JPH08297005A - Apparatus for measuring nip width - Google Patents
Apparatus for measuring nip widthInfo
- Publication number
- JPH08297005A JPH08297005A JP10265795A JP10265795A JPH08297005A JP H08297005 A JPH08297005 A JP H08297005A JP 10265795 A JP10265795 A JP 10265795A JP 10265795 A JP10265795 A JP 10265795A JP H08297005 A JPH08297005 A JP H08297005A
- Authority
- JP
- Japan
- Prior art keywords
- roll
- measuring
- nip width
- nip
- measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005259 measurement Methods 0.000 claims description 32
- 238000004364 calculation method Methods 0.000 claims description 8
- 238000001514 detection method Methods 0.000 claims 1
- 238000000034 method Methods 0.000 description 20
- 239000002184 metal Substances 0.000 description 17
- 238000010586 diagram Methods 0.000 description 8
- 235000019589 hardness Nutrition 0.000 description 7
- 239000012212 insulator Substances 0.000 description 5
- 230000006378 damage Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000004070 electrodeposition Methods 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000002845 discoloration Methods 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
Landscapes
- Electrostatic Charge, Transfer And Separation In Electrography (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、導電性、或いは半導電
性のロールとこれに接触するロール間に形成されるニッ
プ部のニップ幅を測定するニップ幅測定装置に関し、特
に、被測定物の破壊を防ぐと共に、測定精度と作業性の
向上、及び測定時間の短縮化を図ったニップ幅の測定装
置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nip width measuring device for measuring the nip width of a nip portion formed between a conductive or semi-conductive roll and a roll in contact therewith, and more particularly, to an object to be measured. The present invention relates to a nip width measuring device capable of preventing the destruction of the nip, improving the measurement accuracy and workability, and shortening the measurement time.
【0002】[0002]
【従来の技術】画像形成装置において、感光体ドラムを
帯電させたり、感光体ドラムの表面に形成されたトナー
像を記録紙に転写するのに、感光体ドラムに接触して所
定の電圧を印加する半導電性ゴムロールを用いる場合が
ある。このような画像形成装置では、感光体ドラムと半
導電性ゴムロールのニップ幅と半導電性ゴムロールの出
力値によって帯電特性や転写特性等が決まるため、両者
のニップ幅を測定して、測定値に応じて半導電性ゴムロ
ールの出力を制御することが必要となる。即ち、図13
に示すように、電源等に電気的に接続された金属シャフ
ト1を有した半導電性ゴムロール2と感光体ドラム3の
ニップ幅Wを測定し、ニップ幅が小さい場合には半導電
性ゴムロール2の電圧値、或いは電流値等を大に、ま
た、ニップ幅が大きい場合には小にすることが画質向上
の点で必要になっている。2. Description of the Related Art In an image forming apparatus, in order to charge a photosensitive drum or transfer a toner image formed on the surface of the photosensitive drum onto a recording sheet, a predetermined voltage is applied in contact with the photosensitive drum. There are cases where a semi-conductive rubber roll is used. In such an image forming apparatus, charging characteristics and transfer characteristics are determined by the nip width between the photosensitive drum and the semi-conductive rubber roll and the output value of the semi-conductive rubber roll. Accordingly, it is necessary to control the output of the semiconductive rubber roll. That is, FIG.
As shown in FIG. 3, the nip width W between the semiconductive rubber roll 2 having the metal shaft 1 electrically connected to the power source and the photosensitive drum 3 is measured, and when the nip width is small, the semiconductive rubber roll 2 is measured. In order to improve the image quality, it is necessary to increase the voltage value, the current value, or the like, and decrease the nip width when the nip width is large.
【0003】このような感光体ドラムと半導電性ゴムロ
ールのニップ幅を測定する、従来のニップ幅の測定方法
として、例えば、以下のものがある。 (1) インク転写方式 感光体ドラムの表面に紙等を貼ると共に半導電性ゴムロ
ールの表面にインクを塗布し、両者を接触させたときに
感光体ドラムの表面に転写されたインクの転写幅を測定
する。 (2) 放電方式 図14に示すように、半導電性ゴムロール2の金属シャ
フト1と感光体ドラム3に直流電源4を接続して、両者
に所定の電圧を印加し、図15のように感光体ドラム3
の表面に放電を生じさせ、感光体ドラム3の表面に形成
される変色による放電跡を測定する。 (3) 感圧紙方式 半導電性ゴムロールと感光体ドラムの間で、圧力で色が
変化する感圧紙を挟んで、感圧紙の変色幅を測定する。 (4) ヘルツ式算出方式 下記のヘルツの法則式を用いてニップ幅Wを算出する。As a conventional nip width measuring method for measuring the nip width between the photosensitive drum and the semiconductive rubber roll, for example, there are the following methods. (1) Ink transfer method Apply paper or the like on the surface of the photoconductor drum and apply ink to the surface of the semiconductive rubber roll, and when the two are in contact, the transfer width of the ink transferred to the surface of the photoconductor drum is set. taking measurement. (2) Discharging method As shown in FIG. 14, a DC power source 4 is connected to the metal shaft 1 of the semi-conductive rubber roll 2 and the photoconductor drum 3, and a predetermined voltage is applied to both of them, so that the photosensitive drum is exposed as shown in FIG. Body drum 3
A discharge is generated on the surface of the photosensitive drum 3, and the discharge trace due to the discoloration formed on the surface of the photosensitive drum 3 is measured. (3) Pressure sensitive paper method A pressure sensitive paper whose color changes with pressure is sandwiched between the semi-conductive rubber roll and the photoconductor drum, and the discoloration width of the pressure sensitive paper is measured. (4) Hertz formula calculation method The nip width W is calculated using the following Hertz's law formula.
【数1】 ここで、v1 は半導電性ゴムロールのポアソン比を、E
1 は半導電性ゴムロールのヤング率〔kg/mm2 〕
を、wは線荷重〔kg/mm〕を、v2 は感光体ドラム
のポアソン比を、E2 は感光体ドラムのヤング率〔kg
/mm2 〕を、r 1 は半導電性ゴムロールの半径〔m
m〕を、r2 は感光体ドラムの半径〔mm〕をそれぞれ
示す。[Equation 1]Where v1Is the Poisson's ratio of the semiconductive rubber roll,
1Is the Young's modulus of the semi-conductive rubber roll [kg / mm2]
, W is the linear load [kg / mm], v2Is the photoconductor drum
Poisson's ratio of2Is the Young's modulus of the photosensitive drum [kg
/ Mm2], R 1Is the radius of the semi-conductive rubber roll [m
m], r2Is the radius [mm] of the photosensitive drum
Show.
【0004】[0004]
【発明が解決しようとする課題】しかし、上記したニッ
プ幅の測定方法によると、以下の問題を有している。 (1) インク転写方式の場合、半導電性ゴムロールにイン
クを塗布するため、被測定物を変質させ、被測定物の破
壊測定になることがある。 (2) 放電方式の場合、図15に示すように、放電による
ニップ幅W’が測定条件により実ニップ幅Wよりαだけ
大きくなり、測定値にばらつきが生じ、測定精度が低下
する。 (3) 感圧紙方式の場合、作業性が悪く、測定に熟練と時
間を要する。 (4) ヘルツ式算出方式の場合、ヤング率がロール形状、
ゴム硬度、ゴム厚さ等によって異なるため、計測値に誤
差が生じる。つまり、図16に示すように、線荷重が同
じであってもゴム硬度、ロールの外径が異なると、感光
体ドラムと半導電性ゴムロールの軸間の変位量、つま
り、ニップ幅が異なるが、ヘルツの法則式で算出した場
合、このヤング率の変動を考慮した測定値が得られな
い。However, the above-mentioned method for measuring the nip width has the following problems. (1) In the case of the ink transfer method, since the semiconductive rubber roll is coated with ink, the quality of the measured object may be deteriorated and the measured object may be destroyed. (2) In the case of the discharge method, as shown in FIG. 15, the nip width W ′ due to the discharge becomes larger than the actual nip width W by α depending on the measurement conditions, and the measured values vary and the measurement accuracy decreases. (3) The pressure-sensitive paper method has poor workability and requires skill and time for measurement. (4) In the case of Hertzian calculation method, Young's modulus is roll shape,
Since it varies depending on rubber hardness, rubber thickness, etc., an error occurs in the measured value. That is, as shown in FIG. 16, even if the linear load is the same, if the rubber hardness and the outer diameter of the roll are different, the amount of displacement between the shafts of the photosensitive drum and the semiconductive rubber roll, that is, the nip width is different. , When calculated by the Hertz's law formula, it is not possible to obtain a measured value that takes into account this variation in Young's modulus.
【0005】従って、本発明の目的は被測定物の破壊を
防ぐと共に、測定精度と作業性の向上、及び測定時間の
短縮化を図ることができるニップ幅の測定装置を提供す
ることである。Therefore, it is an object of the present invention to provide a nip width measuring device capable of preventing the destruction of an object to be measured, improving the measurement accuracy and workability, and shortening the measurement time.
【0006】[0006]
【課題を解決するための手段】本発明は上記問題点に鑑
み、被測定物の破壊を防ぐと共に、測定精度と作業性の
向上、及び測定時間の短縮化を図るため、導電性、或い
は半導電性の第1のロールに接触する第2のロールと同
一のサイズを有すると共に、第2のロールに代えて第1
のロールと接触し、高抵抗領域とニップ幅より大きい長
さを有した低抵抗領域より成る測定用ロールと、第1の
ロールと測定用ロールの低抵抗領域の間に所定の電圧を
印加する電圧印加手段と、第1のロール、及び測定用ロ
ールを所定の相対速度で回転させる回転駆動手段と、相
対速度の回転によって第1のロールと測定用ロールの低
抵抗領域との接触面積の変化に応じて変化する第1のロ
ール、及び測定用ロールのニップ間の電流を検出する電
流検出手段と、電流値に応じてニップ幅を算出するニッ
プ幅算出手段を備えたニップ幅の測定装置を提供するも
のである。SUMMARY OF THE INVENTION In view of the above problems, the present invention aims to prevent destruction of an object to be measured, improve the measurement accuracy and workability, and shorten the measurement time. It has the same size as the second roll that contacts the electrically conductive first roll, and the first roll replaces the first roll.
And a predetermined voltage is applied between the measuring roll, which is in contact with the first roll and the low resistance region having a length larger than the nip width, and the low resistance region of the first roll and the measuring roll. Change in contact area between the voltage application unit, the first roll, and the rotation driving unit that rotates the measurement roll at a predetermined relative speed, and the contact area between the first roll and the low resistance region of the measurement roll due to rotation of the relative speed. A nip width measuring device provided with a current detecting means for detecting a current between the nip of the first roll and the measuring roll, which changes in accordance with the above, and a nip width calculating means for calculating the nip width according to the current value. It is provided.
【0007】[0007]
【作用】第1のロールと測定用ロールの低抵抗領域の間
に所定の電圧を印加し、第1のロール、及び測定用ロー
ルを所定の相対速度で回転させる。この相対速度の回転
によって第1のロールと測定用ロールの低抵抗領域との
接触面積の変化に応じて変化する第1のロール、及び測
定用ロールのニップ間の電流を電流検出手段が検出し、
ニップ幅算出手段が電流値に応じてニップ幅を算出す
る。A predetermined voltage is applied between the low resistance regions of the first roll and the measuring roll to rotate the first roll and the measuring roll at a predetermined relative speed. The current detecting means detects the current between the nip between the first roll and the measuring roll, which changes according to the change in the contact area between the first roll and the low resistance region of the measuring roll by the rotation of the relative speed. ,
The nip width calculation means calculates the nip width according to the current value.
【0008】[0008]
【実施例】以下、本発明のニップ幅の測定装置につい
て、添付図面を参照しながら詳細に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The nip width measuring device of the present invention will be described in detail below with reference to the accompanying drawings.
【0009】図1、及び図2には、本発明の一実施例に
係るニップ幅の測定装置の構成が示されている。このニ
ップ幅の測定装置は、絶縁体表面の一部に電極6が設け
られた感光体ドラムと同一サイズの測定用ロール7と、
被測定物として導電性ゴムロール2を測定用ロール7に
所定の荷重で押し付ける荷重ロール8と、導電性ゴムロ
ール2の金属シャフト1と電極6の間に放電が発生しな
い程度の定電圧(本実施例では、100V)を印加する
直流定電源9と、金属シャフト1と直流定電源9の間に
接続され、導電性ゴムロール2に流れる微小電流を測定
する微小電流計10と、測定用ロール7を回転させるモ
ータ14と、モータ14を駆動する駆動回路15と、モ
ータ14の駆動制御を行うと共に、微小電流計10の電
流値に基づいてグラフ処理、或いは所定の演算処理を行
ってニップ幅Wの算出を行って、演算結果を表示部13
Aに表示するコンピュータ13を備えて構成されてい
る。1 and 2 show the construction of a nip width measuring device according to an embodiment of the present invention. This nip width measuring device includes a measuring roll 7 having the same size as the photosensitive drum, in which an electrode 6 is provided on a part of the insulator surface,
A load roll 8 that presses the conductive rubber roll 2 as a measured object against the measurement roll 7 with a predetermined load, and a constant voltage such that no discharge occurs between the metal shaft 1 and the electrode 6 of the conductive rubber roll 2 (this embodiment). Then, a DC constant power source 9 for applying 100 V), a minute ammeter 10 connected between the metal shaft 1 and the DC constant power source 9 for measuring a minute current flowing through the conductive rubber roll 2, and a measuring roll 7 are rotated. The nip width W is calculated by performing a graph process or a predetermined calculation process on the basis of the current value of the minute ammeter 10 while controlling the drive of the motor 14, the drive circuit 15 that drives the motor 14, and the drive of the motor 14. The calculation result is displayed on the display unit 13
A computer 13 for displaying on A is provided.
【0010】測定用ロール7は、絶縁ブロック12に支
持され、モータ14の回転力を受けて回転するた金属シ
ャフト7Aと、金属シャフト7Aの外周に施された高抵
抗樹脂より成る絶縁体7Bと、絶縁体7Bに埋め込まれ
た4mm角の電極6より構成され、電極6は直流定電源
9の陽極に接続されている。The measuring roll 7 is supported by an insulating block 12 and is rotated by a rotational force of a motor 14 and is rotated by a metal shaft 7A, and an insulator 7B made of a high resistance resin is provided on the outer periphery of the metal shaft 7A. , An electrode 6 of 4 mm square embedded in an insulator 7B, and the electrode 6 is connected to an anode of a constant DC power supply 9.
【0011】半導電性ゴムロール2は、端子11と電気
的に接続された金属シャフト1の外周に設けられたゴム
硬度72°の半導電性ゴムによって構成され、荷重ロー
ル8によって両端にそれぞれ500gfの荷重が付加さ
れている。端子11は直流定電源9の陰極に接続され、
この間に最小分解能1pAで定電圧源内蔵タイプの微小
電流計10が挿入されている。荷重ロール8は半導電性
ゴムロール2の外径精度、振れ等の影響を受けないよう
に、スライドレールに重りを載せた方式が採用されてい
る。The semi-conductive rubber roll 2 is made of semi-conductive rubber having a rubber hardness of 72 ° provided on the outer circumference of the metal shaft 1 electrically connected to the terminal 11, and the load roll 8 has a weight of 500 gf at each end. The load is added. The terminal 11 is connected to the cathode of the DC constant power source 9,
A micro ammeter 10 with a built-in constant voltage source with a minimum resolution of 1 pA is inserted between them. The load roll 8 employs a system in which a weight is placed on the slide rail so that the semi-conductive rubber roll 2 is not affected by the outer diameter accuracy, runout, and the like.
【0012】コンピュータ13は、測定時に測定用ロー
ル7が所定の回転速度(本実施例では、0.1rpm)
で回転するように駆動回路15を制御する。また、測定
用ロール7の回転によって電極6が半導電性ゴムロール
2に接触した時に半導電性ゴムロール2に流れる電流を
微小電流計10から電流値信号として30μm毎に入力
して、図3に示すグラフを作成したり、以下に示す所定
の演算処理を行ってニップ幅Wを算出する。In the computer 13, the measuring roll 7 has a predetermined rotation speed (0.1 rpm in this embodiment) at the time of measurement.
The drive circuit 15 is controlled so as to rotate at. Further, the current flowing through the semiconductive rubber roll 2 when the electrode 6 comes into contact with the semiconductive rubber roll 2 due to the rotation of the measuring roll 7 is input as a current value signal from the minute ammeter 10 every 30 μm, and shown in FIG. The nip width W is calculated by creating a graph or performing the following predetermined arithmetic processing.
【0013】ここで、ニップ幅Wを算出する演算処理に
ついて図4、図5、図6を参照しながら説明する。The calculation process for calculating the nip width W will be described with reference to FIGS. 4, 5 and 6.
【0014】ニップ幅Wの算出は、電極6と金属シャフ
ト1間に流れる電流値と電極6のニップに対する位置を
リアルタイムで測定し、電流値が変化する電極位置を読
み取り、電気的な通電幅を測定することによって行う。
即ち、図3のグラフを模擬的に示す図4において、A点
は半導電性ゴムロール2のニップ部と電極6が接触を開
始する境界部で、電極6の先端がb位置(図5の(b))に
あることを示す。従って、A点以前の領域は、半導電性
ゴムロール2に測定用ロール7の絶縁体7Bが接してい
るため通電がなく、電流値は最小値を示す。また、電極
6の先端がA点を通過すると、徐々に接触幅が増えてこ
れに応じて電流値が上昇する(図5の(c)〜(e))。B点
は半導電性ゴムロール2のニップ部全てと電極6が接触
を開始する境界部で、電極6の先端がf位置(図5の
(f))にあることを示す。従って、B点以降の領域から電
流値は最大値を示す。C点は半導電性ゴムロール2のニ
ップ部全てと電極6が接触を終了する境界部で、電極6
の先端がu位置にあることを示す。電極6の先端がC点
を通過すると、徐々に接触幅が減少してこれに応じて電
流値が下降する(図6の(c)〜(e))。D点は半導電性ゴ
ムロール2のニップ部と電極6が接触を終了する境界部
で、電極6の先端がz位置(図6の(f))にあることを示
す。このような電流値と電極6の位置の関係から、点A
〜Dの位置と電極6の幅Tに基づいて以下の(1)〜(4)
の方法でニップ幅Wを算出する。 (1) 通電開始点Aと終了点Dから算出 W=A−D−T (2) 通電開始点Aと最大電流値到達点Bから算出 W=B−A (3) 最大電流値到達点Bと最大電流値終了点Cから算出 W=T−C−B (4) 最大電流値終了点Cと通電終了点Dから算出 W=D−CTo calculate the nip width W, the current value flowing between the electrode 6 and the metal shaft 1 and the position of the electrode 6 with respect to the nip are measured in real time, the electrode position where the current value changes is read, and the electrical energization width is calculated. By measuring.
That is, in FIG. 4 which schematically shows the graph of FIG. 3, point A is a boundary portion where the nip portion of the semi-conductive rubber roll 2 and the electrode 6 start contact, and the tip of the electrode 6 is at the position b (see FIG. b)). Therefore, in the region before the point A, since the semiconductive rubber roll 2 is in contact with the insulator 7B of the measuring roll 7, no current is passed and the current value shows the minimum value. When the tip of the electrode 6 passes through the point A, the contact width gradually increases and the current value accordingly increases ((c) to (e) in FIG. 5). Point B is a boundary portion where the entire nip portion of the semiconductive rubber roll 2 and the electrode 6 start contact, and the tip of the electrode 6 is at the f position (see FIG. 5).
(f)). Therefore, the current value shows the maximum value from the region after the point B. Point C is a boundary portion where the electrode 6 ends contact with the entire nip portion of the semiconductive rubber roll 2, and the electrode 6
Indicates that the tip of is at the u position. When the tip of the electrode 6 passes through the point C, the contact width gradually decreases and the current value accordingly decreases ((c) to (e) in FIG. 6). Point D is a boundary portion where the nip portion of the semiconductive rubber roll 2 and the electrode 6 finish contact, and the tip of the electrode 6 is at the z position ((f) in FIG. 6). From the relationship between the current value and the position of the electrode 6, the point A
Based on the position of ~ D and the width T of the electrode 6, the following (1) ~ (4)
The nip width W is calculated by the above method. (1) Calculated from energization start point A and end point D W = A−D−T (2) Calculated from energization start point A and maximum current value reaching point B W = B−A (3) Maximum current value reaching point B And calculated from the maximum current value end point C W = TC−B (4) Calculated from the maximum current value end point C and energization end point D W = D−C
【0015】以下、ニップ幅の測定方法について説明す
る。まず、ゴム硬度72°、外径14mmの半導電性ゴ
ムロール2を準備し、荷重ロール8で金属シャフト1の
両端にそれぞれ500gfの荷重力を付加して、半導電
性ゴムロール2を測定用ロール7に接触させる。The method of measuring the nip width will be described below. First, a semiconductive rubber roll 2 having a rubber hardness of 72 ° and an outer diameter of 14 mm is prepared, and a load force of 500 gf is applied to both ends of the metal shaft 1 by the load roll 8 to set the semiconductive rubber roll 2 to the measurement roll 7 Contact.
【0016】次に、直流定電源9から金属シャフト1と
電極6の間に100Vの電圧を印加し、コンピュータ1
3で駆動回路15を制御して測定用ロール7を0.1r
pmの回転速度で回転させる。Next, a voltage of 100 V is applied between the metal shaft 1 and the electrode 6 from the direct current constant power source 9, and the computer 1
3 controls the drive circuit 15 to move the measuring roll 7 to 0.1 r.
Rotate at a rotation speed of pm.
【0017】このように金属シャフト1と電極6の間に
電圧が印加された状態で測定用ロール7が回転すると、
半導電性ゴムロール2に測定用ロール7の電極16が接
触した時、ニップ間に電流が流れる。コンピュータ13
は微小電流計10の電流値の変位量を30μm毎に入力
して、図3に示すグラフを作成し、図4に示す電極位置
と通電量の関係に基づいて前述した演算を行って、半導
電性ゴムロール2と測定用ロール7のニップ幅Wを算出
する。When the measuring roll 7 rotates with the voltage applied between the metal shaft 1 and the electrode 6 as described above,
When the electrode 16 of the measuring roll 7 comes into contact with the semiconductive rubber roll 2, a current flows between the nips. Computer 13
Input the amount of displacement of the current value of the micro ammeter 10 every 30 μm, create the graph shown in FIG. 3, and perform the above-mentioned calculation based on the relationship between the electrode position and the energization amount shown in FIG. The nip width W between the conductive rubber roll 2 and the measuring roll 7 is calculated.
【0018】図7には、このような測定方法で、外径と
硬度を異ならせたサンプルA〜C、及びヘルツの法則式
で得た外径14mmのサンプルDの線荷重とニップ幅の
関係が示されている。これから判るように、ヘルツの法
則式では外径をパラメータとする1つの測定結果しか得
られないが、本実施例のように測定すると、ヤング率の
変動を考慮した測定結果が得られる。FIG. 7 shows the relationship between the linear load and the nip width of the samples A to C having different outer diameters and hardnesses and the sample D having an outer diameter of 14 mm obtained by the Hertz's law by such a measuring method. It is shown. As can be seen from the above, the Hertz's law formula gives only one measurement result with the outer diameter as a parameter, but the measurement as in this example gives a measurement result considering the fluctuation of the Young's modulus.
【0019】図8は、本発明の第2の実施例を示し、測
定用ロール7をA4サイズとし、且つ、軸方向に所定の
間隔で複数の電極6A、6B、6Cを段違いに設けてい
る。図9には、その断面図が示されており、電極6A〜
6Cが貫通導体16を介して反対側の端子17A〜17
Cに接続され、各々に直流定電源9に接続されたリード
線17a〜17cが取り付けられている。FIG. 8 shows a second embodiment of the present invention in which the measuring roll 7 is of A4 size, and a plurality of electrodes 6A, 6B, 6C are provided at different intervals in the axial direction. . FIG. 9 shows a sectional view of the electrodes 6A to 6A.
6C has terminals 17A to 17 on the opposite side through the through conductor 16.
Lead wires 17a to 17c which are connected to C and are connected to the DC constant power source 9 are attached to each.
【0020】このような測定用ロール7を第1の実施例
に用いると、軸方向の複数箇所でニップ幅を測定するこ
とができる。図10は、その測定結果の一例を示し、こ
れから軸方向における両端のニップ幅が大で、中心のニ
ップ幅が小になっていることが判る。When such a measuring roll 7 is used in the first embodiment, the nip width can be measured at a plurality of positions in the axial direction. FIG. 10 shows an example of the measurement result, and it can be seen from this that the nip width at both ends in the axial direction is large and the nip width at the center is small.
【0021】図11は、本発明の第3の実施例を示す。
この実施例のニップ幅の測定装置は、半導電性ゴムロー
ル2のロール面と測定用金属シャフト18を接触させ、
測定用ロール7の電極6と測定用金属シャフト18の間
に微小電流計9、直流定電源10を挿入して構成されて
おり、半導電性ゴムロール2と金属シャフト1の間に接
着層5が介在して、電気的に絶縁されている場合、測定
用金属シャフト18から半導電性ゴムロールに流れる電
流を検出することができる。FIG. 11 shows a third embodiment of the present invention.
In the nip width measuring device of this embodiment, the roll surface of the semiconductive rubber roll 2 is brought into contact with the measuring metal shaft 18,
A micro ammeter 9 and a constant DC power source 10 are inserted between the electrode 6 of the measuring roll 7 and the measuring metal shaft 18, and an adhesive layer 5 is provided between the semiconductive rubber roll 2 and the metallic shaft 1. When interposed and electrically insulated, the current flowing from the measurement metal shaft 18 to the semiconductive rubber roll can be detected.
【0022】なお、本発明は放電が発生しない程度の電
圧を印加して電流値の変化によりニップ幅を測定した
が、本方式で従来の技術の欄で説明したような放電幅の
測定も併せて行うことも可能である。図12には、本方
式によって測定した2種類のニップ幅と測定電圧の関係
が示されており、本方式による測定でも測定電圧が高く
なるに従い、被測定物と電極間に放電が生じ、測定値が
大きくなっている。その大きさはパッシェンの法則に従
い大きくなっていることから放電幅の測定が可能とな
る。In the present invention, the nip width was measured by changing the current value by applying a voltage to the extent that no discharge was generated, but the measurement of the discharge width as described in the section of the prior art in this method is also included. It is also possible to do so. FIG. 12 shows the relationship between the two types of nip widths measured by this method and the measured voltage. Even with the measurement by this method, as the measured voltage becomes higher, discharge occurs between the DUT and the electrode, and The value is large. Since the size increases according to Paschen's law, the discharge width can be measured.
【0023】[0023]
【発明の効果】以上説明した通り、本発明のニップ幅の
測定装置によると、導電性、或いは半導電性の第1のロ
ールに接触する第2のロールと同一のサイズを有すると
共に、高抵抗領域とニップ幅より大きい長さを有した低
抵抗領域より成る測定用ロールを第2のロールに代えて
第1のロールと接触させ、第1のロールと測定用ロール
の低抵抗領域の間に所定の電圧を印加した状態で第1の
ロール、及び測定用ロールを所定の相対速度で回転さ
せ、第1のロールと測定用ロールの低抵抗領域との接触
面積の変化に応じて変化する第1のロール、及び測定用
ロールのニップ間の電流値に応じてニップ幅を算出する
ようにしたため、被測定物の破壊を防ぐと共に、測定精
度と作業性の向上、及び測定時間の短縮化を図ることが
できる。As described above, according to the nip width measuring device of the present invention, the nip width measuring device has the same size as the second roll contacting the conductive or semi-conductive first roll, and has a high resistance. A measuring roll comprising a low resistance region having a length larger than the region and the nip width is contacted with the first roll instead of the second roll, and between the first roll and the low resistance region of the measuring roll. The first roll and the measurement roll are rotated at a predetermined relative speed in a state where a predetermined voltage is applied, and the first roll and the measurement roll change in accordance with a change in the contact area between the low resistance region of the measurement roll and the first roll. Since the nip width is calculated according to the current value between the nip of the roll of No. 1 and the roll for measurement, destruction of the object to be measured is prevented, measurement accuracy and workability are improved, and measurement time is shortened. Can be planned.
【図1】本発明の一実施例を示す説明図。FIG. 1 is an explanatory diagram showing an embodiment of the present invention.
【図2】本発明の一実施例を示す説明図。FIG. 2 is an explanatory diagram showing an embodiment of the present invention.
【図3】一実施例に係る電極の位置と電流値の関係を表
すグラフ。FIG. 3 is a graph showing a relationship between an electrode position and a current value according to an example.
【図4】図3を模擬的に表すグラフ。FIG. 4 is a graph that schematically represents FIG.
【図5】一実施例に係る電極の位置のニップ部の関係を
示す説明図。FIG. 5 is an explanatory diagram showing a relationship of nip portions at electrode positions according to an embodiment.
【図6】一実施例に係る電極の位置のニップ部の関係を
示す説明図。FIG. 6 is an explanatory diagram showing the relationship of the positions of the electrodes and the nip portion according to the embodiment.
【図7】外径と硬度を異ならせた場合の線荷重とニップ
幅の関係を表すグラフ。FIG. 7 is a graph showing the relationship between the line load and the nip width when the outer diameter and hardness are different.
【図8】本発明の第2の実施例に係る測定用ロールを示
す説明図。FIG. 8 is an explanatory view showing a measuring roll according to a second embodiment of the present invention.
【図9】本発明の第2の実施例に係る測定用ロールを示
す説明図。FIG. 9 is an explanatory view showing a measuring roll according to a second embodiment of the present invention.
【図10】第2の実施例に係る軸方向の複数の位置にお
けるニップ幅を示すグラフ。FIG. 10 is a graph showing nip widths at a plurality of axial positions according to the second embodiment.
【図11】本発明の第3の実施例を示す説明図。FIG. 11 is an explanatory diagram showing a third embodiment of the present invention.
【図12】測定電圧とニップ幅の関係を表すグラフ。FIG. 12 is a graph showing the relationship between measured voltage and nip width.
【図13】半導電性ゴムロールと感光体ドラムのニップ
幅を示す説明図。FIG. 13 is an explanatory diagram showing a nip width between a semiconductive rubber roll and a photosensitive drum.
【図14】従来のニップ幅の測定方法を示す説明図。FIG. 14 is an explanatory diagram showing a conventional nip width measuring method.
【図15】従来のニップ幅の測定方法を示す説明図。FIG. 15 is an explanatory diagram showing a conventional nip width measuring method.
【図16】外径と硬度を異ならせた場合の線荷重と変位
量の関係を表すグラフ。FIG. 16 is a graph showing the relationship between the linear load and the displacement amount when the outer diameter and hardness are different.
1 金属シャフト 2 半導電性ゴムロール 3 感光体ドラム 4 電源 5 接着層 6 電極 7 測定用ロール 7A 金属シャフト 7B 絶縁体 8 荷重ロール 9 直流定電源 10 微小電流計 11 端子 12 絶縁ブロック 13 コンピュータ 13A 表示部 14 モータ 15 駆動回路 16 貫通導体 17A〜17C 端子 17a〜17c リード線 18 測定用金属シャフト 1 Metal Shaft 2 Semi-Conductive Rubber Roll 3 Photosensitive Drum 4 Power Supply 5 Adhesive Layer 6 Electrode 7 Measurement Roll 7A Metal Shaft 7B Insulator 8 Load Roll 9 DC Constant Power 10 Micro Ammeter 11 Terminal 12 Insulation Block 13 Computer 13A Display 14 motor 15 drive circuit 16 through conductor 17A to 17C terminal 17a to 17c lead wire 18 metal shaft for measurement
Claims (1)
とこれに接触する第2のロール間に形成されるニップ部
のニップ幅を測定するニップ幅の測定装置において、 前記第2のロールと同一のサイズを有すると共に、前記
第2のロールに代えて前記第1のロールと接触し、高抵
抗領域と前記ニップ幅より大きい長さを有した低抵抗領
域より成る測定用ロールと、 前記第1のロールと前記測定用ロールの前記低抵抗領域
の間に所定の電圧を印加する電圧印加手段と、 前記第1のロール、及び前記測定用ロールを所定の相対
速度で回転させる回転駆動手段と、 前記相対速度の回転によって前記第1のロールと前記測
定用ロールの前記低抵抗領域との接触面積の変化に応じ
て変化する前記第1のロール、及び前記測定用ロールの
ニップ間の電流を検出する電流検出手段と、 前記電流値に応じて前記ニップ幅を算出するニップ幅算
出手段を備えていることを特徴とするニップ幅の測定装
置。1. A nip width measuring device for measuring a nip width of a nip portion formed between a conductive or semi-conductive first roll and a second roll in contact with the first roll. A measuring roll that has the same size as the roll and that is in contact with the first roll instead of the second roll and that has a high resistance region and a low resistance region having a length larger than the nip width. Voltage applying means for applying a predetermined voltage between the low resistance regions of the first roll and the measuring roll, and rotational drive for rotating the first roll and the measuring roll at a predetermined relative speed. Means, between the nip of the first roll and the measurement roll, which changes according to a change in contact area between the first roll and the low resistance region of the measurement roll by rotation of the relative speed. Current Current detection means for output, the measuring apparatus of the nip width, characterized in that it comprises a nip width calculation means for calculating the nip width according to the current value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10265795A JPH08297005A (en) | 1995-04-26 | 1995-04-26 | Apparatus for measuring nip width |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10265795A JPH08297005A (en) | 1995-04-26 | 1995-04-26 | Apparatus for measuring nip width |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08297005A true JPH08297005A (en) | 1996-11-12 |
Family
ID=14333309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10265795A Pending JPH08297005A (en) | 1995-04-26 | 1995-04-26 | Apparatus for measuring nip width |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08297005A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010198016A (en) * | 2009-02-24 | 2010-09-09 | Xerox Corp | Method and apparatus for automatically adjusting nip width in image output device by scanning nip print image generated on ultraviolet sensitive medium |
US7840148B2 (en) | 2006-02-22 | 2010-11-23 | Konica Minolta Business Technologies, Inc. | Image forming apparatus and method for detecting separated state of transfer member |
-
1995
- 1995-04-26 JP JP10265795A patent/JPH08297005A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7840148B2 (en) | 2006-02-22 | 2010-11-23 | Konica Minolta Business Technologies, Inc. | Image forming apparatus and method for detecting separated state of transfer member |
JP2010198016A (en) * | 2009-02-24 | 2010-09-09 | Xerox Corp | Method and apparatus for automatically adjusting nip width in image output device by scanning nip print image generated on ultraviolet sensitive medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0330820A1 (en) | Brush contact type charging unit for an image forming apparatus | |
JPH05508708A (en) | pinhole detector | |
JPH08297005A (en) | Apparatus for measuring nip width | |
JP4128232B2 (en) | Method and apparatus for measuring electrical properties of electrophotographic media | |
US20050095025A1 (en) | Method of measuring resistance of a transfer roller | |
CN211696232U (en) | Film thickness detection device | |
JP2994676B2 (en) | Charging member and charging device having charging member | |
JP3312398B2 (en) | Method and apparatus for continuous measurement of volume resistance | |
JPS63236937A (en) | Method for measuring contact pressure | |
JPS62121344A (en) | Defect detection device | |
JP2980998B2 (en) | Image forming device | |
JP3145159B2 (en) | Roll nip pressure measurement method, test specimen for the measurement, and nip roll using the same | |
JP2001209237A (en) | Contact type electrifying device and transfer device | |
JP2000146920A (en) | Pin hole inspecting device | |
JP3105858B2 (en) | Printer device | |
JPS6353470A (en) | Measurement of specific resistance of resistor | |
JPH07260846A (en) | Method and apparatus for measuring electric resistance of resistor | |
JP2992183B2 (en) | Corona discharge device | |
JP4057448B2 (en) | Electrophotographic photoreceptor test equipment | |
JPH01472A (en) | Brush charger inspection device | |
KR20220126602A (en) | Driving circuit of multiple gas-in-oil detection device | |
JPH07319296A (en) | Transfer belt device | |
JP3551207B2 (en) | Contact transfer device | |
JP2814799B2 (en) | Contact charging device | |
JP2004045109A (en) | Method and apparatus for measuring electric resistance of thin film and inspection device for fixing roller |