[go: up one dir, main page]

JPH08300228A - Electric discharge machining method for system turbine stationary blade - Google Patents

Electric discharge machining method for system turbine stationary blade

Info

Publication number
JPH08300228A
JPH08300228A JP10727595A JP10727595A JPH08300228A JP H08300228 A JPH08300228 A JP H08300228A JP 10727595 A JP10727595 A JP 10727595A JP 10727595 A JP10727595 A JP 10727595A JP H08300228 A JPH08300228 A JP H08300228A
Authority
JP
Japan
Prior art keywords
stationary blade
electric discharge
machining
discharge machining
partition plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10727595A
Other languages
Japanese (ja)
Inventor
Keisuke Miyamoto
敬祐 宮本
Mitsuhiko Omoto
光彦 大本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10727595A priority Critical patent/JPH08300228A/en
Publication of JPH08300228A publication Critical patent/JPH08300228A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE: To improve workability in electric discharge machining method for machining the stationary blade of a partitioning plate. CONSTITUTION: A stationary blade 23 is formed by electric discharge machining from the lower surface side of a partitioning plate disk 21 positioned with the fluid outlet side of the stationary blade as an upper surface, an edge and a different level on the stationary blade outlet side formed by electric discharge machining is finished, and then the detriorated layer on a machining surface made electric discharge machining is removed by an acid bath.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、蒸気タービンに用いら
れる仕切板の静翼を放電加工する蒸気タービン静翼の放
電加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric discharge machining method for a steam turbine vane of a partition plate used in a steam turbine.

【0002】[0002]

【従来の技術】図3に従来の一般的な蒸気タービンの仕
切板の加工方法を表す概略を示す。
2. Description of the Related Art FIG. 3 schematically shows a conventional method for processing a partition plate of a general steam turbine.

【0003】蒸気タービン仕切板は、従来、図3(a)に
示すような、半割れ一対の外輪51及び内輪52と、図
3(b)に示すような、多数の静翼53とをそれぞれ切削
加工し、図3(c)に示すように、外輪51と内輪52と
の間に多数の静翼53を位置させた状態で組立溶接す
る。そして、この両者の半割れ合わせ面54を仕上加工
し、図3(d)に示すように、仕切板50を製作してい
た。
Conventionally, a steam turbine partition plate has a pair of half-cracked outer and inner rings 51 and 52 as shown in FIG. 3A, and a large number of stationary blades 53 as shown in FIG. 3B. After cutting, as shown in FIG. 3C, assembly welding is performed with a large number of vanes 53 positioned between the outer ring 51 and the inner ring 52. Then, the half-split mating surfaces 54 of both of them are subjected to finish processing to manufacture a partition plate 50 as shown in FIG. 3 (d).

【0004】ところが、このような仕切板50の加工方
法にあっては、この仕切板50の部品点数及び組立溶接
等の加工工程が多く、長期の加工日程を要すると共に製
作費も多大なものとなってしまうという問題がある。そ
こで、近年、仕切板を型彫放電加工することで成形する
ことが考えられている。
However, in such a method of processing the partition plate 50, there are many processing steps such as the number of parts of the partition plate 50 and assembly welding, which requires a long processing schedule and a large manufacturing cost. There is a problem of becoming. Therefore, in recent years, it has been considered to form the partition plate by die-sinking electric discharge machining.

【0005】図4に従来の蒸気タービンの仕切板の加工
方法を表す概略、図5に従来の放電加工による蒸気ター
ビンの静翼の加工方法を表す概略を示す。
FIG. 4 is a schematic diagram showing a conventional method of machining a partition plate of a steam turbine, and FIG. 5 is a schematic diagram showing a conventional method of machining a stationary blade of a steam turbine by electric discharge machining.

【0006】即ち、図4(a)に示すように、穴開き円板
状に切削加工したディスク61を、図4(b)に示すよう
に、静翼の流体入口側が上面となるように放電加工して
この静翼63を成形し、この静翼63の型彫放電加工面
の変質層をペンシルグラインダによって除去及び研磨す
る。そして、図4(c)に示すように、ワイヤ放電加工に
よって仕切板60を半割れに切断し、図4(d)に示すよ
うに、この半割れ合わせ面64を仕上加工し、仕切板6
0を制作する。
That is, as shown in FIG. 4 (a), a disk 61 cut into a perforated disc is discharged so that the fluid inlet side of the vane is the upper surface as shown in FIG. 4 (b). This stationary blade 63 is formed by machining, and the altered layer on the die-sinking electric discharge machined surface of this stationary blade 63 is removed and polished by a pencil grinder. Then, as shown in FIG. 4C, the partition plate 60 is cut into half cracks by wire electric discharge machining, and as shown in FIG.
Produce 0.

【0007】この静翼の放電加工にあっては、図5(a)
に示すように、静翼の流体入口側を上面にしてディスク
61を図示しない放電油内に設定し、まず、このディス
ク61に対し、上面側から大荒加工電極11を直進また
は旋回させながら送って放電油を介して放電して大荒加
工を行う。次に、図5(b)に示すように、同じくディス
ク61の上面側から中荒加工電極12を旋回させながら
送って中荒加工を行う。最後に、図5(c)に示すよう
に、ディスク61の上面側から仕上加工電極13を旋回
させながら送って仕上加工を行う。そして、図5(d)に
示すように、ディスク61を放電油中で反転して静翼の
流体出口側を上面とし、この流体出口側を丸め電極14
によって上面側で水平移動させ、静翼63の出口エッジ
を丸める。最後に、図5(e)に示すように、出口押さえ
電極15をディスク61の上面側で下降し、静翼63の
出口段差を平滑にすることで、静翼63の型彫放電加工
による成形を完了する。
In this electric discharge machining of the stationary blade, as shown in FIG.
As shown in FIG. 4, the disk 61 is set in the discharge oil (not shown) with the fluid inlet side of the vane as the upper surface, and first, the large rough machining electrode 11 is fed to the disk 61 from the upper surface while being straightened or swung. Large rough machining is performed by discharging through discharge oil. Next, as shown in FIG. 5B, the medium rough machining is performed by rotating and feeding the medium rough machining electrode 12 from the upper surface side of the disk 61. Finally, as shown in FIG. 5C, the finishing electrode 13 is swung and fed from the upper surface side of the disk 61 for finishing. Then, as shown in FIG. 5 (d), the disk 61 is inverted in the discharge oil so that the fluid outlet side of the vane is the upper surface, and the fluid outlet side is rounded.
Then, the upper blade side is horizontally moved to round the exit edge of the vane 63. Finally, as shown in FIG. 5E, the outlet pressing electrode 15 is lowered on the upper surface side of the disk 61 to smooth the outlet step of the stationary blade 63, thereby forming the stationary blade 63 by die-sinking electric discharge machining. To complete.

【0008】[0008]

【発明が解決しようとする課題】このように上述した従
来の放電加工による蒸気タービンの静翼の加工方法にあ
っては、仕切板の静翼を放電加工によって成形すること
で、仕切板の部品点数を減少して組立溶接等の加工工程
を少なくすることで、加工日程や製作費を低減すること
はできるものの、別に下記に示すような問題がある。
As described above, in the above-described conventional method for machining the stationary blade of the steam turbine by electric discharge machining, the stationary blade of the partition plate is formed by electric discharge machining, so that the parts of the partition plate are formed. Although it is possible to reduce the processing schedule and the manufacturing cost by reducing the number of points and reducing the number of processing steps such as assembly welding, there are the following problems.

【0009】即ち、従来の蒸気タービンの静翼の放電加
工方法では、仕切板ディスク61の上面側から静翼成形
のための型彫放電加工を行うので、その加工途中で曲線
状の凹部底面にスラッジが溜まり、このスラッジが放電
加工を妨害して加工時間が長くなってしまう。また、静
翼の型彫放電加工工程の途中で放電油中の仕切板ディス
ク61を反転する段取替え作業が必要となり、作業が面
倒なものとなってしまう。更に、静翼の型彫放電加工に
よってその加工面に変質層が生成され、ヘアクラックが
発生されるが、この変質層は硬度が高く流体研磨するこ
とが困難であり、熟練した作業員がペンシルグラインダ
によって変質層の除去及び研磨を行う必要があり、作業
性が良くない。その結果、蒸気タービンの静翼の加工作
業が長期の加工日程が必要になると共に製作費も多大な
ものとなってしまう。
That is, in the conventional electric discharge machining method for the vane of the steam turbine, since the die-sinking electric discharge machining for forming the vane is performed from the upper surface side of the partition plate 61, the curved concave bottom surface is formed during the machining. Sludge accumulates, and this sludge interferes with electrical discharge machining, resulting in a longer machining time. Further, during the die-sinking electric discharge machining process of the stationary blade, it is necessary to perform a setup change operation for inverting the partition plate disk 61 in the electric discharge oil, which makes the operation troublesome. Furthermore, the die-cutting electric discharge machining of the stationary blade creates an altered layer on the machined surface and causes hair cracks. However, this altered layer has high hardness and is difficult to be fluid-polished. It is necessary to remove the deteriorated layer and grind it with a grinder, and the workability is not good. As a result, the machining work of the stationary blades of the steam turbine requires a long machining schedule and the manufacturing cost becomes large.

【0010】本発明はこのような問題を解決するもので
あって、作業性の向上を図った蒸気タービン静翼の放電
加工方法を提供することを目的とする。
The present invention is intended to solve such a problem, and an object of the present invention is to provide a method of electric discharge machining of a steam turbine stationary blade, which improves workability.

【0011】[0011]

【課題を解決するための手段】上述した目的を達成する
ための本発明の蒸気タービン静翼の放電加工方法は、複
数段の蒸気タービン動翼間に介装された仕切板の静翼を
加工する放電加工方法において、前記静翼の流体出口側
を上面にして位置決めした前記仕切板ディスクの下面側
から放電加工によって前記静翼を成形し、該仕切板ディ
スクの上面側から放電加工によって成形された前記静翼
出口側のエッジ及び段差を仕上加工し、その後、該放電
加工された加工面の変質層を酸洗によって除去すること
を特徴とするものである。
The electric discharge machining method for a steam turbine stationary blade according to the present invention for achieving the above-mentioned object is to machine a stationary blade of a partition plate interposed between a plurality of stages of steam turbine moving blades. In the electric discharge machining method, the stator vane is formed by electrical discharge machining from the lower surface side of the partition plate disk positioned with the fluid outlet side of the vane surface as the upper surface, and the stationary blade is formed by electric discharge machining from the upper surface side. Further, the edge and the step on the outlet side of the stationary blade are subjected to finish machining, and then the deteriorated layer on the machined surface subjected to the electric discharge machining is removed by pickling.

【0012】[0012]

【作用】本発明の蒸気タービン静翼の放電加工方法によ
って蒸気タービンの仕切板を加工する場合、まず、切削
加工した仕切板ディスクを静翼の流体出口側が上面とな
るように放電油内に位置決めし、下面側から電極によっ
て放電油を介して放電し、大荒加工、中荒加工及び仕上
加工を行う。次に、出口丸め電極及び押さえ電極によっ
て仕切板ディスクの上面側から放電油を介して放電し、
静翼の出口側エッジを丸めて出口段差を平滑にし、この
放電による成形を完了する。そして、この仕切板の静翼
の放電加工による変質層を酸洗によって除去し、この変
質層を除去した静翼間に流体研磨剤を流して流体研磨す
る。
When the partition plate of the steam turbine is machined by the electric discharge machining method of the steam turbine vane of the present invention, first, the machined partition plate disk is positioned in the discharge oil so that the fluid outlet side of the vane is the upper surface. Then, the electrodes are discharged from the lower surface side through discharge oil to perform large rough machining, medium rough machining, and finishing machining. Next, the outlet rounding electrode and the pressing electrode are used to discharge the discharge oil from the upper surface side of the partition plate disk,
The outlet side edge of the vane is rounded to smooth the outlet step, and the molding by this discharge is completed. Then, the deteriorated layer formed by electric discharge machining of the stationary blade of the partition plate is removed by pickling, and a fluid abrasive is flown between the stationary blades from which the deteriorated layer has been removed to perform fluid polishing.

【0013】[0013]

【実施例】図1に本発明の一実施例に係る蒸気タービン
静翼の放電加工方法を実施するための加工手順を表す概
略断面、図2に蒸気タービン仕切板の静翼の酸洗を表す
概略を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic cross section showing a machining procedure for carrying out an electric discharge machining method for a steam turbine stationary blade according to an embodiment of the present invention, and FIG. 2 shows pickling of a stationary blade of a steam turbine partition plate. An outline is shown.

【0014】本実施例の蒸気タービン静翼の放電加工方
法において、加工手順を説明する。まず、図1(a)に示
すように、円板状に切削加工したディスク21を静翼の
流体出口側が上面となるように図示しない放電油内に位
置決め設定し、下面側から大荒加工電極11を直進また
は旋回させながら送って放電油を介して放電し、大荒加
工を行う。次に、図1(b)に示すように、ディスク21
の下面から中荒加工電極12を旋回させながら送って中
荒加工行う。最後に、図1(c)に示すように、ディスク
21の下面から仕上加工電極13を旋回させながら送っ
て仕上加工を行う。
In the electric discharge machining method for the steam turbine vane of this embodiment, the machining procedure will be described. First, as shown in FIG. 1 (a), a disk 21 cut into a disk shape is positioned and set in discharge oil (not shown) so that the fluid outlet side of the vane is the upper surface, and the rough machining electrode 11 is arranged from the lower surface side. Is performed while straightening or turning and is discharged through discharge oil to perform large rough machining. Next, as shown in FIG.
Then, the medium rough machining electrode 12 is swung and fed from the lower surface to perform the medium rough machining. Finally, as shown in FIG. 1 (c), the finishing electrode 13 is swung from the lower surface of the disk 21 while being swung to perform the finishing process.

【0015】そして、図1(d)に示すように、ディスク
21の上面にて出口丸め電極14を水平移動させ、静翼
23の出口側のエッジを丸める。最後に、図1(e)に示
すように、出口押さえ電極15をディスク21の上面で
下降し、静翼23の出口側の段差をなくして平滑にし、
この型彫放電加工によるディスク21の成形を完了し、
仕切板20を製作する。
Then, as shown in FIG. 1D, the outlet rounding electrode 14 is horizontally moved on the upper surface of the disk 21 to round the outlet side edge of the stationary blade 23. Finally, as shown in FIG. 1 (e), the outlet pressing electrode 15 is lowered on the upper surface of the disk 21 to eliminate the step on the outlet side of the stationary blade 23 and smooth it.
Completing the molding of the disk 21 by this die-sinking electric discharge machining,
The partition plate 20 is manufactured.

【0016】このように製作した仕切板20を、図2に
示すように、酸洗層31内の希塩酸を用いた酸洗液32
に浸漬し、この酸洗層31内に設けられた攪拌翼33を
攪拌機(電動モータ)によって回転することで、酸洗液
32を攪拌翼33の回転によって攪拌し、静翼23の型
彫放電加工面の変質層及びヘアクラックをこの酸洗によ
って除去する。そして、変質層を除去した仕切板20の
静翼23間の蒸気通路24に流体研磨剤を流して流体研
磨を行う。そして、最後に、放電油中でワイヤ放電加工
によって仕切板20を半割れに切断し、この半割れ合わ
せ面を仕上加工し、仕切板20の加工を終了する。
As shown in FIG. 2, the partition plate 20 manufactured in this manner is used as a pickling solution 32 using dilute hydrochloric acid in the pickling layer 31.
And the stirrer blade 33 provided in the pickling layer 31 is rotated by a stirrer (electric motor) to stir the pickling solution 32 by the rotation of the stirrer blade 33, and the die-sinking discharge of the stationary blade 23. The deteriorated layer and the hair crack on the processed surface are removed by this pickling. Then, a fluid abrasive is flown into the vapor passage 24 between the stationary blades 23 of the partition plate 20 from which the altered layer has been removed to perform fluid polishing. Then, finally, the partition plate 20 is cut into half cracks in electric discharge oil by wire electric discharge machining, and the half-cracked mating surface is finished, and the processing of the partition plate 20 is completed.

【0017】[0017]

【発明の効果】以上、実施例を挙げて説明したように本
発明の蒸気タービン静翼の放電加工方法によれば、静翼
の流体出口側を上面にして位置決めした仕切板ディスク
の下面側から放電加工によって静翼を成形し、この仕切
板ディスクの上面側から放電加工によって成形された静
翼出口側のエッジ及び段差を仕上加工し、その後、放電
加工された加工面の変質層を酸洗によって除去するよう
にしたので、加工中にスラッジが下方に落下してこのス
ラッジが放電加工を妨害することはなく、作業を円滑に
行うことができ、静翼の加工途中で放電油中の仕切板デ
ィスクを反転する必要はなく、この段取替え作業を省略
することができ、また、静翼の放電加工面の変質層を酸
洗によって除去して流体研磨することが可能となって作
業性の向上を図ることができる。その結果、蒸気タービ
ンの静翼の加工作業を短期の加工日程で製作費の低減を
図ることができる。
As described above with reference to the embodiments, according to the electric discharge machining method for a steam turbine stationary blade of the present invention, from the lower surface side of the partition plate disk positioned with the fluid outlet side of the stationary blade as the upper surface. A vane is formed by electrical discharge machining, and the edges and steps on the outlet side of the vane formed by electrical discharge machining are finished from the upper surface of this partition plate disk, and then the deteriorated layer on the electrical discharge machined surface is pickled. Since sludge does not drop downward during machining and does not interfere with electrical discharge machining, the work can be performed smoothly and the partition in the electrical discharge oil is being processed during machining of the stationary blade. There is no need to invert the plate disk, and this setup change operation can be omitted, and the deteriorated layer on the electric discharge machined surface of the stationary blade can be removed by pickling and fluid polishing becomes possible. To improve Door can be. As a result, it is possible to reduce the manufacturing cost of the machining work of the stationary blades of the steam turbine in a short working schedule.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る蒸気タービン静翼の放
電加工方法を実施するための加工手順を表す概略断面図
である。
FIG. 1 is a schematic cross-sectional view showing a machining procedure for carrying out an electric discharge machining method for a steam turbine stationary blade according to an embodiment of the present invention.

【図2】蒸気タービン仕切板の静翼の酸洗を表す概略図
である。
FIG. 2 is a schematic view showing pickling of a stationary blade of a steam turbine partition plate.

【図3】従来の一般的な蒸気タービンの仕切板の加工方
法を表す概略図である。
FIG. 3 is a schematic view showing a method of processing a partition plate of a conventional general steam turbine.

【図4】従来の蒸気タービンの仕切板の加工方法を表す
概略図である。
FIG. 4 is a schematic view showing a method of processing a partition plate of a conventional steam turbine.

【図5】従来の放電加工による蒸気タービンの静翼の加
工方法を表す概略(図4のV−V断面)図である。
FIG. 5 is a schematic view (VV cross section in FIG. 4) showing a method for processing a vane of a steam turbine by conventional electric discharge machining.

【符号の説明】[Explanation of symbols]

11 大荒加工電極 12 中荒加工電極 13 仕上加工電極 14 出口丸め電極 15 出口押さえ電極 31 酸洗槽 32 酸洗液 20 仕切板 21 ディスク 23 静翼 24 蒸気通路 11 Large Roughing Electrode 12 Medium Roughing Electrode 13 Finishing Electrode 14 Outlet Rounding Electrode 15 Outlet Holding Electrode 31 Pickling Tank 32 Pickling Liquid 20 Partition Plate 21 Disk 23 Stator Blade 24 Steam Passage

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数段の蒸気タービン動翼間に介装され
た仕切板の静翼を加工する放電加工方法において、前記
静翼の流体出口側を上面にして位置決めした前記仕切板
ディスクの下面側から放電加工によって前記静翼を成形
し、該仕切板ディスクの上面側から放電加工によって成
形された前記静翼出口側のエッジ及び段差を仕上加工
し、その後、該放電加工された加工面の変質層を酸洗に
よって除去することを特徴とする蒸気タービン静翼の放
電加工方法。
1. A discharge machining method for machining a stationary blade of a partition plate interposed between a plurality of stages of steam turbine blades, wherein a lower surface of the partition plate disk is positioned with the fluid outlet side of the stationary blade as an upper surface. From the side to form the stationary blade by electric discharge machining, and finish machining the edges and steps on the side of the stationary blade formed by electric discharge machining from the upper surface side of the partition plate disk, and then the electric discharge machined surface A method for electrical discharge machining of a steam turbine stationary blade, characterized in that an altered layer is removed by pickling.
JP10727595A 1995-05-01 1995-05-01 Electric discharge machining method for system turbine stationary blade Withdrawn JPH08300228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10727595A JPH08300228A (en) 1995-05-01 1995-05-01 Electric discharge machining method for system turbine stationary blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10727595A JPH08300228A (en) 1995-05-01 1995-05-01 Electric discharge machining method for system turbine stationary blade

Publications (1)

Publication Number Publication Date
JPH08300228A true JPH08300228A (en) 1996-11-19

Family

ID=14454942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10727595A Withdrawn JPH08300228A (en) 1995-05-01 1995-05-01 Electric discharge machining method for system turbine stationary blade

Country Status (1)

Country Link
JP (1) JPH08300228A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040009436A (en) * 2002-07-23 2004-01-31 현대모비스 주식회사 Method of manufacturing turbine blade using penetration electric discharge method for turbo pump
CN100389004C (en) * 2005-11-18 2008-05-21 沈阳黎明航空发动机(集团)有限责任公司 Six point positioning base line transfer method for refine casting blade
CN100450686C (en) * 2006-10-19 2009-01-14 杨龙兴 Wire electrode cutting process of steam turbine blade
WO2010041431A1 (en) 2008-10-06 2010-04-15 三菱重工業株式会社 Method of manufacturing impeller for centrifugal rotary machine
JP2010285919A (en) * 2009-06-10 2010-12-24 Mitsubishi Heavy Ind Ltd Manufacturing method of impeller of centrifugal rotating machine and impeller of centrifugal rotating machine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040009436A (en) * 2002-07-23 2004-01-31 현대모비스 주식회사 Method of manufacturing turbine blade using penetration electric discharge method for turbo pump
CN100389004C (en) * 2005-11-18 2008-05-21 沈阳黎明航空发动机(集团)有限责任公司 Six point positioning base line transfer method for refine casting blade
CN100450686C (en) * 2006-10-19 2009-01-14 杨龙兴 Wire electrode cutting process of steam turbine blade
WO2010041431A1 (en) 2008-10-06 2010-04-15 三菱重工業株式会社 Method of manufacturing impeller for centrifugal rotary machine
JP2010089190A (en) * 2008-10-06 2010-04-22 Mitsubishi Heavy Ind Ltd Method for manufacturing impeller of centrifugal rotating machine
US8581136B2 (en) 2008-10-06 2013-11-12 Mitsubishi Heavy Industries, Ltd. Method of manufacturing by electric discharge machining an impeller for centrifugal rotating machine
EP2305411A4 (en) * 2008-10-06 2017-12-27 Mitsubishi Heavy Industries Compressor Corporation Method of manufacturing impeller for centrifugal rotary machine
JP2010285919A (en) * 2009-06-10 2010-12-24 Mitsubishi Heavy Ind Ltd Manufacturing method of impeller of centrifugal rotating machine and impeller of centrifugal rotating machine

Similar Documents

Publication Publication Date Title
RU2493950C2 (en) Method of making monoblock impeller with vane retaining ring to be removed before milling
US5873770A (en) Vibratory finishing process
JP3428651B2 (en) Method of manufacturing blade mounting slot for gas turbine engine
JP5215803B2 (en) Method for manufacturing impeller of centrifugal rotating machine
EP1792680A2 (en) Method for machining components of turbine engines
JP5432239B2 (en) An improved method of manufacturing an integral bladed disk with a temporary blade support ring that is removed prior to finish milling
GB2361884A (en) Improvement in laser cut saw blades
CN110125497A (en) A kind of processing method of high temperature alloy diskware tongue-and-groove
DE102009021824A1 (en) Method for edge chamfering and rounding metal components, particularly compressor and turbine disks, involves exchanging components into grinding medium
CA2366325A1 (en) Method of forming turbine blade root
JPH08300228A (en) Electric discharge machining method for system turbine stationary blade
JPS6144521A (en) Method of processing curved surface of thin article
US8505202B2 (en) Process for manufacturing a single-piece blisk with a temporary blade support ring arranged at a distance from blade tips
RU2493948C2 (en) Method of making monoblock blade wheel by abrasive water jet cutting
CA2708331A1 (en) Method for producing integrally blade-mounted rotors
JPH10156617A (en) Cutter device for milling work
US20220341326A1 (en) Method for manufacturing or for repairing a component of a rotary machine as well as a component manufactured or repaired using such a method
JP2000024838A (en) Manufacture of forging die for gear
US6935151B2 (en) Hot forming die having a nickel oxide layer
US2355345A (en) Optical device and method of making same
WO1993010279A1 (en) Orbital chemical milling
JPH11105002A (en) Cutting work chip saw and manufacture thereof
KR20040009437A (en) Method of manufacturing turbine blade using symmetrically electric discharge method for turbo pump
CN110883343B (en) Method for processing multistage blades of steam turbine generator
JPS6161720A (en) Method of fabricating turbine rotor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020702