl group. The optional substituent is, for example, a hydroxyl group, a halogen atom, a nitrile group or a formyl group. R 1 may also be the side chain of vitamin D 2 or vitamin D 3 . In the description of the present invention, the compound (II ′) is a compound represented by the general formula (II) in which R 2 is a hydrogen atom or a protected hydroxyl group and R 5 is a hydroxyl-protecting group. . The compound (II ″) is a compound represented by the general formula (II), R 2
Is a hydrogen atom or a hydroxyl group, and R 5 is a hydrogen atom. The compound (III ′) is a compound represented by the general formula (III) in which R 2 is a hydrogen atom or a protected hydroxyl group and R 5 is a hydroxyl group-protecting group. The compound (III ″) is a compound represented by the general formula (III) in which R 2 is a hydrogen atom or a hydroxyl group and R 5 is a hydrogen atom.

【0007】本発明の[6]および[7]の製造方法
は、工程1〜工程3を含む3工程よりなる。また[8]
の製造方法は工程1に、[9]の製造方法は工程2に、
[10]の製造方法は工程3に対応する。工程1〜工程
3は、工程3、工程2、工程1の順に実施されるか、あ
るいは工程2、工程3、工程1のいずれかの順番で実施
される。また[11]の製造方法は工程4に対応する。
The manufacturing method [6] and [7] of the present invention comprises three steps including step 1 to step 3. Also [8]
The manufacturing method of [1] is step 1, the manufacturing method of [9] is step 2,
The manufacturing method [10] corresponds to step 3. Steps 1 to 3 are carried out in the order of step 3, step 2 and step 1 or in any order of step 2, step 3 and step 1. The manufacturing method of [11] corresponds to step 4.

【0008】以下に工程1〜工程4を説明する。工程1
は、光異性化工程であり、化合物(II'')から一般式
(I)で表わされる化合物を製造する工程である。本工
程は、光増感剤の存在下、光照射することによる5−6
位二重結合のE−Z異性化反応工程である。光増感剤
は、例えば、アントラセン、アクリジン、フェナジン、
エオシン−Yなどである。また、光照射の際の波長は可
視〜紫外であり、光源としては、例えば、ハロゲンラン
プ、キセノンランプ、高圧水銀ランプなどである。光増
感剤は化合物(II'')に対して0.1〜10モル当量、好ま
しくは0.5〜5モル当量用いる。反応温度は-20℃〜室
温、好ましくは0℃〜5℃である。反応時間は光源の強
度にもよるが、5分間〜1時間、好ましくは10分間〜30
分間である。反応に用いる有機溶媒は、芳香族炭化水素
系溶媒あるいはアルコール系溶媒が好ましく、それらの
単一溶媒でも混合溶媒のいずれをも用いることができ
る。尚、本工程において、化合物(II'')の10(E)-異性
体及び10(Z)-異性体のいずれも光照射後は単一の一般式
(I)で表わされるビタミンD誘導体となる。
The steps 1 to 4 will be described below. Process 1
Is a photoisomerization step, which is a step of producing a compound represented by the general formula (I) from the compound (II ″). This step is carried out by irradiating with light in the presence of a photosensitizer.
It is an EZ isomerization reaction step of the position double bond. Photosensitizers include, for example, anthracene, acridine, phenazine,
Eosin-Y and the like. Further, the wavelength at the time of light irradiation is visible to ultraviolet, and the light source is, for example, a halogen lamp, a xenon lamp, a high pressure mercury lamp or the like. The photosensitizer is used in 0.1-10 molar equivalents, preferably 0.5-5 molar equivalents, relative to compound (II ''). The reaction temperature is -20 ° C to room temperature, preferably 0 ° C to 5 ° C. The reaction time depends on the intensity of the light source, but it is 5 minutes to 1 hour, preferably 10 minutes to 30.
It's a minute. The organic solvent used in the reaction is preferably an aromatic hydrocarbon solvent or an alcohol solvent, and either a single solvent or a mixed solvent thereof can be used. In this step, both the 10 (E) -isomer and the 10 (Z) -isomer of compound (II ″) are converted into a single vitamin D derivative represented by the general formula (I) after irradiation with light. Become.

【0009】工程2は、水酸基保護基の脱保護基工程で
あり、化合物(II')から化合物(II'')を製造する工
程、あるいは化合物(III')から化合物(III'')を製
造する工程である。脱保護剤として用いられるフッ素陰
イオン源は、例えば、テトラブチルアンモニウムフルオ
リド、フッ化水素酸、フッ化カリウムなどであり、酸と
は、例えば塩酸、臭化水素酸、トリフルオロ酢酸などで
ある。また、トリアルキルシリルハライドとは例えばト
リメチルブロミド、トリメチルヨージドである。脱保護
基剤は原料(化合物(II')あるいは化合物(III'))
に対して1〜20モル当量、好ましくは2〜12モル当量加
える。反応温度は-78℃〜50℃、好ましくは-40℃〜室温
である。反応時間は30分間〜6時間、好ましくは1時間
〜4時間である。反応に用いる有機溶媒は、無水エーテ
ル系溶媒あるいはハロゲン系炭化水素溶媒が好ましい。
Step 2 is a step of deprotecting the hydroxyl-protecting group, which is a step of producing compound (II '') from compound (II ') or a compound (III'') from compound (III'). It is a process to do. The fluorine anion source used as the deprotecting agent is, for example, tetrabutylammonium fluoride, hydrofluoric acid, potassium fluoride, etc., and the acid is, for example, hydrochloric acid, hydrobromic acid, trifluoroacetic acid, etc. . The trialkylsilyl halide is, for example, trimethyl bromide or trimethyl iodide. Deprotection base is raw material (compound (II ') or compound (III'))
To 1 to 20 molar equivalents, preferably 2 to 12 molar equivalents. The reaction temperature is -78 ° C to 50 ° C, preferably -40 ° C to room temperature. The reaction time is 30 minutes to 6 hours, preferably 1 hour to 4 hours. The organic solvent used in the reaction is preferably an anhydrous ether solvent or a halogen hydrocarbon solvent.

【0010】工程3は、アルカリ金属塩の存在下、加熱
による脱SO2化工程である。本工程は化合物(III')
から化合物(II')を製造する工程、もしくは化合物(I
II'')から化合物(II'')を製造する工程である。本工
程で用いられるアルカリ金属塩は、例えば、炭酸水素ナ
トリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カ
リウム、水酸化ナトリウム、水酸化カリウムなどであ
る。アルカリ金属塩は原料(化合物(III')、あるいは
化合物(III''))に対して1〜20モル当量、好ましく
は5〜10モル当量加える。反応温度は70℃〜120℃の範
囲内で行うことが望ましく、基本的にこの範囲内に沸点
を有するアルコール系溶媒あるいは非プロトン性極性溶
媒を選択することが好ましい。反応時間は30分間〜3時
間、好ましくは1時間〜2時間である。尚、本反応の原
料である化合物(III')は6位と19位に不斉炭素を有す
るため4種類の立体異性体が存在するが、これらの立体
異性体は、最終的に単一の一般式(I)で表わされるビ
タミンD誘導体に誘導される。
Step 3 is a step of removing SO 2 by heating in the presence of an alkali metal salt. This step is compound (III ')
From the compound (II ′) or the compound (I
This is a step of producing compound (II '') from II ''). The alkali metal salt used in this step is, for example, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide or the like. The alkali metal salt is added in an amount of 1 to 20 molar equivalents, preferably 5 to 10 molar equivalents, based on the raw material (compound (III ') or compound (III'')). The reaction temperature is preferably in the range of 70 ° C to 120 ° C, and it is basically preferable to select an alcoholic solvent or an aprotic polar solvent having a boiling point within this range. The reaction time is 30 minutes to 3 hours, preferably 1 hour to 2 hours. The compound (III '), which is the starting material for this reaction, has four types of stereoisomers because it has asymmetric carbons at the 6- and 19-positions. It is derived from the vitamin D derivative represented by the general formula (I).

【0011】尚、上記3工程を実施する場合は、それぞ
れの工程において適当な精製手段を用いて精製して実施
しても構わないし、精製する事無く連続して実施しても
構わない。
When the above-mentioned three steps are carried out, it may be carried out after purification by using a suitable purification means in each step, or may be carried out continuously without being purified.

【0012】工程4は、一般式(IV)から一般式(II
I')で表わされる化合物を製造する工程であり、アルカ
リ金属アミドおよび塩基性条件下、N−フルオロジベン
ゼンスルホンアミドによるフッ素化反応である。原料と
なる一般式(IV)の化合物は公知の方法(Chem.Lett. 5
83 (1979)、J.Org. Chem. 51, 1635 (1986) 及びJ.Org.
Chem. 51, 4819 (1986))を使用して得ることができ
る。一般式(V)のアルカリ金属アミドは、例えば、リ
チウムビストリメチルシリルアミド、ナトリウムビスト
リメチルシリルアミド、リチウムテトラメチルピペリジ
ドリチウムジイソプロピルアミドである。塩基活性化剤
は、例えば、ヘキサメチルリン酸トリアミド、N,N,N',
N'-テトラメチルエチレンジアミンなどである。アルカ
リ金属アミドは、原料(一般式(IV))に対して1〜5
モル当量、好ましくは1.5〜3モル当量加える。塩基活
性化剤は、原料(一般式(IV))に対して1〜10モル当
量、好ましくは3〜6モル当量加える。N−フルオロジ
ベンゼンスルホンアミドは、原料(一般式(IV))に対
して1〜5モル当量、好ましくは1.5〜3モル当量加え
る。反応温度は-100℃〜-50℃、好ましくは-80℃〜-60
℃であり、反応時間は5分間〜3時間、好ましくは10分
間〜1.5時間である。反応に用いる有機溶媒は、無水エ
ーテル系溶媒が好ましい。
The step 4 is carried out from the general formula (IV) to the general formula (II
I ') is a step for producing a compound, which is a fluorination reaction with N-fluorodibenzenesulfonamide under alkali metal amide and basic conditions. The compound of the general formula (IV) used as a raw material is a known method (Chem. Lett.
83 (1979), J.Org. Chem. 51, 1635 (1986) and J.Org.
Chem. 51, 4819 (1986)). The alkali metal amide of the general formula (V) is, for example, lithium bistrimethylsilylamide, sodium bistrimethylsilylamide, lithium tetramethylpiperidide lithium diisopropylamide. The base activator is, for example, hexamethylphosphoric triamide, N, N, N ',
Examples include N'-tetramethylethylenediamine. The alkali metal amide is 1 to 5 with respect to the raw material (general formula (IV)).
Add molar equivalents, preferably 1.5 to 3 molar equivalents. The base activator is added in an amount of 1 to 10 molar equivalents, preferably 3 to 6 molar equivalents, based on the raw material (general formula (IV)). N-fluorodibenzenesulfonamide is added in an amount of 1 to 5 molar equivalents, preferably 1.5 to 3 molar equivalents, based on the raw material (general formula (IV)). The reaction temperature is -100 ° C to -50 ° C, preferably -80 ° C to -60.
The reaction time is 5 minutes to 3 hours, preferably 10 minutes to 1.5 hours. The organic solvent used in the reaction is preferably an anhydrous ether solvent.

【0013】本発明において、エーテル系溶媒は、例え
ば、ジエチルエーテル、テトラヒドロフラン、ジオキサ
ンなどである。アルコール系溶媒は、例えば、メタノー
ル、エタノールなどである。芳香族炭化水素系溶媒は、
例えば、ベンゼン、トルエンなどである。非プロトン性
極性溶媒は、例えば、ジメチルホルムアミド、ジメチル
スルホキシドなどである。
In the present invention, the ether solvent is, for example, diethyl ether, tetrahydrofuran or dioxane. The alcohol solvent is, for example, methanol or ethanol. The aromatic hydrocarbon solvent is
For example, benzene, toluene and the like. The aprotic polar solvent is, for example, dimethylformamide, dimethylsulfoxide or the like.

【0014】本発明の製造方法においては、全工程を通
じて不活性ガス例えばアルゴンガス雰囲気下で行うこと
が望ましい。またすべての工程を通じて、反応混合物か
らの中間体および一般式(I)から一般式(III)のビ
タミンD誘導体の単離は、通常用いられる精製手段、例
えば抽出、再結晶、カラムクロマトグラフィー、分取用
高速液体クロマトグラフィー、分取用薄層クロマトグラ
フィーなどにより行うことができる。
In the manufacturing method of the present invention, it is desirable to carry out all steps in an atmosphere of an inert gas such as argon gas. In addition, isolation of the intermediate and the vitamin D derivative of the general formula (I) from the general formula (I) from the reaction mixture can be carried out by a commonly used purification means such as extraction, recrystallization, column chromatography, separation through all the steps. It can be performed by preparative high performance liquid chromatography, preparative thin layer chromatography and the like.

【0015】[0015]

【発明の効果】本発明は、公知の方法によって得られる
一般式(IV)で表わされる化合物を原料とし、短段階で
効率良く一般式(I)で表わされる新規なフッ素化ビタ
ミンD誘導体を得ることができる。さらに本発明によっ
て種々の疾病治療に応用できると期待される新規ビタミ
ンD製剤を提供することができる。
INDUSTRIAL APPLICABILITY The present invention uses a compound represented by the general formula (IV) obtained by a known method as a raw material to efficiently obtain a novel fluorinated vitamin D derivative represented by the general formula (I) in a short step. be able to. Furthermore, the present invention can provide a novel vitamin D preparation which is expected to be applicable to treatment of various diseases.

【0016】[0016]

【実施例】次に参考例および実施例を挙げて本発明をさ
らに具体的に説明する。以下に、一般式(IV)から一般
式(I)の合成経路の実施態様をスキームで例示する。
EXAMPLES The present invention will be described more specifically with reference to Examples and Examples. The schemes below exemplify the embodiments of the synthetic routes of the general formulas (IV) to (I).

【化16】 尚、I〜IVのギリシャ数字はそれぞれの一般式に対応
し、a〜bの記号は一般式の実施態様を表す。また、
(R,S)はR体および/またはS体を表す。尚、本参考例
および実施例における各化合物のギリシャ数字は、反応
スキームに対応している。
Embedded image The Greek numerals I to IV correspond to the respective general formulas, and the symbols a to b represent the embodiments of the general formula. Also,
(R, S) represents R-form and / or S-form. In addition, the Greek numeral of each compound in the present Reference Examples and Examples corresponds to the reaction scheme.

【0017】[参考例1]:ビタミンD3-SO2付加体
(IVa)の合成 ビタミンD3(4.10g,10.65mmol)を液体二酸化硫黄(2
0ml)中に溶解し、室温にて30分間攪拌した後、過剰の
液体二酸化硫黄を窒素ガスを吹きつけて留去し、残渣を
減圧乾燥した。得られた粗SO2付加体を無水ジメチル
ホルムアミド(10ml)中に溶解し、イミダゾール(2.9
g,42.64mmol)およびt-ブチルジメチルシリルクロリ
ド(3.21g,21.32mmol)を順次加え、室温にて2時間攪
拌した。反応混合物に水(150ml)を加え、水層よりヘ
キサン(150ml、3回)およびエーテル(150ml、2回)
にて抽出した。得られた有機層を合わせて飽和食塩水に
て洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧
留去すると、粗生成物(7.31g)が得られた。これをシ
リカゲルカラムクロマトグラフィー(150g)により精製
し、酢酸エチル:ヘキサン(1:9(v/v))溶出部よ
り、(6S)-ビタミンD3-SO2付加体(6S-IVa)(2.23
g)、(6R)-ビタミンD3-SO2付加体(6R-IVa)(1.94
g)、および両者の混合物(1.50g)を得た。合計収率9
4.6%。尚、粗精製物の1H-NMRスペクトルの測定
から6S:6Rは約1:1であった。
[0017] [Reference Example 1]: Vitamin D 3 -SO 2 adduct synthetic vitamin D 3 of (IVa) (4.10g, 10.65mmol) and liquid sulfur dioxide (2
(0 ml) and stirred at room temperature for 30 minutes, excess liquid sulfur dioxide was blown off by blowing nitrogen gas, and the residue was dried under reduced pressure. The obtained crude SO 2 adduct was dissolved in anhydrous dimethylformamide (10 ml), and imidazole (2.9
g, 42.64 mmol) and t-butyldimethylsilyl chloride (3.21 g, 21.32 mmol) were sequentially added, and the mixture was stirred at room temperature for 2 hours. Water (150 ml) was added to the reaction mixture, and hexane (150 ml, 3 times) and ether (150 ml, 2 times) were added from the aqueous layer.
It was extracted in. The obtained organic layers were combined, washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure to give a crude product (7.31 g). This was purified by silica gel column chromatography (150 g), and the (6S) -vitamin D 3 -SO 2 adduct (6S-IVa) (2.23) was obtained from the elution part of ethyl acetate: hexane (1: 9 (v / v)).
g), (6R) -vitamin D 3 -SO 2 adduct (6R-IVa) (1.94
g) and a mixture of both (1.50 g). Total yield 9
4.6%. The 6S: 6R ratio was about 1: 1 from the 1 H-NMR spectrum measurement of the crude product.

【0018】6S-IVa:1 H-NMR(δ(ppm),CDCl3/TMS): δ;0.05および0.06(各々3H,s,2×Si-CH3),0.65(3H,s,
H-18),0.88(9H,s,Si-tBu),0.92(3H,d,J=6.5Hz,H-2
1),0.8〜2.3(31H,m),2.60(1H,m),3.65(2H,m,H-19),
4.01(1H,m,H-3),4.52および4.78(各々1H,d,J=10.2Hz,H
-6,7)
6S-IVa: 1 H-NMR (δ (ppm), CDCl 3 / TMS): δ; 0.05 and 0.06 (3H, s, 2 × Si-CH 3 ), 0.65 (3H, s,
H-18), 0.88 (9H, s, Si-tBu), 0.92 (3H, d, J = 6.5Hz, H-2
1), 0.8 to 2.3 (31H, m), 2.60 (1H, m), 3.65 (2H, m, H-19),
4.01 (1H, m, H-3), 4.52 and 4.78 (1H, d, J = 10.2Hz, H respectively)
-6,7)

【0019】6R-IVa:1 H-NMR(δ(ppm),CDCl3/TMS): δ;0.05および0.06(各々3H,s,2×Si-CH3),0.57(3H,s,
H-18),0.86および0.87(各々3H,d,J=6.3Hz,H-26,27),
0.88(9H,s,Si-tBu),0.93(3H,d,J=6.1Hz,H-21),0.9〜
2.3(25H,m),2.57(1H,m),3.64および3.68(各々1H,d,J=
16.0Hz,H-19),3.97(1H,m,H-3),4.63および4.78(各々1
H,d,J=10.2Hz,H-6,7)
6R-IVa: 1 H-NMR (δ (ppm), CDCl 3 / TMS): δ; 0.05 and 0.06 (3H, s, 2 × Si-CH 3 ), 0.57 (3H, s, respectively)
H-18), 0.86 and 0.87 (3H, d, J = 6.3Hz, H-26,27),
0.88 (9H, s, Si-tBu), 0.93 (3H, d, J = 6.1Hz, H-21), 0.9〜
2.3 (25H, m), 2.57 (1H, m), 3.64 and 3.68 (each 1H, d, J =
16.0Hz, H-19), 3.97 (1H, m, H-3), 4.63 and 4.78 (1 each)
(H, d, J = 10.2Hz, H-6,7)

【0020】[参考例2]:ビタミンD2-SO2付加体
(IVb)の合成 ビタミンD2を原料とし、参考例1と同様の操作により
(6S)-ビタミンD2-SO 2付加体(6S-IVb)および(6R)-
ビタミンD2-SO2付加体(6R-IVb)を得た。
Reference Example 2 Vitamin D2-SO2Adduct
Synthesis of (IVb) Vitamin D2Using the above as a raw material and the same operation as in Reference Example 1,
(6S) -Vitamin D2-SO 2Adducts (6S-IVb) and (6R)-
Vitamin D2-SO2An adduct (6R-IVb) was obtained.

【0021】6S-IVb:1 H-NMR(δ(ppm),CDCl3/TMS): δ;0.05および0.06(各々3H,s,2×Si-CH3),0.66(3H,s,
H-18),0.82および0.84(各々3H,d,J=7.0Hz,H-26,27),
0.88(9H,s,Si-tBu),0.92(3H,d,J=6.7Hz),1.02(3H,d,J
=6.8Hz),1.25〜2.65(21H,m),3.65(2H,m,H-19),4.01
(1H,m,H-3),4.52および4.69(各々1H,d,J=9.4Hz,H-6,
7),5.19(2H,m,H-22,23)
6S-IVb: 1 H-NMR (δ (ppm), CDCl 3 / TMS): δ; 0.05 and 0.06 (3H, s, 2 × Si-CH 3 ), 0.66 (3H, s,
H-18), 0.82 and 0.84 (each 3H, d, J = 7.0Hz, H-26,27),
0.88 (9H, s, Si-tBu), 0.92 (3H, d, J = 6.7Hz), 1.02 (3H, d, J
= 6.8Hz), 1.25 to 2.65 (21H, m), 3.65 (2H, m, H-19), 4.01
(1H, m, H-3), 4.52 and 4.69 (each 1H, d, J = 9.4Hz, H-6,
7), 5.19 (2H, m, H-22,23)

【0022】6R-IVb:1 H-NMR(δ(ppm),CDCl3/TMS): δ;0.05および0.06(各々3H,s,2×Si-CH3),0.57(3H,s,
H-18),0.82および0.84(各々3H,d,J=7.0Hz,H-26,27),
0.88(9H,s,Si-tBu),0.92(3H,d,J=7.1Hz,),1.03(3H,d,
J=6.8Hz),1.25〜2.65(21H,m),3.64および3.69(各々1
H,d,J=15.8Hz,H-19),3.97(1H,m,H-3),4.63および4.77
(各々1H,d,J=10.4Hz,H-6,7),5.20(2H,m,H-22,23)
6R-IVb: 1 H-NMR (δ (ppm), CDCl 3 / TMS): δ; 0.05 and 0.06 (3H, s, 2 × Si-CH 3 ), 0.57 (3H, s,
H-18), 0.82 and 0.84 (each 3H, d, J = 7.0Hz, H-26,27),
0.88 (9H, s, Si-tBu), 0.92 (3H, d, J = 7.1Hz,), 1.03 (3H, d,
J = 6.8Hz), 1.25 to 2.65 (21H, m), 3.64 and 3.69 (each 1
H, d, J = 15.8Hz, H-19), 3.97 (1H, m, H-3), 4.63 and 4.77
(1H, d, J = 10.4Hz, H-6,7), 5.20 (2H, m, H-22,23)

【0023】[参考例3]1α-ヒドロキシビタミンD3
-SO2付加体(IVc)の合成 (5E)-1α-メトキシメトキシ-ビタミンD3-3β-t-ブ
チルジメチルシリル保護体(830.0mg,1.48mmol)の無
水ジクロロメタン溶液(5ml)を液体二酸化硫黄(約15m
l)とともに-10℃にて30分間還流した後溶媒及び液体二
酸化硫黄を減圧留去した。粗生成物をシリガゲルクロマ
トグラフィー(100g)により精製し、酢酸エチル:ヘキ
サン(1:5(v/v))溶出部より(6S)-1α-ヒドロキ
シビタミンビタミンD3-SO2付加体(6S-IVc)(608.5
mg)、(6R)-1α-ヒドロキシビタミンビタミンD3-SO
2付加体(6R-IVc)(142.2mg)を得た。合計収率8
1.1%。
Reference Example 3 1α-hydroxyvitamin D 3
Synthesis of -SO 2 adduct (IVc) (5E) -1α- methoxymethoxy - vitamin D 3 -3β-t- butyldimethylsilyl protecting body (830.0mg, 1.48mmol) liquid sulfur dioxide in anhydrous dichloromethane (5ml) of (About 15m
After refluxing with l) for 30 minutes at -10 ° C, the solvent and liquid sulfur dioxide were distilled off under reduced pressure. The crude product was purified by silica gel chromatography (100 g), and the (6S) -1α-hydroxyvitamin D 3 -SO 2 adduct (from the elution part of ethyl acetate: hexane (1: 5 (v / v)) was added ( 6S-IVc) (608.5
mg), (6R) -1α-hydroxyvitamin vitamin D 3 -SO
2 adduct (6R-IVc) (142.2 mg) was obtained. Total yield 8
1.1%.

【0024】6S-IVc:1 H-NMR(δ(ppm),CDCl3/TMS):δ;0.06および0.07
(各々3H,s,2×Si-CH3),0.66(3H,s,H-18),0.86(3H,d,J
=6.6Hz,H-26,27),0.88(9H,s,Si-tBu),0.92(3H,d,J=6.
3Hz,H-21),2.19(1H,m),2.61(1H,m),3.38(3H,s,OC
H3),3.66及び3.98(各々1H,d,J=15.7Hz,H-19),4.16(1
H,m,H-3),4.22(1H,m,H-1),4.59および4.72(各々1H,d,
J=7.0Hz,-OCH2O-),4.65および4.72(各々1H,d,J=9.6Hz,
H-6,7)
6S-IVc: 1 H-NMR (δ (ppm), CDCl 3 / TMS): δ; 0.06 and 0.07
(3H, s, 2 × Si-CH 3 ), 0.66 (3H, s, H-18), 0.86 (3H, d, J
= 6.6Hz, H-26,27), 0.88 (9H, s, Si-tBu), 0.92 (3H, d, J = 6.
3Hz, H-21), 2.19 (1H, m), 2.61 (1H, m), 3.38 (3H, s, OC
H 3 ), 3.66 and 3.98 (1H, d, J = 15.7Hz, H-19, respectively), 4.16 (1
H, m, H-3), 4.22 (1H, m, H-1), 4.59 and 4.72 (1H, d, respectively)
J = 7.0Hz, -OCH 2 O-), 4.65 and 4.72 (1H, d, J = 9.6Hz, respectively)
H-6,7)

【0025】6R-IVc:1 H-NMR(δ(ppm),CDCl3/TMS): δ;0.05および0.07(各々3H,s,2×Si-CH3),0.56(3H,s,
H-18),0.88(9H,s,Si-tBu),0.93(3H,d,J=6.1Hz,H-2
1),0.9〜2.3(25H,m),2.35(1H,m),2.55(1H,m),3.39
(3H,s,OCH3),3.68(1H,dd,J=16.1,2.9Hz,H-19),3.96(1
H,d,J=16.1Hz,H-19),4.12(1H,m,H-3),4.22(1H,m,H-
1),4.60および4.73(各々1H,d,J=7.0Hz,-OCH2O-),4.62
および4.80(各々1H,d,J=10.2Hz,H-6,7)
6R-IVc: 1 H-NMR (δ (ppm), CDCl 3 / TMS): δ; 0.05 and 0.07 (each 3H, s, 2 × Si-CH 3 ), 0.56 (3H, s,
H-18), 0.88 (9H, s, Si-tBu), 0.93 (3H, d, J = 6.1Hz, H-2
1), 0.9 ~ 2.3 (25H, m), 2.35 (1H, m), 2.55 (1H, m), 3.39
(3H, s, OCH 3 ), 3.68 (1H, dd, J = 16.1,2.9Hz, H-19), 3.96 (1
H, d, J = 16.1Hz, H-19), 4.12 (1H, m, H-3), 4.22 (1H, m, H-
1), 4.60 and 4.73 (each 1H, d, J = 7.0Hz, -OCH 2 O-), 4.62
And 4.80 (1H, d, J = 10.2Hz, H-6,7 respectively)

【0026】[実施例1]:ビタミンD-SO2付加体
(III')の19-フッ素化反応 実施例1−1:(6S-III'a) 参考例1で得られた(6S)-ビタミンD3-SO2付加体(6S
-IVa)(225mg,0.40mmol)、ヘキサメチルリン酸トリ
アミド(139μl,0.80mmol)およびN-フルオロジベン
ゼンスルホンアミド(151.4mg,0.48mmol)を無水テト
ラヒドロフラン(3ml)に溶解し、-78℃に冷却した。本
冷却攪拌溶液にリチウムビストリメチルシリルアミド
(1Mテトラヒドロフラン溶液、480μl,0.48mmol)を
加え、さらに1時間攪拌した。反応混合物に飽和塩化ア
ンモニウム水溶液(20ml)を加え、エーテル(30mlで3
回)にて抽出した。エーテル層を合わせて飽和食塩水に
て洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧
留去した。得られた残渣(340.2mg)を3%酢酸エチル
含有ヘキサンを溶出溶媒に用いてシリカゲルカラムクロ
マトグラフィー(50g)により精製し、(6S,19R)-19-フ
ッ素化ビタミンD3-SO2付加体(6S,19R-III'a)(低
極性化合物、69.3mg,収率30.0%)、(6S,19S)-19-フッ
素化ビタミンD3-SO2付加体(6S,19S-III'a)(高極
性化合物、23.5mg,収率10.1%)および未反応原料(47.
9mg,回収率21.3%)を得た。
[Example 1] 19-fluorination reaction of vitamin D-SO 2 adduct (III ') Example 1-1: (6S-III'a) (6S) -obtained in Reference Example 1 Vitamin D 3 -SO 2 adduct (6S
-IVa) (225 mg, 0.40 mmol), hexamethylphosphoric triamide (139 μl, 0.80 mmol) and N-fluorodibenzenesulfonamide (151.4 mg, 0.48 mmol) were dissolved in anhydrous tetrahydrofuran (3 ml), and the solution was heated to -78 ° C. Cooled. Lithium bistrimethylsilylamide (1M tetrahydrofuran solution, 480 μl, 0.48 mmol) was added to this cooling and stirring solution, and the mixture was further stirred for 1 hour. Saturated aqueous ammonium chloride solution (20 ml) was added to the reaction mixture and ether (3 x 30 ml) was added.
Times). The ether layers were combined, washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The obtained residue (340.2 mg) was purified by silica gel column chromatography (50 g) using 3% ethyl acetate-containing hexane as an elution solvent to obtain (6S, 19R) -19-fluorinated vitamin D 3 -SO 2 adduct. (6S, 19R-III'a) (low polarity compound, 69.3 mg, yield 30.0%), (6S, 19S) -19-fluorinated vitamin D 3 -SO 2 adduct (6S, 19S-III'a) (Highly polar compound, 23.5 mg, yield 10.1%) and unreacted raw materials (47.
9 mg, recovery rate 21.3%) was obtained.

【0027】6S,19R-III'a:1 H-NMR(δ(ppm),CDCl3/TMS): δ;0.05および0.07(各々3H,s,2×Si-CH3),0.65(3H,s,
H-18),0.87(9H,s,Si-tBu),0.85〜2.20(29H,m),0.93
(3H,d,J=6.4Hz,H-21),2.32(2H,m),2.60(1H,m),4.04
(1H,m,H-3),4.66(2H,m,H-6,7),5.42(1H,d,J=56.9Hz,H
-19)19 F-NMR(δ(ppm),CDCl3/CF3Ph): δ;-165.20(d,J=56.4Hz) MS m/z(%):516(100,(M-SO2)+),496(11),459(1
3),439(7),431(4),403(10),384(19),364(47),362
(15),349(9),309(4),271(19),259(30),251(45),2
47(21),211(61),197(18),157(13),155(11),136(3
7),135(31),117(47)
6S, 19R-III'a: 1 H-NMR (δ (ppm), CDCl 3 / TMS): δ; 0.05 and 0.07 (3H, s, 2 × Si-CH 3 ), 0.65 (3H, s,
H-18), 0.87 (9H, s, Si-tBu), 0.85 to 2.20 (29H, m), 0.93
(3H, d, J = 6.4Hz, H-21), 2.32 (2H, m), 2.60 (1H, m), 4.04
(1H, m, H-3), 4.66 (2H, m, H-6,7), 5.42 (1H, d, J = 56.9Hz, H
-19) 19 F-NMR (δ (ppm), CDCl 3 / CF 3 Ph): δ; -165.20 (d, J = 56.4Hz) MS m / z (%): 516 (100, (M-SO 2 ) + ), 496 (11), 459 (1
3), 439 (7), 431 (4), 403 (10), 384 (19), 364 (47), 362
(15), 349 (9), 309 (4), 271 (19), 259 (30), 251 (45), 2
47 (21), 211 (61), 197 (18), 157 (13), 155 (11), 136 (3
7), 135 (31), 117 (47)

【0028】6S,19S-III'a:1 H-NMR(δ(ppm),CDCl3/TMS): δ;0.05および0.07(各々3H,s,2×Si-CH3),0.66(3H,s,
H-18),0.87(9H,s,Si-tBu),0.92(3H,d,J=7.0Hz,H-2
1),0.80〜2.65(32H,m),4.04(1H,m,H-3),4.43および
4.65(各々1H,d,J=9.6Hz,H-6,7),5.35(1H,d,J=56.3Hz,H
-19)19 F-NMR(δ(ppm),CDCl3/CF3Ph): δ;-160.98(d,J=56.4Hz)
6S, 19S-III'a: 1 H-NMR (δ (ppm), CDCl 3 / TMS): δ; 0.05 and 0.07 (3H, s, 2 × Si-CH 3 ), 0.66 (3H, s,
H-18), 0.87 (9H, s, Si-tBu), 0.92 (3H, d, J = 7.0Hz, H-2
1), 0.80 to 2.65 (32H, m), 4.04 (1H, m, H-3), 4.43 and
4.65 (1H, d, J = 9.6Hz, H-6,7), 5.35 (1H, d, J = 56.3Hz, H
-19) 19 F-NMR (δ (ppm), CDCl 3 / CF 3 Ph): δ; -160.98 (d, J = 56.4Hz)

【0029】実施例1−2:(6R-III'a) 実施例1−1と同一の反応条件を用いて(6R)-ビタミン
3-SO2付加体(6R-IVa)(2.64g,4.69mmol)の19-
フッ素化反応を行い、(6R,19S)-19-フッ素化ビタミンD
3-SO2付加体(6R,19S-III'a)(744.3mg,収率27.4
%)、(6R,19R)-19-フッ素化ビタミンD3-SO2付加体
(6R,19R-IIIa)(451.9mg,収率17.2%)および未反応
原料(796.7mg,回収率30.2%)を得た。
Example 1-2 (6R-III'a) Using the same reaction conditions as in Example 1-1, (6R) -vitamin D 3 -SO 2 adduct (6R-IVa) (2.64 g, 4.69mmol) 19-
Fluorinated, (6R, 19S) -19-Fluorinated Vitamin D
3- SO 2 adduct (6R, 19S-III'a) (744.3 mg, yield 27.4
%), (6R, 19R) -19-fluorinated vitamin D 3 -SO 2 adduct (6R, 19R-IIIa) (451.9 mg, yield 17.2%) and unreacted raw material (796.7 mg, recovery 30.2%) Got

【0030】6R,19S-III'a:1 H-NMR(δ(ppm),CDCl3/TMS): δ;0.05および0.06(各々3H,s,2×Si-CH3),0.56(3H,s,
H-18),0.87(9H,s,Si-tBu),0.93(3H,d,J=5.9Hz,H-2
1),0.85〜2.25(29H,m),2.33(1H,m),2.48(1H,m),2.5
5(1H,m),3.99(1H,m,H-3),4.74(2H,s,H-6,7),5.37(1
H,d,J=56.7Hz,H-19)19F-NMR(δ(ppm),CDCl3/CF3P
h): δ;-164.72(d,J=57.1Hz)
6R, 19S-III'a: 1 H-NMR (δ (ppm), CDCl 3 / TMS): δ; 0.05 and 0.06 (3H, s, 2 × Si-CH 3 ), 0.56 (3H, s,
H-18), 0.87 (9H, s, Si-tBu), 0.93 (3H, d, J = 5.9Hz, H-2
1), 0.85 to 2.25 (29H, m), 2.33 (1H, m), 2.48 (1H, m), 2.5
5 (1H, m), 3.99 (1H, m, H-3), 4.74 (2H, s, H-6,7), 5.37 (1
H, d, J = 56.7Hz, H-19) 19 F-NMR (δ (ppm), CDCl 3 / CF 3 P
h): δ; -164.72 (d, J = 57.1Hz)

【0031】6R,19R-III'a:1 H-NMR(δ(ppm),CDCl3/TMS): δ;0.05および0.06(各々3H,s,2×Si-CH3),0.55(3H,s,
H-18),0.88(9H,s,Si-tBu),0.93(3H,d,J=6.0Hz,H-2
1),0.85〜2.10(29H,m),2.35(2H,m),2.57(1H,m),4.0
1(1H,m,H-3),4.50および4.69(各々1H,d,J=10.1Hz,H-6,
7),5.40(1H,d,J=54.6Hz,H-19)19 F-NMR(δ(ppm),CDCl3/CF3Ph): δ;-161.59(d,J=56.4Hz)
6R, 19R-III'a: 1 H-NMR (δ (ppm), CDCl 3 / TMS): δ; 0.05 and 0.06 (3H, s, 2 × Si-CH 3 ), 0.55 (3H, s,
H-18), 0.88 (9H, s, Si-tBu), 0.93 (3H, d, J = 6.0Hz, H-2
1), 0.85 to 2.10 (29H, m), 2.35 (2H, m), 2.57 (1H, m), 4.0
1 (1H, m, H-3), 4.50 and 4.69 (1H, d, J = 10.1Hz, H-6,
7), 5.40 (1H, d, J = 54.6Hz, H-19) 19 F-NMR (δ (ppm), CDCl 3 / CF 3 Ph): δ; -161.59 (d, J = 56.4Hz)

【0032】実施例1−3:(III'b) 実施例1−1と同一の反応条件を用いて19-フッ素化反
応を行い、(6S)-ビタミンD2-SO2付加体(6S-IVb)
より(6S,19R)-19-フッ素化ビタミンD2-SO2付加体(6
S,19R-III'b)を、また(6R)-ビタミンD2-SO2付加体
(6R-IVb)より(6R,19S)-19-フッ素化ビタミンD2-S
2付加体(6R,19S-III'b)を合成した。
Example 1-3 (III'b) The 19-fluorination reaction was carried out using the same reaction conditions as in Example 1-1 to give a (6S) -vitamin D 2 -SO 2 adduct (6S- IVb)
From (6S, 19R) -19-fluorinated vitamin D 2 -SO 2 adduct (6
S, 19R-III'b) and (6R) -vitamin D 2 -SO 2 adduct (6R-IVb) to (6R, 19S) -19-fluorinated vitamin D 2 -S
An O 2 adduct (6R, 19S-III′b) was synthesized.

【0033】6S,19R-III'b:1 H-NMR(δ(ppm),CDCl3/TMS): δ;0.05および0.06(各々3H,s,2×Si-CH3),0.66(3H,s,
H-18),0.82および0.84(各々3H,d,J=6.7Hz,H-26,27),
0.87(9H,s,Si-tBu),0.92(3H,d,J=7.1Hz,),1.02(3H,d,
J=6.7Hz),1.20〜2.25(18H,m),2.31(2H,m),2.60(1H,
m),4.05(1H,m,H-3),4.65(2H,m,H-6,7),5.20(2H,m,H-
22,23),5.42(1H,d,J=57.0Hz,H-19) MS m/z(%):528(84,(M-SO2)+),471(12),451(10),
403(30),271(68),251(47),211(62),137(100),117
(74)
6S, 19R-III'b: 1 H-NMR (δ (ppm), CDCl 3 / TMS): δ; 0.05 and 0.06 (3H, s, 2 × Si-CH 3 ), 0.66 (3H, s,
H-18), 0.82 and 0.84 (3H, d, J = 6.7Hz, H-26,27),
0.87 (9H, s, Si-tBu), 0.92 (3H, d, J = 7.1Hz,), 1.02 (3H, d,
J = 6.7Hz), 1.20-2.25 (18H, m), 2.31 (2H, m), 2.60 (1H, m)
m), 4.05 (1H, m, H-3), 4.65 (2H, m, H-6,7), 5.20 (2H, m, H-
22,23), 5.42 (1H, d, J = 57.0Hz, H-19) MS m / z (%): 528 (84, (M-SO 2 ) + ), 471 (12), 451 (10) ,
403 (30), 271 (68), 251 (47), 211 (62), 137 (100), 117
(74)

【0034】6R,19S-III'b:1 H-NMR(δ(ppm),CDCl3/TMS): δ;0.05および0.06(各々3H,s,2×Si-CH3),0.58(3H,s,
H-18),0.82および0.84(各々3H,d,J=6.6Hz,H-26,27),
0.88(9H,s,Si-tBu),0.92(3H,d,J=6.8Hz,),1.03(3H,d,
J=6.6Hz),1.20〜2.20(18H,m),2.34(1H,m),2.50(1H,
m),2.55(1H,m),4.00(1H,m,H-3),4.75(2H,br,H-6,
7),5.20(2H,m,H-22,23),5.37(1H,d,J=56.7Hz,H-19)19 F-NMR(δ(ppm),CDCl3/CF3Ph): δ;-164.73(d,J=57.2Hz)
6R, 19S-III'b: 1 H-NMR (δ (ppm), CDCl 3 / TMS): δ; 0.05 and 0.06 (3H, s, 2 × Si-CH 3 ), 0.58 (3H, s,
H-18), 0.82 and 0.84 (3H, d, J = 6.6Hz, H-26,27),
0.88 (9H, s, Si-tBu), 0.92 (3H, d, J = 6.8Hz,), 1.03 (3H, d,
J = 6.6Hz), 1.20 ~ 2.20 (18H, m), 2.34 (1H, m), 2.50 (1H, m)
m), 2.55 (1H, m), 4.00 (1H, m, H-3), 4.75 (2H, br, H-6,
7), 5.20 (2H, m, H-22,23), 5.37 (1H, d, J = 56.7Hz, H-19) 19 F-NMR (δ (ppm), CDCl 3 / CF 3 Ph): δ -164.73 (d, J = 57.2Hz)

【0035】実施例1−4:(6R-III'c) 実施例1−1と同一の反応条件を用いて(6R)-1α-メト
キシメトキシ-3β-t-ブチルジメチルシリルオキシビタ
ミンD3-SO2付加体(6R-IVc)(41.3mg,0.066mmo
l)の19-フッ素化反応を行い、(6R,19R)-1α-メトキシ
メトキシ-3β-t-ブチルジメチルシリルオキシ-19-フッ
素化ビタミンD3-SO2付加体(6R,19R-III'c)(10.2
mg,収率24.0%)および未反応原料(16.1mg,回収率39.
0%)を得た。
Example 1-4 (6R-III'c) Using the same reaction conditions as in Example 1-1, (6R) -1α-methoxymethoxy-3β-t-butyldimethylsilyloxyvitamin D 3-. SO 2 adduct (6R-IVc) (41.3mg, 0.066mmo
l) 19-fluorination reaction of (6R, 19R) -1α-methoxymethoxy-3β-t-butyldimethylsilyloxy-19-fluorinated vitamin D 3 -SO 2 adduct (6R, 19R-III ' c) (10.2
mg, yield 24.0%) and unreacted raw material (16.1 mg, recovery rate 39.
0%) was obtained.

【0036】6R,19R-III'c:1 H-NMR(δ(ppm),CDCl3/TMS): δ;0.06および0.07(各々3H,s,2×Si-CH3),0.57(3H,s,
H-18),0.88(9H,s,Si-tBu),0.93(3H,d,J=5.9Hz,H-2
1),2.42(1H,m),2.54(1H,m),3.40(3H,s,OCH3),4.16
(1H,m,H-3),4.44(1H,br s,H-1),4.67および4.76(各々
1H,d,J=7.0Hz,-OCH2O-),4.78(2H,m,H-6,7),5.70(1H,
d,J=56.9Hz,H-19)19 F-NMR(δ(ppm),CDCl3/CF3Ph): δ;-166.34(d,J=57.4Hz)
6R, 19R-III'c: 1 H-NMR (δ (ppm), CDCl 3 / TMS): δ; 0.06 and 0.07 (3H, s, 2 × Si-CH 3 ), 0.57 (3H, 3H, s,
H-18), 0.88 (9H, s, Si-tBu), 0.93 (3H, d, J = 5.9Hz, H-2
1), 2.42 (1H, m), 2.54 (1H, m), 3.40 (3H, s, OCH 3 ), 4.16
(1H, m, H-3), 4.44 (1H, br s, H-1), 4.67 and 4.76 (respectively
1H, d, J = 7.0Hz, -OCH 2 O-), 4.78 (2H, m, H-6,7), 5.70 (1H,
d, J = 56.9Hz, H-19) 19 F-NMR (δ (ppm), CDCl 3 / CF 3 Ph): δ; -166.34 (d, J = 57.4Hz)

【0037】[実施例2]:19-フッ素化ビタミンD-S
2付加体(III')の脱SO2化反応 実施例2−1:実施例1−1で得られた(6S,19R)-19-フ
ッ素化ビタミンD3-SO2付加体(6S,19R-III'a)(84
2.5mg,1.45mmol)及び炭酸水素ナトリウム(609.2mg,
7.25mmol)のエタノール(20ml)懸濁液にアルゴンガス
を約10分間導通した後、封管中、80℃にて1.5時間加
熱した。反応液を冷却後、不溶物を瀘過除去した。瀘液
に飽和食塩水(50ml)を加え、酢酸エチル(3×100m
l)にて抽出した。酢酸エチル層を併せて水で洗浄し、
無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。
得られた粗生成物(786.7mg)をシリカゲルカラムクロ
マトグラフィー(80g)により精製し、2%酢酸エチル
含有ヘキサンを溶出部より、(5Z,10E)-3-t-ブチルジメ
チルシリルオキシ-19-フルオロビタミンD3(Iaの水
酸基保護体)(94.0mg,収率12.5%)及び(5E,10Z)-3-t
-ブチルジメチルシリルオキシ-19-フルオロビタミンD3
(10Z-II'a)(447.2mg,収率59.7%)を得、更に3%
酢酸エチル含有ヘキサンを溶出部より、未反応原料(19
3.0mg,回収率22.9%)を回収した。
[Example 2]: 19-fluorinated vitamin D-S
De-SO 2 conversion reaction of O 2 adduct (III ′) Example 2-1: (6S, 19R) -19-fluorinated vitamin D 3 —SO 2 adduct (6S, 19R) obtained in Example 1-1. 19R-III'a) (84
2.5 mg, 1.45 mmol) and sodium hydrogen carbonate (609.2 mg,
After argon gas was passed through a suspension of 7.25 mmol) in ethanol (20 ml) for about 10 minutes, the mixture was heated in a sealed tube at 80 ° C. for 1.5 hours. After cooling the reaction solution, the insoluble matter was removed by filtration. Saturated saline (50 ml) was added to the filtrate, and ethyl acetate (3 x 100 m
It was extracted in l). The ethyl acetate layers were combined and washed with water,
After drying over anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure.
The obtained crude product (786.7 mg) was purified by silica gel column chromatography (80 g), and hexane containing 2% ethyl acetate was used as an eluent to extract (5Z, 10E) -3-t-butyldimethylsilyloxy-19-. Fluorovitamin D 3 (hydroxyl protected form of Ia) (94.0 mg, yield 12.5%) and (5E, 10Z) -3-t
-Butyldimethylsilyloxy-19-fluorovitamin D 3
(10Z-II'a) (447.2 mg, yield 59.7%) was obtained, and further 3%
Hexane containing ethyl acetate was added to the unreacted raw material (19
3.0 mg, recovery rate 22.9%) was recovered.

【0038】10Z-II'a:1 H-NMR(δ(ppm),CDCl3/TMS): δ0.06及び0.07(各々3H,s,2×Si-CH3),0.56(3H,s,H-1
8),0.868及び0.873(各々3H,d,J=6.6Hz,H-26,27),0.88
(9H,s,Si-tBu),0.92(3H,d,J=6.4Hz,H-21),2.26(2H,
m),2.64(1H,m),2.81(1H,m),3.84(1H,m,H-3),5.92及
び6.57(各々1H,d,J=11.5Hz,H-6,7),6.48(1H,d,J=85.
7Hz,H-19)19 F-NMR(δ(ppm),CDCl3/CF3Ph): δ-135.92(d,J=86.5Hz) MS m/z(%):516(100,M+),496(9),459(7),455
(4),439(4),403(5),384(9),364(33),362(25),349
(7),309(28),271(12),259(19),251(29),247(20),
211(22),197(12),157(9),155(8),136(16),135(2
0),117(22) UV λmax(Hexane):204,269nm
10Z-II'a: 1 H-NMR (δ (ppm), CDCl 3 / TMS): δ 0.06 and 0.07 (3H, s, 2 × Si-CH 3 ), 0.56 (3H, s, respectively) H-1
8), 0.868 and 0.873 (3H, d, J = 6.6Hz, H-26, 27), 0.88
(9H, s, Si-tBu), 0.92 (3H, d, J = 6.4Hz, H-21), 2.26 (2H,
m), 2.64 (1H, m), 2.81 (1H, m), 3.84 (1H, m, H-3), 5.92 and 6.57 (1H, d, J = 11.5Hz, H-6,7), 6.48 (1H, d, J = 85.
7Hz, H-19) 19 F-NMR (δ (ppm), CDCl 3 / CF 3 Ph): δ-135.92 (d, J = 86.5Hz) MS m / z (%): 516 (100, M + ) , 496 (9) , 459 (7) , 455
(4), 439 (4), 403 (5), 384 (9), 364 (33), 362 (25), 349
(7), 309 (28), 271 (12), 259 (19), 251 (29), 247 (20),
211 (22), 197 (12), 157 (9), 155 (8), 136 (16), 135 (2
0), 117 (22) UV λmax (Hexane): 204,269nm

【0039】Ia(水酸基保護体):1 H-NMR(δ(ppm),CDCl3/TMS): δ0.069及び0.073(各々3H,s,2×Si-CH3),0.55(3H,s,H-
18),0.869及び0.874(各々3H,d,J=6.6Hz,H-26,27),0.8
9(9H,s,Si-tBu),0.92(3H,d,J=6.4Hz,H-21),2.20及び
2.45(各々1H,m,H-4),2.72(1H,m),2.80(1H,m),3.81(1
H,m,H-3),5.92及び6.21(各々1H,d,J=11.0Hz,H-6,
7),6.49(1H,d,J=87.6Hz,H-19)19 F-NMR(δ(ppm),CDCl3/CF3Ph): δ-132.96(d,J=86.5Hz) MS m/z(%):516(44,M+),496(7),459(18),439(1
0),403(6),384(23),364(20),362(13),349(4),309
(5),271(13),259(9),251(17),247(27),211(100),
157(12),136(81),135(54),117(22) UV λmax(Hexane):211,262nm
Ia (protected hydroxyl group): 1 H-NMR (δ (ppm), CDCl 3 / TMS): δ 0.069 and 0.073 (3H, s, 2 × Si-CH 3 ), 0.55 (3H, s, respectively) , H-
18), 0.869 and 0.874 (3H, d, J = 6.6Hz, H-26,27), 0.8
9 (9H, s, Si-tBu), 0.92 (3H, d, J = 6.4Hz, H-21), 2.20 and
2.45 (1H, m, H-4), 2.72 (1H, m), 2.80 (1H, m), 3.81 (1
H, m, H-3), 5.92 and 6.21 (1H, d, J = 11.0Hz, H-6,
7), 6.49 (1H, d, J = 87.6Hz, H-19) 19 F-NMR (δ (ppm), CDCl 3 / CF 3 Ph): δ-132.96 (d, J = 86.5Hz) MS m / z (%): 516 (44, M + ), 496 (7), 459 (18), 439 (1
0), 403 (6), 384 (23), 364 (20), 362 (13), 349 (4), 309
(5), 271 (13), 259 (9), 251 (17), 247 (27), 211 (100),
157 (12), 136 (81), 135 (54), 117 (22) UV λmax (Hexane): 211, 262nm

【0040】実施例2−2:実施例1−1で得られた(6
S,19S)-19-フッ素化ビタミンD3-SO2付加体(6S,19S-
III'a)(206.7mg,0.36mmol)及び炭酸水素ナトリウ
ム(149.4mg,1.78mmol)のエタノール(20ml)の懸濁
液より、実施例2−1と同様の操作を行った。粗生成物
をシリカゲルカラムクロマトグラフィー(20g)で精製
し、(5E,10E)-3-t-ブチルジメチルシリルオキシ-19-フ
ルオロビタミンD3(10E-II'a)(111.5mg,収率60.6
%)を得た。尚、本脱SO2化反応では(5Z)-ビタミンD
体は全く生成しなかった。
Example 2-2: Obtained in Example 1-1 (6
S, 19S) -19-Fluorinated vitamin D 3 -SO 2 adduct (6S, 19S-
The same operation as in Example 2-1 was carried out from a suspension of III'a) (206.7 mg, 0.36 mmol) and sodium hydrogen carbonate (149.4 mg, 1.78 mmol) in ethanol (20 ml). The crude product was purified by silica gel column chromatography (20 g) to give (5E, 10E) -3-t-butyldimethylsilyloxy-19-fluorovitamin D 3 (10E-II′a) (111.5 mg, yield 60.6).
%). In this de-SO 2 conversion reaction, (5Z) -vitamin D
The body did not produce at all.

【0041】10E-II'a:1 H-NMR(δ(ppm),CDCl3/TMS): δ0.06及び0.07(各々3H,s,2×Si-CH3),0.55(3H,s,H-1
8),0.86及び0.87(各々3H,d,J=6.6Hz,H-26,27),0.88(9
H,s,Si-tBu),0.92(3H,d,J=6.3Hz,H-21),2.25(1H,m),
2.61(2H,m),2.81(1H,m),3.85(1H,m,H-3),5.81及び6.
29(各々1H,d,J=11.4Hz,H-6,7),6.66(1H,d,J=87.1Hz,
H-19)19 F-NMR(δ(ppm),CDCl3/CF3Ph): δ-137.15(d,J=87.0Hz) MS m/z(%):516(100,M+),496(12),459(10),455
(9),439(7),403(7),384(16),364(49),362(37),34
9(11),309(24),271(18),259(22),251(49),247(3
7),211(78),197(22),157(17),155(16),136(62),1
35(54),117(71)
10E-II'a: 1 H-NMR (δ (ppm), CDCl 3 / TMS): δ 0.06 and 0.07 (each 3H, s, 2 × Si-CH 3 ), 0.55 (3H, s, H-1
8), 0.86 and 0.87 (3H, d, J = 6.6Hz, H-26,27), 0.88 (9
H, s, Si-tBu), 0.92 (3H, d, J = 6.3Hz, H-21), 2.25 (1H, m),
2.61 (2H, m), 2.81 (1H, m), 3.85 (1H, m, H-3), 5.81 and 6.
29 (1H, d, J = 11.4Hz, H-6,7), 6.66 (1H, d, J = 87.1Hz,
H-19) 19 F-NMR (δ (ppm), CDCl 3 / CF 3 Ph): δ-137.15 (d, J = 87.0Hz) MS m / z (%): 516 (100, M + ), 496 (12), 459 (10), 455
(9), 439 (7), 403 (7), 384 (16), 364 (49), 362 (37), 34
9 (11), 309 (24), 271 (18), 259 (22), 251 (49), 247 (3
7), 211 (78), 197 (22), 157 (17), 155 (16), 136 (62), 1
35 (54), 117 (71)

【0042】実施例2−3:実施例1−2で得られた(6
R,19S)-19-フッ素化ビタミンD3-SO2付加体(6R,19S-
III'a)(103.6mg,0.18mmol)及び炭酸水素ナトリウ
ム(75.1mg,0.89mmol)のエタノール(15ml)の懸濁液
より、実施例2−1と同様の操作を行った。粗生成物を
シリカゲルカラムクロマトグラフィー(10g)で精製
し、(5Z,10E)-3-t-ブチルジメチルシリルオキシ-19-フ
ルオロビタミンD3(Iの水酸基保護体)及び(5E,10Z)
-3-t-ブチルジメチルシリルオキシ-19-フルオロビタミ
ンD3(10Z-II'a)(67.8mg,合計収率73.7%、生成比
は約1:8〜1:9)を得、更に未反応原料(8.9mg)を回収
した。ここに得られたIの水酸基保護体及び10Z-II'a
の各種スペクトルデータは実施例2−1より得られた各
々の化合物と一致した。
Example 2-3: Obtained in Example 1-2 (6
R, 19S) -19-Fluorinated vitamin D 3 -SO 2 adduct (6R, 19S-
The same operation as in Example 2-1 was carried out from a suspension of III'a) (103.6 mg, 0.18 mmol) and sodium hydrogen carbonate (75.1 mg, 0.89 mmol) in ethanol (15 ml). The crude product was purified by silica gel column chromatography (10 g) to obtain (5Z, 10E) -3-t-butyldimethylsilyloxy-19-fluorovitamin D 3 (hydroxyl-protected form of I) and (5E, 10Z).
-3-t-Butyldimethylsilyloxy-19-fluorovitamin D 3 (10Z-II'a) (67.8 mg, total yield 73.7%, production ratio about 1: 8 to 1: 9) was obtained. The reaction raw material (8.9 mg) was recovered. The hydroxyl-protected compound of I and 10Z-II'a obtained here
The various spectral data of was in agreement with each compound obtained in Example 2-1.

【0043】実施例2−4:実施例1−2で得られた(6
R,19R)-19-フッ素化ビタミンD3-SO2付加体(6R,19R-
III'a)(49.7mg,0.086mmol)及び炭酸水素ナトリウ
ム(34.3mg,0.428mmol)のエタノール(5ml)の懸濁
液より、実施例2−1と同様の操作を行った。粗生成物
をシリカゲルカラムクロマトグラフィー(5g)で精製
し、(5E,10E)-3-t-ブチルジメチルシリルオキシ-19-フ
ルオロビタミンD3(10E-II'a)(35.2mg,収率79.6
%)を得た。ここに得られた10E-II'aの各種スペクトル
データは実施例2−2より得られた各々の化合物と一致
した。
Example 2-4: Obtained in Example 1-2 (6
R, 19R) -19-Fluorinated vitamin D 3 -SO 2 adduct (6R, 19R-
The same operation as in Example 2-1 was carried out from a suspension of III'a) (49.7 mg, 0.086 mmol) and sodium hydrogen carbonate (34.3 mg, 0.428 mmol) in ethanol (5 ml). The crude product was purified by silica gel column chromatography (5 g) to give (5E, 10E) -3-t-butyldimethylsilyloxy-19-fluorovitamin D 3 (10E-II′a) (35.2 mg, yield 79.6).
%). Various spectral data of 10E-II'a obtained here were in agreement with the respective compounds obtained in Example 2-2.

【0044】実施例2−5:実施例1−3で得られた(6
S,19R)-19-フッ素化ビタミンD2-SO2付加体(6S,19R-
III'b)より実施例2−1と同様の操作により脱SO2
化反応を行い、(5E,10Z)-3-t-ブチルジメチルシリルオ
キシ-19-フルオロビタミンD2(10Z-II'b)を合成し
た。
Example 2-5: Obtained in Example 1-3 (6
S, 19R) -19-Fluorinated vitamin D 2 -SO 2 adduct (6S, 19R-
From III'b), the same procedure as in Example 2-1 was performed to remove SO 2.
Was carried out to synthesize (5E, 10Z) -3-t-butyldimethylsilyloxy-19-fluorovitamin D 2 (10Z-II′b).

【0045】10Z-II'b:1 H-NMR(δ(ppm),CDCl3/TMS): δ0.06及び0.07(各々3H,s,2×Si-CH3),0.57(3H,s,H-1
8),0.83及び0.84(各々3H,d,J=7.9Hz,H-26,27),0.88(9
H,s,Si-tBu),0.92(3H,d,J=6.8Hz),1.02(3H,d,J=6.4H
z),2.25(2H,m),2.63(1H,m),2.82(1H,m),3.84(1H,m,
H-3),5.20(2H,m,H-22,23),5.92及び6.57(各々1H,d,J
=11.6Hz,H-6,7),6.48(1H,d,J=86.1Hz,H-19)
10Z-II'b: 1 H-NMR (δ (ppm), CDCl 3 / TMS): δ 0.06 and 0.07 (each 3H, s, 2 × Si-CH 3 ), 0.57 (3H, s, H-1
8), 0.83 and 0.84 (3H, d, J = 7.9Hz, H-26,27), 0.88 (9
H, s, Si-tBu), 0.92 (3H, d, J = 6.8Hz), 1.02 (3H, d, J = 6.4H
z), 2.25 (2H, m), 2.63 (1H, m), 2.82 (1H, m), 3.84 (1H, m,
H-3), 5.20 (2H, m, H-22,23), 5.92 and 6.57 (1H, d, J respectively)
= 11.6Hz, H-6,7), 6.48 (1H, d, J = 86.1Hz, H-19)

【0046】[実施例3]:(5E)-3-t-ブチルジメチル
シリルオキシ-19-フッ素化ビタミンD(II')の脱保護
基反応 実施例3−1:実施例2−1で得られた(5E,10Z)-3-t-
ブチルジメチルシリルオキシ-19-フルオロビタミンD3
(10Z-II'a)(27.6mg,0.053mmol)を無水テトラヒド
ロフラン(2ml)に溶解し、テトラn-ブチルアンモニウ
ムフルオリド(1.0M テトラヒドロフラン溶液、0.160m
mol)を加え、室温にて1時間攪拌した。反応混合物を
エーテル(50ml)にて希釈した後、有機層を飽和食塩水
にて洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減
圧留去した。粗生成物をシリカゲルカラムクロマトグラ
フィー(5g)により精製し、3%酢酸エチル含有ヘキサ
ンを溶出部より、(5E,10Z)-19-フルオロビタミンD
3(10Z-II''a)(20.1mg,収率93.6%)を得た。
[Example 3]: Deprotection group reaction of (5E) -3-t-butyldimethylsilyloxy-19-fluorinated vitamin D (II ') Example 3-1: Obtained in Example 2-1. (5E, 10Z) -3-t-
Butyldimethylsilyloxy-19-fluorovitamin D 3
(10Z-II'a) (27.6mg, 0.053mmol) was dissolved in anhydrous tetrahydrofuran (2ml) and tetra-n-butylammonium fluoride (1.0M tetrahydrofuran solution, 0.160m) was added.
mol) was added and the mixture was stirred at room temperature for 1 hour. The reaction mixture was diluted with ether (50 ml), the organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The crude product was purified by silica gel column chromatography (5 g), and hexane containing 3% ethyl acetate was used as the eluent to obtain (5E, 10Z) -19-fluorovitamin D.
3 (10Z-II ″ a) (20.1 mg, yield 93.6%) was obtained.

【0047】10Z-II''a:1 H-NMR(δ(ppm),CDCl3/TMS): δ0.56(3H,s,H-18),0.867及び0.871(各々3H,d,J=6.6H
z,H-26,27),0.92(3H,d,J=6.4Hz,H-21),2.83(2H,m),
3.86(1H,m,H-3),5.93及び6.63(各々1H,d,J=11.5Hz,H-
6,7),6.51(1H,d,J=86.6Hz,H-19)19 F-NMR(δ(ppm),CDCl3/CF3Ph): δ-134.81(d,J=85.5Hz) UV λmax(EtOH):270nm
10Z-II''a: 1 H-NMR (δ (ppm), CDCl 3 / TMS): δ 0.56 (3H, s, H-18), 0.867 and 0.871 (3H, d, J = respectively) 6.6H
z, H-26,27), 0.92 (3H, d, J = 6.4Hz, H-21), 2.83 (2H, m),
3.86 (1H, m, H-3), 5.93 and 6.63 (1H, d, J = 11.5Hz, H-
6,7), 6.51 (1H, d, J = 86.6Hz, H-19) 19 F-NMR (δ (ppm), CDCl 3 / CF 3 Ph): δ-134.81 (d, J = 85.5Hz) UV λmax (EtOH): 270nm

【0048】実施例3−2:実施例2−2で得られた
(5E,10E)-3-t-ブチルジメチルシリルオキシ-19-フルオ
ロビタミンD3(10E-II'a)(100.0mg,0.19mmol)、
無水テトラヒドロフラン(5ml)及びテトラn-ブチルア
ンモニウムフルオリド(3等量)の混合溶液より実施例
3−1と同様の操作を行った。粗生成物をシリカゲルカ
ラムクロマトグラフィー(15g)により精製し、(5E,10
E)-19-フルオロビタミンD3(10E-II''a)(68.2mg,
収率87.5%)を得た。
Example 3-2: (5E, 10E) -3-t-Butyldimethylsilyloxy-19-fluorovitamin D 3 (10E-II′a) (100.0 mg, obtained in Example 2-2) 0.19mmol),
The same operation as in Example 3-1 was performed using a mixed solution of anhydrous tetrahydrofuran (5 ml) and tetra-n-butylammonium fluoride (3 equivalents). The crude product was purified by silica gel column chromatography (15g), (5E, 10
E) -19-Fluorovitamin D 3 (10E-II ″ a) (68.2 mg,
Yield 87.5%) was obtained.

【0049】10E-II''a:1 H-NMR(δ(ppm),CDCl3/TMS): δ0.55(3H,s,H-18),0.868及び0.873(各々3H,d,J=6.6H
z,H-26,27),0.92(3H,d,J=6.7Hz,H-21),2.67(1H,m),
2.82(2H,m),3.88(1H,m,H-3),5.83及び6.35(各々1H,
d,J=11.5Hz,H-6,7),6.69(1H,d,J=86.7Hz,H-19)19 F-NMR(δ(ppm),CDCl3/CF3Ph): δ-135.42(d,J=86.6Hz) MS m/z(%):402(35,M+),384(28),364(31),362(3
0),347(7),317(5),299(4),289(12),271(24),251
(27),247(24),223(10),195(19),176(16),154(3
5),135(100) UV λmax(EtOH):209,269nm
10E-II''a: 1 H-NMR (δ (ppm), CDCl 3 / TMS): δ 0.55 (3H, s, H-18), 0.868 and 0.873 (3H, d, J = respectively) 6.6H
z, H-26,27), 0.92 (3H, d, J = 6.7Hz, H-21), 2.67 (1H, m),
2.82 (2H, m), 3.88 (1H, m, H-3), 5.83 and 6.35 (1H, each
d, J = 11.5Hz, H-6,7), 6.69 (1H, d, J = 86.7Hz, H-19) 19 F-NMR (δ (ppm), CDCl 3 / CF 3 Ph): δ-135.42 (d, J = 86.6Hz) MS m / z (%): 402 (35, M + ), 384 (28), 364 (31), 362 (3
0), 347 (7), 317 (5), 299 (4), 289 (12), 271 (24), 251
(27), 247 (24), 223 (10), 195 (19), 176 (16), 154 (3
5), 135 (100) UV λmax (EtOH): 209, 269nm

【0050】実施例3−3:実施例2−5で得られた
(5E,10Z)-3-t-ブチルジメチルシリルオキシ-19-フルオ
ロビタミンD2(10Z-II'b)より実施例3−1と同様の
操作により脱保護反応を行い、(5E,10Z)-19-フルオロ
ビタミンD2(10Z-II''b)を合成した。
Example 3-3: From (5E, 10Z) -3-t-butyldimethylsilyloxy-19-fluorovitamin D 2 (10Z-II′b) obtained in Example 2-5, Example 3 was obtained. The deprotection reaction was carried out by the same operation as in -1, and (5E, 10Z) -19-fluorovitamin D 2 (10Z-II ″ b) was synthesized.

【0051】10Z-II''b:1 H-NMR(δ(ppm),CDCl3/TMS): δ0.58(3H,s,H-18),0.83及び0.85(各々3H,d,J=6.5Hz,H
-26,27),0.93(3H,d,J=6.8Hz,H-21),1.02(3H,d,J=6.7H
z),2.23(2H,m),2.83(2H,m),3.87(1H,m,H-3),5.20(2
H,m,H-22,23),5.93及び6.64(各々1H,d,J=11.7Hz,H-6,
7),6.51(1H,d,J=85.9Hz,H-19)
10Z-II''b: 1 H-NMR (δ (ppm), CDCl 3 / TMS): δ 0.58 (3H, s, H-18), 0.83 and 0.85 (3H, d, J = respectively) 6.5Hz, H
-26,27), 0.93 (3H, d, J = 6.8Hz, H-21), 1.02 (3H, d, J = 6.7H
z), 2.23 (2H, m), 2.83 (2H, m), 3.87 (1H, m, H-3), 5.20 (2
H, m, H-22,23), 5.93 and 6.64 (each 1H, d, J = 11.7Hz, H-6,
7), 6.51 (1H, d, J = 85.9Hz, H-19)

【0052】[実施例4]:(5E)-19-フッ素化ビタミン
D(II'')の光増感異性化反応 実施例4−1:実施例3−1で得られた(5E,10Z)-19-
フルオロビタミンD3(10Z-II''a)(20.0mg,0.05mmo
l)及びアントラセン(44mg,0.25mmol)をベンゼン-エ
タノール(5:95(v/v)、200ml)混合溶媒に溶解し、0℃
にて光照射(ハロゲンランプ、200W)を行った。5
分間の光照射毎に反応の経過をHPLCによりモニター
し、合計15分間の光照射を行った。反応溶媒を留去した
後、残渣をシリカゲルカラムクロマトグラフィー(5g)
により精製し、4%酢酸エチル含有ヘキサン溶出部より
(10E)-19-フルオロビタミンD3(Ia)(15.4mg,収率
76.8%)を得た。
[Example 4]: Photosensitized isomerization reaction of (5E) -19-fluorinated vitamin D (II '') Example 4-1: Obtained in Example 3-1 (5E, 10Z). ) -19-
Fluorovitamin D 3 (10Z-II ″ a) (20.0mg, 0.05mmo
l) and anthracene (44 mg, 0.25 mmol) are dissolved in a mixed solvent of benzene-ethanol (5:95 (v / v), 200 ml) and the mixture is cooled to 0 ° C.
Was irradiated with light (halogen lamp, 200 W). 5
The progress of the reaction was monitored by HPLC for each light irradiation for 15 minutes, and light irradiation was performed for 15 minutes in total. After distilling off the reaction solvent, the residue was subjected to silica gel column chromatography (5 g).
Purified by, and from the elution part of hexane containing 4% ethyl acetate
(10E) -19-Fluorovitamin D 3 (Ia) (15.4 mg, yield
76.8%) was obtained.

【0053】Ia:1 H-NMR(δ(ppm),CDCl3/TMS): δ0.53(3H,s,H-18),0.86及び0.87(各々3H,d,J=6.6Hz,H
-26,27),0.92(3H,d,J=6.4Hz,H-21),2.56(2H,m),2.78
(1H,m),3.93(1H,m,H-3),5.93及び6.28(各々1H,d,J=1
1.1Hz,H-6,7),6.51(1H,d,J=87.4Hz,H-19)19 F-NMR(δ(ppm),CDCl3/CF3Ph): δ-132.50(d,J=86.5Hz) MS m/z(%):402(27,M+),384(34),362(90),360(4
8),347(28),289(13),271(51),249(94),247(57),2
23(30),195(37),179(20),154(45),135(100) UV λmax(EtOH):211,260nm
Ia: 1 H-NMR (δ (ppm), CDCl 3 / TMS): δ0.53 (3H, s, H-18), 0.86 and 0.87 (3H, d, J = 6.6Hz, H respectively)
-26,27), 0.92 (3H, d, J = 6.4Hz, H-21), 2.56 (2H, m), 2.78
(1H, m), 3.93 (1H, m, H-3), 5.93 and 6.28 (1H, d, J = 1 respectively)
1.1Hz, H-6,7), 6.51 (1H, d, J = 87.4Hz, H-19) 19 F-NMR (δ (ppm), CDCl 3 / CF 3 Ph): δ-132.50 (d, J = 86.5Hz) MS m / z (%): 402 (27, M + ), 384 (34), 362 (90), 360 (4
8), 347 (28), 289 (13), 271 (51), 249 (94), 247 (57), 2
23 (30), 195 (37), 179 (20), 154 (45), 135 (100) UV λmax (EtOH): 211, 260nm

【0054】実施例4−2:実施例3−2で得られた
(5E,10E)-19-フルオロビタミンD3(10E-II''a)(4.
1mg,0.01mmol)、アントラセン(9mg,0.05mmol)及び
ベンゼン-エタノール(5:95(v/v)、100ml)混合溶媒よ
り実施例4−1と同様の操作を行った。粗生成物をシリ
カゲルカラムクロマトグラフィー(2g)により精製し、
(10E)-19-フルオロビタミンD3(Ia)(2.7mg,収率6
5.9%)を得た。本化合物は実施例4−1で得られた化合
物IaとNMR、MS及びUVスペクトルにおいて完全
に一致した。
Example 4-2: (5E, 10E) -19-fluorovitamin D 3 (10E-II ″ a) obtained in Example 3-2 (4.
1 mg, 0.01 mmol), anthracene (9 mg, 0.05 mmol) and benzene-ethanol (5:95 (v / v), 100 ml) mixed solvent were used to perform the same operation as in Example 4-1. The crude product was purified by silica gel column chromatography (2g),
(10E) -19-Fluorovitamin D 3 (Ia) (2.7 mg, yield 6
5.9%) was obtained. This compound completely coincided with the compound Ia obtained in Example 4-1 in NMR, MS and UV spectra.

【0055】実施例4−3:実施例3−3で得られた
(5E,19Z)-19-フルオロビタミンD2(19Z-II''b)より
実施例4−1と同様の操作により光増感異性化反応を行
い、(19E)-19-フルオロビタミンD2(Ib)を合成し
た。
Example 4-3: From (5E, 19Z) -19-fluorovitamin D 2 (19Z-II ″ b) obtained in Example 3-3, light was applied in the same manner as in Example 4-1. A sensitized isomerization reaction was performed to synthesize (19E) -19-fluorovitamin D 2 (Ib).

【0056】Ib:1 H-NMR(δ(ppm),CDCl3/TMS): δ0.55(3H,s,H-18),0.82及び0.83(各々3H,d,J=6.5Hz,H
-26,27),0.91(3H,d,J=6.8Hz,),1.01(3H,d,J=6.6Hz),
2.23(2H,m),2.56(2H,M),2.79(1H,m),3.94(1H,m,H-
3),5.20(2H,m,H-22,23),5.93及び6.28(各々1H,d,J=1
1.0Hz,H-6,7),6.50(1H,d,J=87.3Hz,H-19)19 F-NMR(δ(ppm),CDCl3/CF3Ph): δ-132.48(d,J=87.4Hz) UV λmax(EtOH):210,260nm
Ib: 1 H-NMR (δ (ppm), CDCl 3 / TMS): δ0.55 (3H, s, H-18), 0.82 and 0.83 (3H, d, J = 6.5Hz, H respectively)
-26,27), 0.91 (3H, d, J = 6.8Hz,), 1.01 (3H, d, J = 6.6Hz),
2.23 (2H, m), 2.56 (2H, M), 2.79 (1H, m), 3.94 (1H, m, H-
3), 5.20 (2H, m, H-22,23), 5.93 and 6.28 (1H, d, J = 1 respectively)
1.0Hz, H-6,7), 6.50 (1H, d, J = 87.3Hz, H-19) 19 F-NMR (δ (ppm), CDCl 3 / CF 3 Ph): δ-132.48 (d, J = 87.4Hz) UV λmax (EtOH): 210, 260nm

【0057】[実施例5]:19-フッ素化ビタミンD-S
2付加体(III')の脱保護反応 実施例1−4で得られた(6R,19R)-1α-メトキシメトキ
シ-3β-t-ブチルジメチルシリルオキシ-19-フッ素化ビ
タミンD3-SO2付加体(6R,19R-III'c)(17.0mg,0.
0265mmol)を無水ジクロロメタン(0.5ml)に溶解し、-
40℃冷却攪拌下トリメチルシリルブロミド(7μl,0.05
3mmol)を加えた。2時間後、トリメチルシリルブロミ
ド(7μl,0.053mmol)を追加し、同温にて更に1時間
攪拌した。反応液に5%炭酸水素ナトリウム水溶液を加
え、酢酸エチルにて抽出した。有機層を水、飽和食塩水
で順次洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧
留去した。残留物をシリカゲルカラムクロマトグラフィ
ー(3g)にて精製し、脱保護された(6R,19R)-1α-ヒド
ロキシ-19-フッ素化ビタミンD3-SO2付加体(6R,19R-
IIIc)(7.3mg,収率57.0%)を得た。
[Example 5] 19-fluorinated vitamin D-S
Deprotection reaction of O 2 adduct (III ′) (6R, 19R) -1α-methoxymethoxy-3β-t-butyldimethylsilyloxy-19-fluorinated vitamin D 3 -SO obtained in Example 1-4 2 adduct (6R, 19R-III'c) (17.0mg, 0.
0265 mmol) in anhydrous dichloromethane (0.5 ml),
Trimethylsilyl bromide (7μl, 0.05
3 mmol) was added. After 2 hours, trimethylsilyl bromide (7 μl, 0.053 mmol) was added, and the mixture was further stirred at the same temperature for 1 hour. A 5% aqueous sodium hydrogen carbonate solution was added to the reaction solution, and the mixture was extracted with ethyl acetate. The organic layer was washed successively with water and saturated brine, dried over magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography (3 g) and deprotected (6R, 19R) -1α-hydroxy-19-fluorinated vitamin D 3 -SO 2 adduct (6R, 19R-
IIIc) (7.3 mg, yield 57.0%) was obtained.

【0058】6R,19R-III''c:1 H-NMR(δ(ppm),CDCl3/TMS): δ;0.57(3H,s,H-18),0.867および0.873(各々3H,d,J=
6.6Hz,-26,27),0.93(3H,d,J=6.0Hz,H-21),2.45-2.60
(2H,m),4.28(1H,m,H-3),4.66(1H,br s,H-1),4.75お
よび4.85(各々1H,d,J=10.0Hz,H-6,7),5.78(1H,d,J=56.
5Hz,H-19)19 F-NMR(δ(ppm),CDCl3/CF3Ph): δ;-165.94(d,J=56.6Hz) MS m/z(%):418(11,M+-SO2),398(16),378(25),36
2(14),360(10),347(6),305(5),287(7),285(9),26
5(20),247(30),245(15),193(15),161(18),135(5
6),133(48),109(39),107(43),105(58),95(67),81
(55)
6R, 19R-III''c: 1 H-NMR (δ (ppm), CDCl 3 / TMS): δ; 0.57 (3H, s, H-18), 0.867 and 0.873 (3H, d, respectively) J =
6.6Hz, -26,27), 0.93 (3H, d, J = 6.0Hz, H-21), 2.45-2.60
(2H, m), 4.28 (1H, m, H-3), 4.66 (1H, br s, H-1), 4.75 and 4.85 (1H, d, J = 10.0Hz, H-6,7), 5.78 (1H, d, J = 56.
5Hz, H-19) 19 F-NMR (δ (ppm), CDCl 3 / CF 3 Ph): δ; -165.94 (d, J = 56.6Hz) MS m / z (%): 418 (11, M + -SO 2 ), 398 (16), 378 (25), 36
2 (14), 360 (10), 347 (6), 305 (5), 287 (7), 285 (9), 26
5 (20), 247 (30), 245 (15), 193 (15), 161 (18), 135 (5
6), 133 (48), 109 (39), 107 (43), 105 (58), 95 (67), 81
(55)

【0059】[実施例6]:19-フッ素化ビタミンD-S
2付加体(III'')の脱SO2化反応及び光増感異性化
反応 実施例5で得られた脱保護された(6R,19R)-1α-ヒドロ
キシ-19-フッ素化ビタミンD3-SO2付加体(6R,19R-II
Ic)(7.0mg,0.0145mmol)、炭酸水素ナトリウム(2
4.3mg,0.29mmol)及び95%エタノール(8ml)の混合物
を封管中80℃で2時間、更に90℃で1時間加熱した。反
応液を0℃に冷却し、酢酸エチルで希釈後、不溶物を瀘
過除去した。瀘液を飽和食塩水にて洗浄し、硫酸マグネ
シウムで乾燥後、溶媒を減圧留去した。残留物をシリカ
ゲルカラムクロマトグラフィー(2g)に通し、酢酸エチ
ル溶出画分を集め、溶媒を減圧留去した。得られた残留
物を10%ベンゼン含有エタノール(100ml)に溶解し、
アントラセン(8.5mg)を加え、0℃にて60分間光照
射(ハロゲンランプ,200W)を行った。溶媒留去
後、残留物をシリカゲルカラムクロマトグラフィー(3
g)で精製し、50%酢酸エチル含有ヘキサン溶出部よ
り、(10E)-19-フルオロ-1α-ヒドロキシビタミンD
3(Ic)(0.9mg,収率14.8%)を得た。
[Example 6]: 19-fluorinated vitamin D-S
De-SO 2 conversion reaction and photosensitized isomerization reaction of O 2 adduct (III ″) Deprotected (6R, 19R) -1α-hydroxy-19-fluorinated vitamin D 3 obtained in Example 5 -SO 2 adduct (6R, 19R-II
Ic) (7.0 mg, 0.0145 mmol), sodium hydrogen carbonate (2
A mixture of 4.3 mg, 0.29 mmol) and 95% ethanol (8 ml) was heated in a sealed tube at 80 ° C for 2 hours and then 90 ° C for 1 hour. The reaction solution was cooled to 0 ° C., diluted with ethyl acetate, and insoluble matter was removed by filtration. The filtrate was washed with saturated saline and dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure. The residue was passed through silica gel column chromatography (2 g), ethyl acetate elution fractions were collected, and the solvent was evaporated under reduced pressure. The obtained residue was dissolved in 10% benzene-containing ethanol (100 ml),
Anthracene (8.5 mg) was added, and light irradiation (halogen lamp, 200 W) was performed at 0 ° C. for 60 minutes. After evaporation of the solvent, the residue was subjected to silica gel column chromatography (3
(10E) -19-Fluoro-1α-hydroxyvitamin D from the hexane eluate containing 50% ethyl acetate.
3 (Ic) (0.9 mg, yield 14.8%) was obtained.

【0060】Ic:1 H-NMR(δ(ppm),CDCl3/TMS): δ0.53(3H,s,H-18),0.863及び0.867(各々3H,d,J=6.6H
z,H-26,27),0.91(3H,d,J=6.3Hz,H-21),2.19(1H,m),
2.32(1H,m),2.68(1H,m),2.80(1H,m),4.18(1H,m,H-
3),5.09(1H,m,H-1),5.90及び6.46(各々1H,d,J=11.1H
z,H-6,7),6.50(1H,d,J=86.1Hz,H-19)19 F-NMR(δ(ppm),CDCl3/CF3Ph): δ-129.82(d,J=85.9Hz) MS m/z(%):418(4,M+),400(2),380(8),378(14),
376(15),362(34),360(18),347(7),305(4),287(1
0),252(79),250(46),247(31),245(21),235(36),2
19(18),207(15),195(19),178(57),135(100),133(3
4),109(15),107(16),105(22),95(25),81(19) UV λmax(EtOH):260nm
Ic: 1 H-NMR (δ (ppm), CDCl 3 / TMS): δ 0.53 (3H, s, H-18), 0.863 and 0.867 (3H, d, J = 6.6H respectively)
z, H-26,27), 0.91 (3H, d, J = 6.3Hz, H-21), 2.19 (1H, m),
2.32 (1H, m), 2.68 (1H, m), 2.80 (1H, m), 4.18 (1H, m, H-
3), 5.09 (1H, m, H-1), 5.90 and 6.46 (1H, d, J = 11.1H respectively)
z, H-6,7), 6.50 (1H, d, J = 86.1Hz, H-19) 19 F-NMR (δ (ppm), CDCl 3 / CF 3 Ph): δ-129.82 (d, J = 85.9Hz) MS m / z (%): 418 (4, M + ), 400 (2), 380 (8), 378 (14),
376 (15), 362 (34), 360 (18), 347 (7), 305 (4), 287 (1
0), 252 (79), 250 (46), 247 (31), 245 (21), 235 (36), 2
19 (18), 207 (15), 195 (19), 178 (57), 135 (100), 133 (3
4), 109 (15), 107 (16), 105 (22), 95 (25), 81 (19) UV λmax (EtOH): 260nm

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07D 333/54 C07D 333/54 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location C07D 333/54 C07D 333/54

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】一般式(I) 【化1】 (式中、R1は任意の置換基を有する炭素数2から9の
アルキル基を示し、R2は水素原子あるいは水酸基を示
す。)で表わされるフッ素化ビタミンD誘導体。
1. A compound represented by the general formula (I): (In the formula, R 1 represents an alkyl group having an arbitrary substituent and having 2 to 9 carbon atoms, and R 2 represents a hydrogen atom or a hydroxyl group.) A fluorinated vitamin D derivative.
【請求項2】一般式(II) 【化2】 (式中、R1は任意の置換基を有する炭素数2から9の
アルキル基であり、R2は水素原子、水酸基、あるいは
保護された水酸基のいずれかを示し、R3はフッ素原子
かつR4は水素原子、あるいはR3は水素原子かつR4
フッ素原子を示し、R5は水素原子あるいは水酸基の保
護基を示す。)で表わされるフッ素化 (5E)-ビタミンD
誘導体。
2. A compound represented by the general formula (II): (In the formula, R 1 is an alkyl group having 2 to 9 carbon atoms and having an arbitrary substituent, R 2 is either a hydrogen atom, a hydroxyl group or a protected hydroxyl group, and R 3 is a fluorine atom and R Fluorinated (5E) -vitamin D represented by 4 is a hydrogen atom, or R 3 is a hydrogen atom and R 4 is a fluorine atom, and R 5 is a hydrogen atom or a hydroxyl-protecting group.
Derivative.
【請求項3】一般式(III) 【化3】 (式中、R1は任意の置換基を有する炭素数2から9の
アルキル基であり、R2は水素原子、水酸基、あるいは
保護された水酸基のいずれかを示し、R5は水素原子あ
るいは水酸基の保護基を示し、R6はフッ素原子かつR7
は水素原子、あるいはR6は水素原子かつR7はフッ素原
子を示す。)で表わされるフッ素化ビタミンD-SO2
加体。
3. A compound represented by the general formula (III): (In the formula, R 1 is an alkyl group having 2 to 9 carbon atoms having an arbitrary substituent, R 2 is either a hydrogen atom, a hydroxyl group or a protected hydroxyl group, and R 5 is a hydrogen atom or a hydroxyl group. R 6 is a fluorine atom and R 7
Is a hydrogen atom, or R 6 is a hydrogen atom and R 7 is a fluorine atom. ) Fluorinated vitamin D-SO 2 adduct represented by
【請求項4】R2が水素原子、水酸基、トリアルキルシ
リルオキシ基、メトキシメトキシ基、メトキシエトキシ
メトキシ基、あるいはテトラヒドロピラニルオキシ基で
あり、R5が水素原子、トリアルキルシリル基、メトキ
シメチル基、メトキシエトキシエチル基、あるいはテト
ラヒドロピラニル基である請求項2に記載の一般式(I
I)で示されるフッ素化 (5E)-ビタミンD誘導体。
4. R 2 is a hydrogen atom, a hydroxyl group, a trialkylsilyloxy group, a methoxymethoxy group, a methoxyethoxymethoxy group or a tetrahydropyranyloxy group, and R 5 is a hydrogen atom, a trialkylsilyl group, methoxymethyl. Group, a methoxyethoxyethyl group or a tetrahydropyranyl group.
A fluorinated (5E) -vitamin D derivative represented by I).
【請求項5】R2が水素原子、水酸基、トリアルキルシ
リルオキシ基、メトキシメトキシ基、メトキシエトキシ
メトキシ基、あるいはテトラヒドロピラニルオキシ基で
あり、R5が水素原子、トリアルキルシリル基、メトキ
シメチル基、メトキシエトキシエチル基、あるいはテト
ラヒドロピラニル基である請求項3に記載の一般式(II
I)で示されるフッ素化ビタミンD-SO2付加体。
5. R 2 is a hydrogen atom, a hydroxyl group, a trialkylsilyloxy group, a methoxymethoxy group, a methoxyethoxymethoxy group or a tetrahydropyranyloxy group, and R 5 is a hydrogen atom, a trialkylsilyl group, methoxymethyl. Group, a methoxyethoxyethyl group, or a tetrahydropyranyl group, represented by the general formula (II
A fluorinated vitamin D-SO 2 adduct represented by I).
【請求項6】一般式(III') 【化4】 (式中、R1は任意の置換基を有する炭素数2から9の
アルキル基であり、R2は水素原子、あるいは保護され
た水酸基を示し、R5は水酸基の保護基を示し、R6はフ
ッ素原子かつR7は水素原子、あるいはR6は水素原子か
つR7はフッ素原子を示す。)で表わされるフッ素化ビ
タミンD-SO2付加体より一般式(I)のフッ素化ビタ
ミンD誘導体を製造する方法において、脱SO2化工
程、脱保護基工程、光異性化工程の順に反応を行うこと
を特徴とする一般式(I)のフッ素化ビタミンD誘導体
の製造方法。
6. A compound represented by the general formula (III ′): (In the formula, R 1 is an alkyl group having 2 to 9 carbon atoms having an arbitrary substituent, R 2 is a hydrogen atom or a protected hydroxyl group, R 5 is a hydroxyl group-protecting group, and R 6 is Is a fluorine atom and R 7 is a hydrogen atom, or R 6 is a hydrogen atom and R 7 is a fluorine atom, and a fluorinated vitamin D-SO 2 adduct represented by the general formula (I) is used. A method for producing a fluorinated vitamin D derivative of the general formula (I), characterized in that the reaction is carried out in the order of deSO 2 conversion step, deprotection group step, and photoisomerization step.
【請求項7】一般式(III')で表わされるフッ素化ビタ
ミンD-SO2付加体より一般式(I)のフッ素化ビタミ
ンD誘導体を製造する方法において、脱保護基工程、脱
SO 2化工程、光異性化工程の順に反応を行うことを特
徴とする一般式(I)のフッ素化ビタミンD誘導体の製
造方法。
7. A fluorinated bitter represented by the general formula (III ').
Min D-SO2Fluorinated vitamins of general formula (I) derived from adducts
In the method for producing a derivative of D.
SO 2The reaction is carried out in the order of photopolymerization process and photoisomerization process.
Preparation of fluorinated vitamin D derivative of general formula (I)
Build method.
【請求項8】光異性化工程が有機溶媒中、光増感剤の存
在下、光照射して反応させることを特徴とする請求項6
または7に記載の一般式(I)のフッ素化ビタミンD誘
導体の製造方法。
8. The photoisomerization step is characterized in that the reaction is carried out by irradiation with light in the presence of a photosensitizer in an organic solvent.
Alternatively, the method for producing the fluorinated vitamin D derivative represented by the general formula (I) according to the item 7:
【請求項9】脱保護基工程が有機溶媒中で、フッ素陰イ
オン、酸、もしくはトリアルキルシリルハライドの存在
下に反応させることを特徴とする請求項6または7に記
載の一般式(I)のフッ素化ビタミンD誘導体の製造方
法。
9. The general formula (I) according to claim 6 or 7, wherein the deprotecting step is carried out in an organic solvent in the presence of a fluorine anion, an acid or a trialkylsilyl halide. A method for producing the fluorinated vitamin D derivative according to claim 1.
【請求項10】脱SO2化工程が有機溶媒中、アルカリ
金属塩の存在下、加熱して反応させることを特徴とする
請求項6または7に記載の一般式(I)のフッ素化ビタ
ミンD誘導体の製造方法。
10. The fluorinated vitamin D of the general formula (I) according to claim 6 or 7, wherein the step of deSO 2 conversion is carried out by heating in an organic solvent in the presence of an alkali metal salt. Method for producing derivative.
【請求項11】一般式(IV) 【化5】 (式中、R1は任意の置換基を有する炭素数2から9の
アルキル基であり、R2は水素原子あるいは保護された
水酸基であり、R5は水酸基の保護基を示す。)で示さ
れる化合物を、有機溶媒中、一般式(V) 【化6】 (式中、R8、R9は同一でも異なっていてもよく、トリ
アルキルシリル基あるいは炭素数1から4の任意のアル
キル基を示し、Mはアルカリ金属原子を示す。)で表わ
されるアルカリ金属アミドおよび塩基活性化剤の存在
下、N−フルオロジベンゼンスルホンアミドと反応させ
ることを特徴とする一般式(III')のフッ素化ビタミン
D-SO2付加体の製造方法。
11. A compound represented by the general formula (IV): (In the formula, R 1 is an alkyl group having 2 to 9 carbon atoms having an arbitrary substituent, R 2 is a hydrogen atom or a protected hydroxyl group, and R 5 is a hydroxyl-protecting group.) The compound of formula (V) (In the formula, R 8 and R 9 may be the same or different and each represents a trialkylsilyl group or an arbitrary alkyl group having 1 to 4 carbon atoms, and M represents an alkali metal atom.) A method for producing a fluorinated vitamin D-SO 2 adduct of general formula (III '), which comprises reacting with N-fluorodibenzenesulfonamide in the presence of an amide and a base activator.
JP8045230A 1995-03-03 1996-03-01 Fluorinated vitamin d derivative and its production Pending JPH08301842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8045230A JPH08301842A (en) 1995-03-03 1996-03-01 Fluorinated vitamin d derivative and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6884395 1995-03-03
JP7-68843 1995-03-03
JP8045230A JPH08301842A (en) 1995-03-03 1996-03-01 Fluorinated vitamin d derivative and its production

Publications (1)

Publication Number Publication Date
JPH08301842A true JPH08301842A (en) 1996-11-19

Family

ID=26385202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8045230A Pending JPH08301842A (en) 1995-03-03 1996-03-01 Fluorinated vitamin d derivative and its production

Country Status (1)

Country Link
JP (1) JPH08301842A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006052066A1 (en) * 2004-11-12 2006-05-18 Uk Chemipharm Co., Ltd. Process for preparing 1-alpha-hydroxycholecalciferol derivatives

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006052066A1 (en) * 2004-11-12 2006-05-18 Uk Chemipharm Co., Ltd. Process for preparing 1-alpha-hydroxycholecalciferol derivatives

Similar Documents

Publication Publication Date Title
CN1277817C (en) Method for synthesizing 1α-hydroxy-2-methylene-19-nor-pregnacalciferol
JP2505669B2 (en) Novel compound used for production of cholecalciferol derivative and process for producing the same
EP0806413B1 (en) 2-substituted vitamin d3 derivatives
JPH08301842A (en) Fluorinated vitamin d derivative and its production
IE70239B1 (en) Side-chain homologous vitamin D derivatives process for their production pharmaceutical preparations containing these derivatives and their use as pharmaceutical agents
JPH075542B2 (en) Vitamin D (3) Derivative and method for producing the same
JP2793428B2 (en) Method for preparing 1α-hydroxy-secosterol compound
JPH07112968A (en) Production of 1alpha,24-dihydroxycholecalciferol
JP3588367B2 (en) 1β-hydroxy-1α-lower alkyl vitamin D derivatives
EP1688409B1 (en) Vitamin d-derived monohalogenovinyl compounds
JP2003518089A (en) Method for producing 24 (S) -hydroxyvitamin D2
JP2642189B2 (en) Steroid derivative and method for producing the same
JP3516715B2 (en) 22-alkyl-25,26,27-trisnorvitamin D derivatives
JPS6345249A (en) Fluorine derivative of active vitamin D3
JP2001122847A (en) Production of binaphthyl derivative
JP2695473B2 (en) 24-oxosteroid derivative and method for producing the same
JP2662607B2 (en) Bicyclo [8.3.0] trideca-9,13-diene-2,7-diyne derivative
JP2750170B2 (en) Method for producing steroid derivatives
JP3589591B2 (en) Method for producing polyhalogenated monoterpene and halomon
JP2562999B2 (en) Process for producing intermediate for optically active steroid side chain synthesis
JPH06247926A (en) Labeled vitamin d compound and its production
JPH0680626A (en) New 22-oxavitamin d derivative
JPH0873425A (en) Fluorinated vitamin d derivative and its production
JPS58201793A (en) Hematoporphyrin derivative and its preparation
JPH0834769A (en) Vitamin d derivative containing substituent group at second position