[go: up one dir, main page]

JPH08296648A - Bearing device and its starting method - Google Patents

Bearing device and its starting method

Info

Publication number
JPH08296648A
JPH08296648A JP7101839A JP10183995A JPH08296648A JP H08296648 A JPH08296648 A JP H08296648A JP 7101839 A JP7101839 A JP 7101839A JP 10183995 A JP10183995 A JP 10183995A JP H08296648 A JPH08296648 A JP H08296648A
Authority
JP
Japan
Prior art keywords
bearing
rotating body
magnetic
permanent magnet
upward
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7101839A
Other languages
Japanese (ja)
Other versions
JP3665878B2 (en
Inventor
Ryoichi Takahata
良一 高畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP10183995A priority Critical patent/JP3665878B2/en
Publication of JPH08296648A publication Critical patent/JPH08296648A/en
Application granted granted Critical
Publication of JP3665878B2 publication Critical patent/JP3665878B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0476Active magnetic bearings for rotary movement with active support of one degree of freedom, e.g. axial magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/041Passive magnetic bearings with permanent magnets on one part attracting the other part
    • F16C32/0417Passive magnetic bearings with permanent magnets on one part attracting the other part for axial load mainly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/40Application independent of particular apparatuses related to environment, i.e. operating conditions
    • F16C2300/62Application independent of particular apparatuses related to environment, i.e. operating conditions low pressure, e.g. elements operating under vacuum conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/55Flywheel systems

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE: To support a rotary body of larger weight by improving the load capacity in the axial direction. CONSTITUTION: A bearing device is provided with a vacuum chamber 1 and a rotary body 2 which is rotated around the vertical axis. The vacuum chamber 1 has the downwardly directed surface and the upwardly directed surface, and the rotary body 2 has the upwardly directed surface opposite to the downwardly directed surface of the vacuum chamber 1 and the downwardly directed surface opposite to the upwardly directed surface of the vacuum chamber 1. A control type axial magnetic bearing 9 to energize the rotary body 2 upward by the attraction is provided between the downwardly directed surface of the vacuum chamber 1 and the upwardly directed surface of the rotary body 2. The control type axial magnetic bearing 9 is provided with an electromagnet 16 on the vacuum chamber 1 side and a ferromagnetic body 20 on the rotary body 2 side. A super-conductive bearing 11 to energize the rotary body 2 upwardly by the repulsion is provided between the upwardly directed surface of the vacuum chamber 1 and the downwardly directed surface of the rotary body 2. The super-conductive bearing 11 consists of a vertically movable super-conductive body part 33 on the vacuum chamber 1 side, and a permanent magnet part 32 on the rotary body 2 side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、たとえば高速回転を
必要とする流体機械や工作機械、余剰電力をフライホイ
ールの回転運動エネルギに変換して貯蔵する電力貯蔵装
置、またはジャイロスコープなどに適用される軸受装置
に関し、とくに固定部と、垂直軸を中心に回転する回転
体と、回転体を固定部に対してアキシアル方向に非接触
支持する軸受手段と、回転体を固定部に対してラジアル
方向に非接触支持する軸受手段とを備えた軸受装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to, for example, a fluid machine or a machine tool requiring high-speed rotation, an electric power storage device for converting surplus electric power into rotational kinetic energy of a flywheel and storing it, or a gyroscope. In particular, a fixed part, a rotating body that rotates about a vertical axis, a bearing means that supports the rotating body in a non-contact manner with respect to the fixed part in the axial direction, and a rotating body in the radial direction with respect to the fixed part. To a bearing device which is supported in a non-contact manner.

【0002】[0002]

【従来の技術】従来、この種軸受装置として、回転体に
同心状にかつ固定状に設けられた永久磁石と、永久磁石
の端面に対して回転体の回転軸心方向に間隔をおいて対
向するように固定部に配置された第2種超電導体とより
なり、かつ永久磁石が、回転軸心のまわりの磁束分布が
回転によって変化しないように配置されるとともに、第
2種超電導体が、永久磁石の磁束が所定量侵入する離隔
位置に配置されている超電導軸受を備えており、固定部
と回転体との間に、第2種超電導体に永久磁石の磁束が
ピン止めされて回転体が回転作動するまでの固定部と回
転体との相対位置を決定するための初期位置決め装置が
設けられている超電導軸受装置が考えられている。
2. Description of the Related Art Conventionally, as a bearing device of this type, a permanent magnet concentrically and fixedly provided on a rotating body and an end surface of the permanent magnet are opposed to each other with a gap in the direction of the rotation axis of the rotating body. And the permanent magnet is arranged such that the magnetic flux distribution around the rotation axis does not change due to rotation, and the second type superconductor is It is provided with a superconducting bearing arranged in a separated position where the magnetic flux of the permanent magnet penetrates by a predetermined amount, and the magnetic flux of the permanent magnet is pinned to the second-type superconductor between the fixed portion and the rotating body. A superconducting bearing device has been considered which is provided with an initial positioning device for determining the relative position of the fixed part and the rotating body until the rotary operation of the.

【0003】この超電導軸受装置は次のようにして始動
させられる。すなわち、第2種超電導体の臨界温度以上
の温度において、初期位置決め装置により固定部と回転
体との相対位置を決定し、これにより第2種超電導体
を、永久磁石の磁束が所定量侵入する離隔位置に配置し
て第2種超電導体を永久磁石の磁場により磁化する。つ
いで、第2種超電導体を臨界温度以下の温度に冷却し
て、第2種超電導状態が出現する温度に保持し、第2種
超電導体に侵入した磁束をピン止めする。ついで、初期
位置決め装置による回転体の支持をなくし、回転体を、
その重量と超電導軸受のピン止めと釣り合う位置に停止
させ安定化させる。こうして、超電導軸受装置が始動さ
せられる。
This superconducting bearing device is started as follows. That is, at a temperature equal to or higher than the critical temperature of the second type superconductor, the relative position between the fixed portion and the rotating body is determined by the initial positioning device, and thus the magnetic flux of the permanent magnet enters the second type superconductor by a predetermined amount. The second type superconductor is arranged at a separated position and magnetized by the magnetic field of the permanent magnet. Then, the second-type superconductor is cooled to a temperature below the critical temperature and maintained at a temperature at which the second-type superconducting state appears, and the magnetic flux penetrating the second-type superconductor is pinned. Then, eliminating the support of the rotating body by the initial positioning device,
Stabilize by stopping at a position that balances the weight and pinning of the superconducting bearing. In this way, the superconducting bearing device is started.

【0004】この超電導軸受装置では、永久磁石から発
生する磁束を、臨界温度以上の温度で超電導体の内部に
侵入させた後、超電導体を臨界温度以下の温度に冷却
(磁場冷却)して拘束し、その結果、いわゆるピン止め
力により、固定部に対して回転体をアキシアル方向およ
びラジアル方向に非接触状態で支持するようになってい
る。
In this superconducting bearing device, the magnetic flux generated from the permanent magnet is allowed to enter the inside of the superconductor at a temperature higher than the critical temperature, and then the superconductor is cooled to a temperature lower than the critical temperature (magnetic field cooling) and restrained. As a result, the so-called pinning force supports the rotating body in a non-contact state with respect to the fixed portion in the axial direction and the radial direction.

【0005】[0005]

【発明が解決しようとする課題】上記の超電導軸受装置
では、超電導体に拘束された磁束のピン止め力によって
回転体をアキシアル方向およびラジアル方向に支持でき
るが、とくにアキシアル方向(重力方向)の支持力(負
荷容量)には限界があり、重量の大きい回転体を支持す
ることはできないという問題がある。たとえば、電力貯
蔵装置においては、電力貯蔵効率を向上させるためにフ
ライホイールを大型化する必要があるが、このような場
合に回転体の重量を支持することができないという問題
がある。
In the above superconducting bearing device, the rotating body can be supported in the axial direction and the radial direction by the pinning force of the magnetic flux restrained by the superconductor, but especially in the axial direction (gravitational direction). The force (load capacity) has a limit, and there is a problem that it cannot support a heavy rotating body. For example, in a power storage device, it is necessary to increase the size of a flywheel in order to improve power storage efficiency, but in such a case, there is a problem that the weight of the rotating body cannot be supported.

【0006】この発明の目的は、上記問題を解決し、ア
キシアル方向の負荷容量を向上させることができる軸受
装置を提供することにある。
An object of the present invention is to solve the above problems and to provide a bearing device capable of improving the load capacity in the axial direction.

【0007】[0007]

【課題を解決するための手段】第1の発明の軸受装置
は、固定部と、垂直軸を中心に回転する回転体と、回転
体を固定部に対してアキシアル方向に非接触支持する軸
受手段と、回転体を固定部に対してラジアル方向に非接
触支持する軸受手段とを備えた軸受装置であって、固定
部が下向き面および上向き面を有するとともに、回転体
が固定部の下向き面に対向する上向き面および固定部の
上向き面に対向する下向き面を有しており、回転体を固
定部に対してアキシアル方向に非接触支持する軸受手段
が、固定部の下向き面と回転体の上向き面との間に設け
られかつ吸引力により回転体を上向きに付勢する制御型
磁気軸受と、固定部の上向き面と回転体の下向き面との
間に設けられかつ反発力により回転体を上向きに付勢す
る磁力利用軸受とよりなり、制御型磁気軸受が、固定部
に設けられた電磁石および回転体に設けられた強磁性体
を備えており、磁力利用軸受が、固定部に設けられた軸
受構成体および回転体に設けられた軸受構成体からな
り、かつ固定部側の軸受構成体が上下動するようになさ
れているものである。
A bearing device according to a first aspect of the present invention comprises a fixed portion, a rotating body which rotates about a vertical axis, and bearing means which supports the rotating body in a non-contact manner with respect to the fixed portion in the axial direction. And a bearing means for supporting the rotating body in a radial direction in a non-contact manner with respect to the fixed portion, wherein the fixed portion has a downward surface and an upward surface, and the rotating body is provided on the downward surface of the fixed portion. The bearing means, which has an upward facing surface and a downward facing surface facing the upward facing surface of the fixed portion, supports the rotating body in a non-contact axial direction with respect to the fixed portion. Between the control surface and the control type magnetic bearing that is provided between the upper surface of the fixed portion and the lower surface of the rotating body and that moves the rotating body upward by the repulsive force. It is called a bearing that uses magnetic force The control type magnetic bearing includes an electromagnet provided in the fixed portion and a ferromagnetic body provided in the rotating body, and the magnetic force utilizing bearing is provided in the bearing structure body and the rotating body provided in the fixed portion. The bearing structure on the fixed part side is configured to move up and down.

【0008】上記軸受装置において、固定部の下向き面
と回転体の上向き面との間に、さらに吸引力により回転
体を上向きに付勢する永久磁石軸受が設けられているこ
とがある。
In the above bearing device, a permanent magnet bearing may be provided between the downward surface of the fixed portion and the upward surface of the rotating body to further urge the rotating body upward by a suction force.

【0009】第2の発明の軸受装置の始動方法は、第1
の発明の軸受装置を始動する方法であって、磁力利用軸
受の固定部側の軸受構成体を下降させておくこと、制御
型磁気軸受の電磁石に通電し、制御型磁気軸受の電磁石
からの吸引力により強磁性体を上向きに付勢すること、
磁力利用軸受の固定部側の軸受構成体を上昇させ、この
軸受構成体からの反発力により回転体側の軸受構成体を
上向きに付勢すること、ならびに上記吸引力および反発
力により回転体をアキシアル方向に非接触支持すること
を含むものである。
The starting method of the bearing device according to the second invention is the first method.
The method for starting the bearing device according to claim 1, wherein the bearing structure on the fixed portion side of the magnetic force utilizing bearing is lowered, and the electromagnet of the control type magnetic bearing is energized to be attracted from the electromagnet of the control type magnetic bearing. Biasing the ferromagnet upwards by force,
The bearing structure on the fixed part side of the bearing utilizing magnetic force is raised, and the bearing structure on the rotor side is biased upward by the repulsive force from this bearing structure, and the rotor is axially driven by the attraction force and repulsive force. It includes non-contact support in the direction.

【0010】[0010]

【作用】第1の発明の軸受装置によれば、制御型磁気軸
受における電磁石からの磁気吸引力は、従来の超電導軸
受装置の超電導軸受において、上記磁場冷却時のピン止
め力により、固定部に対して回転体をアキシアル方向に
非接触状態で支持する力よりも大きくなる。しかも、回
転体の重量は、磁力利用軸受の両軸受構成体間の磁気反
発力によっても回転体の重量の一部が支持される。した
がって、アキシアル方向の負荷容量が向上する。
According to the bearing device of the first invention, the magnetic attraction force from the electromagnet in the control type magnetic bearing is applied to the fixed portion by the pinning force during the magnetic field cooling in the superconducting bearing of the conventional superconducting bearing device. On the other hand, the force is larger than the force for supporting the rotating body in the axial direction in a non-contact state. Moreover, part of the weight of the rotating body is supported by the magnetic repulsive force between the two bearing components of the magnetic force bearing. Therefore, the load capacity in the axial direction is improved.

【0011】また、第1の発明の軸受装置は、第2の発
明の始動方法によって始動させられるが、これにより制
御型磁気軸受の電磁石と強磁性体との間隔を、電磁石か
ら強磁性体に作用する吸引力が大きくなるような間隔に
することができるとともに、磁力利用軸受の両軸受構成
体間の間隔を、両軸受構成体間に作用する反発力が大き
くなるような間隔にすることができる。したがって、上
記吸引力および反発力を効果的に使用することになり、
その結果アキシアル方向の負荷容量が向上する。
Further, the bearing device of the first invention is started by the starting method of the second invention, whereby the distance between the electromagnet and the ferromagnetic material of the control type magnetic bearing is changed from the electromagnet to the ferromagnetic material. The distance between the two bearing components of the magnetic force-assisted bearing can be increased so that the suction force acting on the bearing can be increased, and the repulsive force acting between the bearing components can be increased. it can. Therefore, the suction force and the repulsion force are effectively used,
As a result, the load capacity in the axial direction is improved.

【0012】第1の発明の軸受装置において、固定部の
下向き面と回転体の上向き面との間に、さらに吸引力に
より回転体を上向きに付勢する永久磁石軸受が設けられ
ていると、この永久磁石軸受の吸引力によっても回転体
の重量の一部が支持されるので、アキシアル方向の負荷
容量が向上する。また、永久磁石軸受の吸引力によって
も回転体の重量の一部が支持されると、制御型磁気軸受
の電磁石に流す電流を小さくすることができるので、う
ず電流損を減少させることができる。
In the bearing device according to the first aspect of the present invention, if a permanent magnet bearing is provided between the downward surface of the fixed portion and the upward surface of the rotating body to further urge the rotating body upward by a suction force, A part of the weight of the rotating body is also supported by the attraction force of the permanent magnet bearing, so that the load capacity in the axial direction is improved. Further, if a part of the weight of the rotating body is supported by the attraction force of the permanent magnet bearing, the current flowing through the electromagnet of the control type magnetic bearing can be reduced, so that the eddy current loss can be reduced.

【0013】[0013]

【実施例】以下、この発明の実施例を、図面を参照して
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】図1および図2は軸受装置を適用した電力
貯蔵装置の全体構成を概略的に示し、図1は停止状態、
図2は作動状態である。
FIG. 1 and FIG. 2 schematically show the whole structure of an electric power storage device to which a bearing device is applied.
FIG. 2 shows the operating state.

【0015】図1および図2において、電力貯蔵装置
は、真空チャンバ(固定部)(1) と、真空チャンバ(1)
内にアキシアル方向およびラジアル方向の移動ならびに
回転ができるように配置された回転体(2) とを備えてい
る。
1 and 2, a power storage device includes a vacuum chamber (fixed portion) (1) and a vacuum chamber (1).
And a rotating body (2) arranged so as to be able to move and rotate in the axial and radial directions.

【0016】回転体(2) は、アルミニウム合金、非磁性
ステンレス鋼、銅合金などの非磁性体により形成された
ものであり、垂直な回転軸(3) と、回転軸(3) の上端に
一体に形成されたフライホイール(4) とよりなる。フラ
イホイール(4) の外周に、CFRP(複合繊維強化プラ
スチック)製の環状補強部材(5) が圧入固定されてい
る。
The rotating body (2) is made of a non-magnetic material such as aluminum alloy, non-magnetic stainless steel, copper alloy, etc., and is provided on the vertical rotating shaft (3) and the upper end of the rotating shaft (3). It consists of an integrally formed flywheel (4). An annular reinforcing member (5) made of CFRP (composite fiber reinforced plastic) is press-fitted and fixed to the outer periphery of the flywheel (4).

【0017】回転体(2) は、高周波電動機(6) で回転さ
せられるようになっている。高周波電動機(6) は、回転
体(2) の回転軸(3) に取付けられたロータ(7) と、ロー
タ(7) の周囲において真空チャンバ(1) の周壁(1a)に取
付けられたステータ(8) とよりなる。
The rotating body (2) can be rotated by a high frequency electric motor (6). The high-frequency motor (6) consists of a rotor (7) mounted on the rotating shaft (3) of the rotating body (2) and a stator mounted on the peripheral wall (1a) of the vacuum chamber (1) around the rotor (7). It consists of (8).

【0018】真空チャンバ(1) の頂壁(1b)下面(下向き
面)と回転体(2) のフライホイール(4) 上面(上向き
面)とが対向し、真空チャンバ(1) の底壁(1c)上面(上
向き面)と回転体(2) の回転軸(3) 下面(下向き面)と
が対向している。
The lower surface (downward surface) of the top wall (1b) of the vacuum chamber (1) and the upper surface (upward surface) of the flywheel (4) of the rotating body (2) face each other, and the bottom wall of the vacuum chamber (1) ( 1c) The upper surface (upward surface) and the rotating shaft (3) lower surface (downward surface) of the rotating body (2) face each other.

【0019】真空チャンバ(1) の頂壁(1b)下面と回転体
(2) のフライホイール(4) 上面との間に制御型アキシア
ル磁気軸受(9) が設けられ、同じく真空チャンバ(1) の
頂壁(1b)下面と回転体(2) のフライホイール(4) 上面と
の間に、磁気吸引力により回転体(2) を上向きに付勢す
る永久磁石軸受(10)が設けられ、回転体(2) の回転軸
(3) の下面と真空チャンバ(1) の底壁(1c)上面との間に
磁気反発力により回転体(2) を上向きに付勢する超電導
軸受(磁力利用軸受)(11)が設けられ、回転体(2) の回
転軸(3) の周面と真空チャンバ(1) の周壁(1a)内周面と
の間に、回転体(2) の互いに直交する2つのラジアル方
向の位置を制御する上下2組の制御型ラジアル磁気軸受
(12)(13)が設けられている。
Lower surface of top wall (1b) of vacuum chamber (1) and rotating body
A controlled axial magnetic bearing (9) is provided between the flywheel (4) and the upper surface of the flywheel (4), and the lower surface of the top wall (1b) of the vacuum chamber (1) and the flywheel (4) of the rotating body (2) are also provided. ) A permanent magnet bearing (10) that biases the rotating body (2) upward by magnetic attraction is provided between the upper surface and the upper surface.
A superconducting bearing (bearing using magnetic force) (11) is provided between the lower surface of (3) and the upper surface of the bottom wall (1c) of the vacuum chamber (1) to urge the rotating body (2) upward by magnetic repulsive force. , Between the peripheral surface of the rotating shaft (3) of the rotating body (2) and the inner peripheral surface of the peripheral wall (1a) of the vacuum chamber (1), two radial positions of the rotating body (2) orthogonal to each other are set. Two sets of controlled radial magnetic bearings to control
(12) and (13) are provided.

【0020】制御型アキシアル磁気軸受(9) は、真空チ
ャンバ(1) の頂壁(1b)の下面に回転軸心(A) と同心状に
取付けられかつ回転体(2) をアキシアル方向(Z軸方
向)の上側から吸引して同方向の回転体(2) の位置を制
御するための環状電磁石部(14)と、電磁石部(14)に対し
て上下方向に対向するように、回転体(2) のフライホイ
ール(4) の上面に設けられた環状強磁性体部(15)とを備
えている。電磁石部(14)は、環状電磁石(16)と、電磁石
(16)の内周面、上面、外周面および下面の外周側部分を
覆うヨーク部材(17)とよりなる。ヨーク部材(17)の両側
縁部にそれぞれ環状の下方突出部(17a) が一体に形成さ
れている。フライホイール(4) の上面に固定されたアル
ミニウム合金、非磁性ステンレス鋼、銅合金などの非磁
性体からなる円板状の回転部材(18)の上面に環状凹溝(1
9)が回転軸心(A) と同心状に形成され、環状凹溝(19)内
に環状強磁性体(20)が嵌められて固定されることによ
り、強磁性体部(15)が構成されている。強磁性体(20)の
上面には、ヨーク部材(17)の2つの下方突出部(17a) と
対向するように、2つの環状上方突出部(20a) が一体に
形成されている。なお、図示は省略したが、アキシアル
磁気軸受(9) は、回転体(2) のZ軸方向の変位を検出す
るための変位センサを備えており、電磁石(16)および変
位センサが図示しない磁気軸受制御装置に接続されてい
る。そして、磁気軸受制御装置により、変位センサの出
力に基いて電磁石(16)の電流値すなわち吸引力が制御さ
れ、その結果回転体(2) のアキシアル方向の位置が制御
されるようになっている。なお、アキシアル磁気軸受
(9) およびその制御装置は公知のものであるから、詳細
な説明は省略する。
The control type axial magnetic bearing (9) is mounted on the lower surface of the top wall (1b) of the vacuum chamber (1) concentrically with the rotating shaft center (A) and the rotating body (2) in the axial direction (Z). The ring-shaped electromagnet part (14) for controlling the position of the rotating body (2) by suction from the upper side in the (axial direction) and the rotating body so as to face the electromagnet part (14) in the vertical direction. The flywheel (4) of (2) is provided with an annular ferromagnetic body portion (15) provided on the upper surface. The electromagnet section (14) includes an annular electromagnet (16) and an electromagnet.
The yoke member (17) covers the inner peripheral surface, the upper surface, the outer peripheral surface, and the outer peripheral portion of the lower surface of (16). Annular downward projections (17a) are integrally formed on both side edges of the yoke member (17). An annular groove (1) is attached to the upper surface of a disk-shaped rotating member (18) made of a non-magnetic material such as aluminum alloy, non-magnetic stainless steel, or copper alloy fixed to the upper surface of the flywheel (4).
9) is formed concentrically with the rotation axis (A), and the annular ferromagnetic body (20) is fitted and fixed in the annular groove (19) to form the ferromagnetic body portion (15). Has been done. On the upper surface of the ferromagnetic body (20), two annular upper protrusions (20a) are integrally formed so as to face the two lower protrusions (17a) of the yoke member (17). Although not shown, the axial magnetic bearing (9) is equipped with a displacement sensor for detecting the displacement of the rotating body (2) in the Z-axis direction, and the electromagnet (16) and the displacement sensor are not shown in the figure. It is connected to the bearing controller. Then, the magnetic bearing control device controls the current value of the electromagnet (16), that is, the attractive force, based on the output of the displacement sensor, and as a result, the position of the rotating body (2) in the axial direction is controlled. . Axial magnetic bearing
Since (9) and its control device are known, detailed description thereof is omitted.

【0021】永久磁石軸受(10)は、真空チャンバ(1) の
頂壁(1b)の下面に設けられた固定永久磁石部(21)と、回
転体(2) のフライホイール(4) の上面に設けられた回転
永久磁石部(22)とよりなる。固定永久磁石部(21)は、真
空チャンバ(1) の頂壁(1b)の下面に固定されたアルミニ
ウム合金、非磁性ステンレス鋼、銅合金などの非磁性体
からなる水平円板(23)を備えている。水平円板(23)の下
面の中心部に円筒状穴(24)が形成されるとともに、その
周囲に環状凹溝(25)が回転軸心(A) と同心状に形成さ
れ、円筒状穴(24)内に円柱状固定永久磁石(26)が嵌めら
れて固定されるとともに、環状凹溝(25)内に環状固定永
久磁石(27)が嵌められて固定されることにより、固定永
久磁石部(21)が構成されている。両固定永久磁石(26)(2
7)は、それぞれその上下両端部が逆の極性の磁気を帯び
ているとともに、円柱状固定永久磁石(26)と環状固定永
久磁石(27)の上下方向の両端部が逆の極性の磁気を帯び
ている。たとえば、円柱状固定永久磁石(26)の上端部は
S極、下端部はN極の磁気を帯びており、環状固定永久
磁石(27)の上端部はN極、下端部はS極の磁気を帯びて
いる。フライホイール(4) の上面に固定された回転部材
(18)の上面の中心部に円筒状穴(28)が形成されるととも
に、その周囲に環状凹溝(29)が回転軸心(A) と同心状に
形成され、円筒状穴(28)内に円柱状回転永久磁石(30)が
嵌められて固定されるとともに、環状凹溝(23)内に環状
回転永久磁石(31)が嵌められて固定されることにより、
回転永久磁石部(22)が構成されている。各回転永久磁石
(30)(31)は、各固定永久磁石(26)(27)と対向するように
配置されている。両回転永久磁石(30)(31)は、それぞれ
その上下両端部が逆の極性の磁気を帯びているととも
に、円柱状回転永久磁石(30)と環状回転永久磁石(31)の
上下方向の両端部が逆の極性の磁気を帯びている。ま
た、各回転永久磁石(30)(31)と各固定永久磁石(26)(27)
の互いに対向する端部は逆の極性の磁気を帯びている。
たとえば、円柱状回転永久磁石(30)の上端部はS極、下
端部はN極の磁気を帯びており、環状回転永久磁石(31)
の上端部はN極、下端部はS極の磁気を帯びている。
The permanent magnet bearing (10) comprises a fixed permanent magnet portion (21) provided on the lower surface of the top wall (1b) of the vacuum chamber (1) and an upper surface of the flywheel (4) of the rotating body (2). And a rotating permanent magnet portion (22) provided on the. The fixed permanent magnet part (21) is a horizontal disk (23) made of a non-magnetic material such as aluminum alloy, non-magnetic stainless steel, or copper alloy fixed to the lower surface of the top wall (1b) of the vacuum chamber (1). I have it. A cylindrical hole (24) is formed in the center of the lower surface of the horizontal disc (23), and an annular groove (25) is formed around it to be concentric with the rotation axis (A). The cylindrical fixed permanent magnet (26) is fitted and fixed in the (24), and the annular fixed permanent magnet (27) is fitted and fixed in the annular recessed groove (25). The part (21) is configured. Both fixed permanent magnets (26) (2
In 7), both upper and lower ends have magnetism of opposite polarities, and both ends of the cylindrical fixed permanent magnet (26) and the annular fixed permanent magnet (27) in the vertical direction have opposite polarities. It is tinged. For example, the upper end of the cylindrical fixed permanent magnet (26) has an S-pole magnetism and the lower end has an N-pole magnetism. The annular fixed permanent magnet (27) has an N-pole magnetism at the upper end and an S-pole magnetism at the lower end. Bears. Rotating member fixed on top of flywheel (4)
A cylindrical hole (28) is formed in the center of the upper surface of (18), and an annular groove (29) is formed around the cylindrical hole (28) concentrically with the axis of rotation (A) to form a cylindrical hole (28). While the cylindrical rotary permanent magnet (30) is fitted and fixed in, the annular rotary permanent magnet (31) is fitted and fixed in the annular groove (23),
The rotating permanent magnet section (22) is configured. Each rotating permanent magnet
(30) and (31) are arranged so as to face the fixed permanent magnets (26) and (27). Both of the rotating permanent magnets (30) and (31) have magnets of opposite polarities at the upper and lower ends thereof, respectively, and the upper and lower ends of the cylindrical rotating permanent magnet (30) and the annular rotating permanent magnet (31) in the vertical direction. The part is magnetized with the opposite polarity. In addition, each rotating permanent magnet (30) (31) and each fixed permanent magnet (26) (27)
The opposite ends of the magnetic field have opposite polarities.
For example, the upper end of the cylindrical rotating permanent magnet (30) has an S pole and the lower end has an N pole.
Has an N pole at the upper end and an S pole at the lower end.

【0022】超電導軸受(11)は、回転体(2) の回転軸
(3) の下面に設けられた永久磁石部(回転体側軸受構成
体)(32)と、永久磁石部(32)に対して上下方向に間隔を
おいて対向するように、真空チャンバ(1) の底壁(1c)上
面に上下動自在に設けられた超電導体部(固定部側軸受
構成体)(33)とよりなる。回転軸(3) の下面の中心部に
円筒状穴(34)が形成されるとともに、その周囲に環状凹
溝(35)が回転軸心(A) と同心状に形成され、円筒状穴(3
4)内に円柱状永久磁石(36)が嵌められて固定されるとと
もに、環状凹溝(35)内に環状永久磁石(37)が嵌められて
固定されることにより、永久磁石部(32)が構成されてい
る。両永久磁石(36)(37)は、それぞれその上下両端部が
逆の極性の磁気を帯びているとともに、円柱状永久磁石
(36)と環状永久磁石(37)の上下方向の両端部が逆の極性
の磁気を帯びている。たとえば、円柱状永久磁石(36)の
上端部はS極、下端部はN極の磁気を帯びており、環状
永久磁石(37)の上端部はN極、下端部はS極の磁気を帯
びている。超電導体部(33)は、真空チャンバ(1) の底壁
(1c)に取付けられた昇降装置(38)の上向きの昇降ロッド
(39)の上端に固定状に設けられている上方に開口した箱
状保持部材(40)内に図示しない断熱材を介して嵌め入れ
られた冷却ケース(41)を備えている。冷却ケース(41)
は、たとえばアルミニウム合金、非磁性ステンレス鋼、
銅合金などの非磁性体からなる。冷却ケース(41)内の空
間に環状超電導体(42)が固定状に配置されている。冷却
ケース(41)内の空間は可撓性を有する冷却流体供給管(4
3)および同排出管(44)を介して図示しない冷却装置に接
続されており、この冷却装置により、たとえば液体窒素
などの冷却流体が供給管(43)、冷却ケース(41)内の空間
および排出管(44)を介して循環させられ、これによって
超電導体(42)が冷却されるようになっている。超電導体
(42)は第2種超電導体であり、イットリウム系高温超電
導体、たとえばYBa2 Cu3 7-X からなるバルクの
内部に常電導体(Y2Ba1 Cu1 )を均一に混在させ
たものからなる。そして、超電導体(42)は、これを永久
磁石(36)(37)の磁界を受けない離隔位置に配置した後臨
界温度以下の温度に冷却(以下、この冷却をゼロ磁場冷
却という)することにより、反磁性を示すものである。
The superconducting bearing (11) is the rotating shaft of the rotating body (2).
The vacuum chamber (1) is placed so as to face the permanent magnet portion (rotor side bearing structure) (32) provided on the lower surface of (3) and the permanent magnet portion (32) at a vertical interval. And a superconductor part (fixed part side bearing structure) (33) provided on the upper surface of the bottom wall (1c) of the above so as to be vertically movable. A cylindrical hole (34) is formed at the center of the lower surface of the rotating shaft (3), and an annular groove (35) is formed around the cylindrical hole (35) concentrically with the rotating shaft center (A). 3
The cylindrical permanent magnet (36) is fitted and fixed in the inside of 4), and the annular permanent magnet (37) is fitted and fixed in the inside of the annular groove (35), so that the permanent magnet portion (32) Is configured. Both permanent magnets (36) and (37) are magnetized with opposite polarities at their upper and lower ends, respectively.
The upper and lower ends of the ring-shaped permanent magnet (36) and the ring-shaped permanent magnet (37) are magnetized with opposite polarities. For example, the upper end of the cylindrical permanent magnet (36) has an S-pole magnetism and the lower end has an N-pole magnetism, and the annular permanent magnet (37) has an N-pole magnetism at its upper end and an S-pole magnetism at its lower end. ing. The superconductor part (33) is the bottom wall of the vacuum chamber (1).
Up-down lifting rod of lifting device (38) attached to (1c)
A cooling case (41) fitted in a box-shaped holding member (40), which is fixedly provided at the upper end of (39) and is open upward, via a heat insulating material (not shown) is provided. Cooling case (41)
Is, for example, aluminum alloy, non-magnetic stainless steel,
It is made of non-magnetic material such as copper alloy. An annular superconductor (42) is fixedly arranged in a space inside the cooling case (41). The space inside the cooling case (41) has a flexible cooling fluid supply pipe (4
It is connected to a cooling device (not shown) via 3) and the discharge pipe (44) .By this cooling device, a cooling fluid such as liquid nitrogen is supplied to the supply pipe (43), the space in the cooling case (41) and The superconductor (42) is cooled by being circulated through the discharge pipe (44). Superconductor
(42) is a type 2 superconductor in which a normal conductor (Y 2 Ba 1 Cu 1 ) is uniformly mixed in the bulk of a yttrium-based high temperature superconductor, for example, YBa 2 Cu 3 O 7-X . It consists of things. Then, the superconductor (42) is cooled to a temperature below the critical temperature (hereinafter this cooling is referred to as zero magnetic field cooling) after the superconductor (42) is placed in a separated position where the magnetic field of the permanent magnets (36) (37) is not received. Demonstrating diamagnetism.

【0023】ラジアル磁気軸受(12)(13)は、高周波電動
機(6) の上下両側に設けられている。各ラジアル磁気軸
受(12)(13)は、詳細な図示は省略したが、回転体(2) を
互いに直交する2つのラジアル方向(X軸およびY軸方
向)の両側から吸引して同方向の回転体(2) の位置を制
御するための電磁石、ならびに回転体(2) のX軸および
Y軸方向の変位を検出するための変位センサを備えてお
り、これらが図示しない磁気軸受制御装置に接続されて
いる。そして、磁気軸受制御装置により、変位センサの
出力に基いて電磁石の電流値すなわち吸引力が制御さ
れ、その結果回転体(2) のラジアル方向の位置が制御さ
れるようになっている。なお、ラジアル磁気軸受(12)(1
3)およびその制御装置は公知のものであるから、詳細な
説明は省略する。
The radial magnetic bearings (12) and (13) are provided on both upper and lower sides of the high frequency electric motor (6). Although not shown in detail in the radial magnetic bearings (12) and (13), the rotor (2) is attracted from both sides in two radial directions (X-axis and Y-axis directions) orthogonal to each other, It has an electromagnet for controlling the position of the rotating body (2) and a displacement sensor for detecting the displacement of the rotating body (2) in the X-axis and Y-axis directions. It is connected. Then, the magnetic bearing control device controls the current value of the electromagnet, that is, the attractive force, based on the output of the displacement sensor, and as a result, the position of the rotating body (2) in the radial direction is controlled. The radial magnetic bearing (12) (1
Since 3) and its control device are publicly known, detailed description is omitted.

【0024】真空チャンバ(1) の周壁(1a)内周面におけ
る上側のラジアル磁気軸受(12)の上方および下側のラジ
アル磁気軸受(13)の下方に、それぞれ非常時に回転体
(2) の回転軸(3) の上下両端寄りの部分を支持する転が
り軸受からなるタッチダウン軸受(45)(46)が設けられて
いる。
At the inner peripheral surface of the peripheral wall (1a) of the vacuum chamber (1), above the upper radial magnetic bearing (12) and below the lower radial magnetic bearing (13), respectively, a rotating body is provided in an emergency.
Touchdown bearings (45) and (46) are provided, which are rolling bearings that support the upper and lower ends of the rotating shaft (3) of (2).

【0025】電力貯蔵装置の始動は次のようにして行わ
れる。なお、停止状態においては、図1に示すように、
回転体(2) は上下のタッチダウン軸受(45)(46)により支
持されている。また、昇降装置(38)の昇降ロッド(39)は
下降位置にあり、超電導軸受(11)の超電導体(42)が、永
久磁石(36)(37)の磁界を受けず、その磁束が侵入しない
ような位置まで離隔させられている。このとき、アキシ
アル磁気軸受(9) の電磁石部(14)のヨーク部材(17)にお
ける下方突出部(17a) と強磁性体(20)の上方突出部(20
a) とのアキシアル方向の間隔は、ヨーク部材(17)の下
方突出部(17a) 間のラジアル方向の間隔よりも小さくな
っている。そして、まず真空チャンバ(1)内を真空状態
にする。ついで、アキシアル磁気軸受(9) の電磁石(16)
に通電し、アキシアル磁気軸受(9) の電磁石部(14)のヨ
ーク部材(17)と、強磁性体部(14)の強磁性体(20)との間
に図1に破線で示すような磁気回路を形成する。する
と、強磁性体(20)が上向きの吸引力を受け、これによっ
て回転体(2) の重量の一部が支持される。このとき、永
久磁石軸受(10)の回転永久磁石(30)(31)が固定永久磁石
(26)(27)から上向きの吸引力を受け、これによっても回
転体(2) の重量の一部が支持される。強磁性体(20)が受
ける上向きの吸引力と、回転永久磁石(30)(31)が受ける
上向きの吸引力との和は、回転体(2) の重量よりも小さ
く、たとえば全重量の50%程度である。したがって、
回転体(2) はいまだ浮上せず、アキシアル方向に非接触
状態とはならない。ついで、冷却装置により超電導軸受
(11)の冷却ケース(41)内に冷却流体を循環させ、超電導
体(42)を臨界温度以下の温度に冷却して超電導状態に
し、この状態で保持する。すなわち、超電導体(42)に反
磁性状態を出現させる。ついで、昇降装置(38)の昇降ロ
ッド(39)を上昇させ、超電導体部(33)を上昇させて永久
磁石部(32)に接近させる。すると、永久磁石(36)(37)と
超電導体(42)との間に生じる磁気反発力により、回転体
(2) の残りの重量が支持されることになり、回転体(2)
が浮上する。その結果、アキシアル磁気軸受(9)のヨー
ク部材(17)の下方突出部(17a) と強磁性体(20)の上方突
出部(20a) との間隔が小さくなり、強磁性体(20)が受け
る上向きの吸引力が大きくなる。しかも、永久磁石軸受
(10)の固定永久磁石(26)(27)と回転永久磁石(30)(31)と
の間隔も小さくなり、回転永久磁石(30)(31)が固定永久
磁石(26)(27)から受ける上向きの吸引力も大きくなる。
したがって、回転体(2) は、極めて安定した状態でアキ
シアル方向に非接触支持されることになる。ついで、上
下のラジアル磁気軸受(12)(13)によって、回転体(2) の
ラジアル方向の初期位置決めを行う。これにより、図2
に示すように、回転体(2) は、アキシアル磁気軸受(9)
、永久磁石軸受(10)、超電導軸受(11)およびラジアル
磁気軸受(12)(13)によって非接触支持されたことにな
る。回転体(2) が非接触支持されたならば、高周波電動
機(6) を作動させて回転体(2) を回転させる。そして、
回転体(2) が回転している間に、電気エネルギが回転運
動エネルギに変換されてフライホイール(4) に貯蔵され
る。回転体(2) が回転しているさいに、アキシアル磁気
軸受(9) およびラジアル磁気軸受(12)(13)の位置制御機
能により、回転体(2) にアキシアル方向およびラジアル
方向の振れが発生するのが防止される。
The power storage device is started up as follows. In the stopped state, as shown in FIG.
The rotating body (2) is supported by upper and lower touchdown bearings (45) (46). Also, the lifting rod (39) of the lifting device (38) is in the lowered position, and the superconductor (42) of the superconducting bearing (11) does not receive the magnetic field of the permanent magnets (36) (37) and its magnetic flux enters. It is separated to a position where it does not happen. At this time, the lower protruding portion (17a) of the yoke member (17) of the electromagnet portion (14) of the axial magnetic bearing (9) and the upper protruding portion (20) of the ferromagnetic body (20) are
The distance in the axial direction with respect to a) is smaller than the distance in the radial direction between the downward protrusions (17a) of the yoke member (17). Then, first, the vacuum chamber (1) is evacuated. Then the electromagnet (16) of the axial magnetic bearing (9)
1 between the yoke member (17) of the electromagnet part (14) of the axial magnetic bearing (9) and the ferromagnetic material (20) of the ferromagnetic material part (14) as shown by the broken line in FIG. Form a magnetic circuit. Then, the ferromagnetic body (20) receives an upward attracting force, which supports a part of the weight of the rotating body (2). At this time, the rotating permanent magnets (30) (31) of the permanent magnet bearing (10) are fixed permanent magnets.
(26) An upward suction force is received from (27), which also supports a part of the weight of the rotating body (2). The sum of the upward attractive force that the ferromagnetic body (20) receives and the upward attractive force that the rotating permanent magnets (30) (31) receive is smaller than the weight of the rotating body (2), for example, 50% of the total weight. %. Therefore,
Rotating body (2) Yes, it has not yet floated and does not come into contact with it in the axial direction. Then, using a cooling device, the superconducting bearing
A cooling fluid is circulated in the cooling case (41) of (11) to cool the superconductor (42) to a temperature equal to or lower than the critical temperature to bring it into a superconducting state, and maintain this state. That is, a diamagnetic state appears in the superconductor (42). Then, the elevating rod (39) of the elevating device (38) is raised to raise the superconductor portion (33) to approach the permanent magnet portion (32). Then, due to the magnetic repulsive force generated between the permanent magnets (36) (37) and the superconductor (42),
The remaining weight of (2) will be supported and the rotating body (2)
Emerges. As a result, the gap between the lower protrusion (17a) of the yoke member (17) of the axial magnetic bearing (9) and the upper protrusion (20a) of the ferromagnetic body (20) becomes smaller, and the ferromagnetic body (20) becomes The upward suction force received is increased. Moreover, permanent magnet bearings
The distance between the fixed permanent magnets (26) (27) and the rotating permanent magnets (30) (31) in (10) also becomes smaller, and the rotating permanent magnets (30) (31) move from the fixed permanent magnets (26) (27). The upward suction force received is also increased.
Therefore, the rotating body (2) is non-contact supported in the axial direction in an extremely stable state. Then, the upper and lower radial magnetic bearings (12) and (13) perform initial positioning in the radial direction of the rotating body (2). As a result, FIG.
As shown in, the rotating body (2) is attached to the axial magnetic bearing (9).
That is, they are non-contact supported by the permanent magnet bearing (10), the superconducting bearing (11) and the radial magnetic bearings (12) and (13). When the rotating body (2) is supported in a non-contact manner, the high frequency electric motor (6) is operated to rotate the rotating body (2). And
While the rotating body (2) is rotating, electric energy is converted into rotational kinetic energy and stored in the flywheel (4). While the rotor (2) is rotating, the axial magnetic bearing (9) and radial magnetic bearings (12) (13) position control function causes axial and radial runout of the rotor (2). Is prevented.

【0026】回転体(2) が回転しているときに停電が発
生した場合、高周波電動機(6) は停止するが、フライホ
イール(4) により、回転体(2) はわずかに減速するもの
の継続して回転させられる。その結果、高周波電動機
(6) が発電機として作動し、フライホイール(4) に貯蔵
されていた回転運動エネルギが電気エネルギとして取り
出され、図示しない蓄電池に蓄えられる。蓄電池に蓄え
られた電力は、図示しない外部の電力消費財および超電
導軸受(11)の冷却装置に送られ、電力消費財および超電
導軸受(11)が作動を継続する。蓄電池に蓄えられた電力
の一部はアキシアル磁気軸受(9) およびラジアル磁気軸
受(12)(13)の磁気軸受制御装置に送られ、これによりこ
れらの磁気軸受(9)(12)(13) の位置制御機能が作動させ
られる。そして、フライホイール(4) に蓄えられていた
回転運動エネルギが減少して回転体(2) が停止するまで
の間、回転体(2) はアキシアル磁気軸受(9) 、永久磁石
軸受(10)、超電導軸受(11)およびラジアル磁気軸受(12)
(13)によって非接触支持される。しかも、アキシアル磁
気軸受(9) およびラジアル磁気軸受(12)(13)の位置制御
機能により、回転体(2) にアキシアル方向およびラジア
ル方向の振れが発生するのが防止される。
If a power failure occurs while the rotating body (2) is rotating, the high-frequency motor (6) stops, but the flywheel (4) causes the rotating body (2) to decelerate slightly but continue. And then rotated. As a result, the high frequency motor
(6) operates as a generator, and the rotational kinetic energy stored in the flywheel (4) is taken out as electric energy and stored in a storage battery (not shown). The electric power stored in the storage battery is sent to an external power consumer goods and a cooling device for the superconducting bearing (11) not shown, and the power consumer goods and the superconducting bearing (11) continue to operate. A part of the electric power stored in the storage battery is sent to the magnetic bearing control device of the axial magnetic bearing (9) and the radial magnetic bearing (12) (13), which causes these magnetic bearings (9) (12) (13). The position control function of is activated. Then, until the rotating kinetic energy stored in the flywheel (4) decreases and the rotating body (2) stops, the rotating body (2) keeps the axial magnetic bearing (9) and the permanent magnet bearing (10). , Superconducting bearings (11) and radial magnetic bearings (12)
Non-contact supported by (13). In addition, the position control function of the axial magnetic bearing (9) and the radial magnetic bearings (12) and (13) prevents the rotor (2) from swinging in the axial direction and the radial direction.

【0027】上記実施例においては、アキシアル磁気軸
受(9) およびラジアル磁気軸受(12)(13)は、それぞれ変
位センサを備えた磁気軸受であるが、これに代えて、公
知のセンサレス磁気軸受を用いることもできる。この場
合、センサ回路の故障による安全性の低下が防止され
る。
In the above embodiment, the axial magnetic bearing (9) and the radial magnetic bearings (12) and (13) are magnetic bearings each having a displacement sensor. Instead of this, a known sensorless magnetic bearing is used. It can also be used. In this case, it is possible to prevent a decrease in safety due to a failure of the sensor circuit.

【0028】また、上記実施例においては、回転体(2)
は高周波電動機(6) により回転させられるようになって
いるが、これに代えて、ラジアル磁気軸受(12)(13)の少
なくとも1組を、回転体(2) の位置制御機能の他に、回
転体(2) を回転駆動する電動駆動機能を有するものにし
てもよい。この場合、高周波電動機(6) は不要になる。
In the above embodiment, the rotating body (2)
Is rotated by a high frequency electric motor (6). Instead of this, at least one set of radial magnetic bearings (12) (13) is provided in addition to the position control function of the rotating body (2). It may have an electric drive function for rotationally driving the rotating body (2). In this case, the high frequency motor (6) becomes unnecessary.

【0029】また、上記実施例において、アキシアル磁
気軸受(9) の電磁石(16)のコイルとして、超電導線材か
らなるものを用いてもよい。この場合、強磁性体(20)が
受ける上向きの吸引力は一層大きくなる。
In the above embodiment, the coil of the electromagnet (16) of the axial magnetic bearing (9) may be made of a superconducting wire. In this case, the upward attraction force exerted on the ferromagnetic body (20) is further increased.

【0030】また、上記実施例においては、電力貯蔵装
置の始動にさいし、超電導体(42)をゼロ磁場冷却してい
るが、これに代えて、永久磁石(36)(37)の磁界を利用し
て超電導体(42)を磁場冷却してもよい。この場合、ピン
止め力により生じる磁気反発力によって永久磁石(36)(3
7)が上向きに付勢される。但し、超電導体(42)を磁場冷
却する場合には、予めラジアル磁気軸受(12)(13)により
回転体(2) のラジアル方向の初期位置決めを行っておく
必要がある。
In the above embodiment, the superconductor (42) is cooled with zero magnetic field at the time of starting the power storage device. Instead of this, the magnetic fields of the permanent magnets (36) (37) are used. Then, the superconductor (42) may be magnetically cooled. In this case, the permanent magnet (36) (3
7) is urged upward. However, when magnetically cooling the superconductor (42), it is necessary to perform initial radial positioning of the rotating body (2) by the radial magnetic bearings (12) and (13) in advance.

【0031】さらに、上記実施例において、超電導軸受
(11)の超電導体として、水銀、鉛などからなる完全反磁
性を示す第1種超電導体を用いてもよい。この場合、超
電導軸受部の超電導体のマイスナー効果による磁気反発
力によって、永久磁石が超電導体により上向きに付勢さ
れる。
Further, in the above embodiment, the superconducting bearing
As the superconductor of (11), a type 1 superconductor showing complete diamagnetism made of mercury, lead or the like may be used. In this case, the permanent magnet is biased upward by the superconductor due to the magnetic repulsive force due to the Meissner effect of the superconductor of the superconducting bearing.

【0032】図3〜図6は、真空チャンバ(1) の底壁(1
c)上面と回転体(2) の回転軸(3) の下面との間に設けら
れかつ反発力により回転体(2) を上向きに支持する磁力
利用軸受の変形例を、一部を省略して概略的に示す。な
お、図3〜図6において、図1および図2に示すものと
同一物には同一符号を付す。さらに、図3〜図6を通じ
て同一物には同一符号を付す。
3 to 6 show the bottom wall (1) of the vacuum chamber (1).
c) Part of the modified example of the magnetic force utilizing bearing, which is provided between the upper surface and the lower surface of the rotating shaft (3) of the rotating body (2) and supports the rotating body (2) upward by the repulsive force, is omitted. Is shown schematically. 3 to 6, the same components as those shown in FIGS. 1 and 2 are designated by the same reference numerals. Further, the same components are denoted by the same reference numerals throughout FIGS. 3 to 6.

【0033】図3において、超電導軸受(磁力利用軸
受)(50)は、回転体(2) の回転軸(3)の下面の中心部に
形成された円筒状穴(51)内に嵌められて固定された円柱
状永久磁石(回転体側軸受構成体)(52)を備えている。
永久磁石(52)の上下両端部は逆の極性の磁気を帯びてお
り、たとえば上端部がS極、下端部がN極の磁気を帯び
ている。また、超電導軸受(50)は、超電導体部(33)の下
側に永久磁石(52)に対向するように配置された永久磁石
(53)を備えている。超電導体部(33)と永久磁石(53)は、
一緒に上下動させられるようになっている。超電導体部
(33)の下側の永久磁石(53)は、回転体(2) 側の永久磁石
(52)とほぼ対向するように配置されている。超電導体部
(33)の下側の永久磁石(53)の上下両端部は逆の極性の磁
気を帯びており、かつ回転体(2) 側の永久磁石(52)対向
する端部が永久磁石(52)と同じ極性の磁気を帯びてい
る。たとえば、永久磁石(53)の上端部はN極、下端部は
S極の磁気を帯びている。
In FIG. 3, a superconducting bearing (bearing using magnetic force) (50) is fitted in a cylindrical hole (51) formed at the center of the lower surface of the rotating shaft (3) of the rotating body (2). It is provided with a fixed columnar permanent magnet (rotor side bearing structure) (52).
The upper and lower ends of the permanent magnet (52) are magnetized with opposite polarities, for example, the upper end has an S pole and the lower end has an N pole. In addition, the superconducting bearing (50) is a permanent magnet disposed below the superconducting portion (33) so as to face the permanent magnet (52).
It is equipped with (53). The superconductor part (33) and the permanent magnet (53)
It can be moved up and down together. Superconductor part
The permanent magnet (53) on the lower side of (33) is the permanent magnet on the side of the rotating body (2).
It is arranged so as to substantially face (52). Superconductor part
The upper and lower ends of the lower permanent magnet (53) of the (33) have opposite polarities, and the opposite end of the permanent magnet (52) is the permanent magnet (52). It is magnetized with the same polarity as. For example, the upper end of the permanent magnet (53) has an N pole magnetism and the lower end has an S pole magnetism.

【0034】このような超電導軸受(50)を備えている場
合、超電導体(42)に出現した反磁性によって永久磁石(5
2)と超電導体(42)との間に生じる磁気反発力により、回
転体(2) の重量の一部を支持するさい、永久磁石(52)に
作用する超電導体部(33)の下側の永久磁石(53)の磁気反
発力によっても回転体(2) の重量の一部を支持できる。
したがって、アキシアル方向の負荷容量が向上し、より
重量の大きい回転体(2) を支持することができる。
When such a superconducting bearing (50) is provided, the diamagnetism that appears in the superconductor (42) causes permanent magnets (5
The lower side of the superconductor part (33) acting on the permanent magnet (52) when supporting a part of the weight of the rotating body (2) by the magnetic repulsive force generated between the 2) and the superconductor (42). Part of the weight of the rotating body (2) can be supported by the magnetic repulsive force of the permanent magnet (53).
Therefore, the load capacity in the axial direction is improved, and the heavier rotating body (2) can be supported.

【0035】図4において、超電導軸受(磁力利用軸
受)(55)は、超電導体部(33)の下側に永久磁石(52)に対
向するように配置された電磁石(56)を備えている。超電
導体部(33)と電磁石(56)は、一緒に上下動させられるよ
うになっている。電磁石(56)は、回転体(2) 側の永久磁
石(52)とほぼ対向するように配置されている。電磁石(5
6)は、その上下両端部が逆の極性の磁気を帯び、かつ永
久磁石(52)と対向する端部が永久磁石(52)と同じ極性の
磁気を帯びるようになされている。たとえば、電磁石(5
6)の上端部はS極、下端部はN極の磁気を帯びるように
なっている。
In FIG. 4, a superconducting bearing (bearing using magnetic force) (55) is provided with an electromagnet (56) arranged below the superconductor portion (33) so as to face the permanent magnet (52). . The superconductor part (33) and the electromagnet (56) can be moved up and down together. The electromagnet (56) is arranged so as to substantially face the permanent magnet (52) on the rotating body (2) side. Electromagnet (5
The upper and lower ends of 6) are magnetized with opposite polarities, and the ends facing the permanent magnet (52) are magnetized with the same polarity as the permanent magnet (52). For example, the electromagnet (5
The upper end of 6) has a south pole and the lower end has a north pole.

【0036】このような超電導軸受(55)を備えている場
合、超電導体(42)に出現した反磁性によって永久磁石(5
2)と超電導体(42)との間に生じる磁気反発力により、回
転体(2) の重量の一部を支持するさい、永久磁石(52)に
作用する電磁石(56)の磁気反発力によっても回転体(2)
の重量の一部を支持できる。したがって、アキシアル方
向の負荷容量が向上し、より重量の大きい回転体(2) を
支持することができる。
When such a superconducting bearing (55) is provided, diamagnetism that appears in the superconductor (42) causes permanent magnets (5
The magnetic repulsive force generated between the 2) and the superconductor (42) supports a part of the weight of the rotating body (2) by the magnetic repulsive force of the electromagnet (56) acting on the permanent magnet (52). Rotating body (2)
Can support a part of the weight. Therefore, the load capacity in the axial direction is improved, and the heavier rotating body (2) can be supported.

【0037】なお、図4において、電磁石(56)のコイル
としては、超電導線材からなるものを用いてもよい。こ
の場合、永久磁石(52)に作用する電磁石(56)の磁気反発
力は一層大きくなる。
In FIG. 4, the coil of the electromagnet (56) may be made of a superconducting wire. In this case, the magnetic repulsion force of the electromagnet (56) acting on the permanent magnet (52) is further increased.

【0038】図5において、永久磁石軸受(磁力利用軸
受)(60)は、真空チャンバ(1) の底壁(1c)に上下動自在
に配置された永久磁石(固定部側軸受構成体)(61)を備
えている。この永久磁石(61)は回転体(2) 側の永久磁石
(52)とほぼ対向するように配置されている。上下動自在
の永久磁石(61)の上下両端部は逆の極性の磁気を帯びて
おり、回転体(2) 側の永久磁石(52)と対向する端部が永
久磁石(52)と同じ極性の磁気を帯びている。たとえば、
永久磁石(61)の上端部はN極、下端部はS極の磁気を帯
びている。
In FIG. 5, a permanent magnet bearing (bearing using magnetic force) (60) is a permanent magnet (fixed part side bearing structure) (upper movable part) which is vertically movable on the bottom wall (1c) of the vacuum chamber (1). 61). This permanent magnet (61) is a permanent magnet on the rotating body (2) side.
It is arranged so as to substantially face (52). The upper and lower ends of the vertically movable permanent magnet (61) are magnetized with opposite polarities, and the end facing the permanent magnet (52) on the rotating body (2) side has the same polarity as the permanent magnet (52). Is magnetized. For example,
The upper end of the permanent magnet (61) has a north pole and the lower end has a south pole.

【0039】このような永久磁石軸受(60)を備えている
場合、両永久磁石(52)(61)と永久磁石との間に生じる磁
気反発力により、回転体(2) の重量の一部が支持され
る。
When such a permanent magnet bearing (60) is provided, a part of the weight of the rotating body (2) is caused by the magnetic repulsive force generated between the permanent magnets (52) (61) and the permanent magnet. Is supported.

【0040】図6において、磁力利用軸受(65)は、真空
チャンバ(1) の底壁(1c)に上下動自在に配置された電磁
石(固定部側軸受構成体)(66)と、電磁石(66)の下側に
電磁石(66)と一緒に上下動するように配置された永久磁
石(67)とを備えている。電磁石(66)および永久磁石(67)
は回転体(2) 側の永久磁石(52)とほぼ対向するように配
置されている。電磁石(66)は、その上下両端部が逆の極
性の磁気を帯び、かつ回転体(2) 側の永久磁石(52)と対
向する端部がこの永久磁石(52)と同じ極性の磁気を帯び
るようになされている。たとえば、電磁石(66)の上端部
はN極、下端部はS極の磁気を帯びるようになってい
る。また、電磁石(66)の下側の永久磁石(67)の上下両端
部は逆の極性の磁気を帯びており、回転体(2) 側の永久
磁石(52)と対向する端部がこの永久磁石(52)と同じ極性
の磁気を帯びている。たとえば、永久磁石(67)の上端部
はN極、下端部はS極の磁気を帯びている。
In FIG. 6, a magnetic force utilizing bearing (65) includes an electromagnet (fixed part side bearing structure) (66) which is vertically movable in the bottom wall (1c) of the vacuum chamber (1), and an electromagnet ( The electromagnet (66) and a permanent magnet (67) arranged so as to move up and down together with the electromagnet (66) are provided below the 66). Electromagnets (66) and permanent magnets (67)
Are arranged so as to substantially face the permanent magnet (52) on the rotating body (2) side. The upper and lower ends of the electromagnet (66) are magnetized with opposite polarities, and the end facing the permanent magnet (52) on the rotating body (2) side has the same polarity magnetism as the permanent magnet (52). It is designed to take on. For example, the upper end of the electromagnet (66) is magnetized as an N pole and the lower end is magnetized as an S pole. The upper and lower ends of the permanent magnet (67) below the electromagnet (66) are magnetized with opposite polarities, and the end facing the permanent magnet (52) on the rotating body (2) side has this permanent magnet. It has the same polarity as the magnet (52). For example, the upper end of the permanent magnet (67) has a north pole and the lower end has a south pole.

【0041】このような磁力利用軸受(65)を備えている
場合、電磁石(66)と回転体(2) 側の永久磁石(52)との間
に生じる磁気反発力により、回転体(2) の重量の一部を
支持するさい、電磁石(66)の磁気反発力がその下側の永
久磁石(67)によって増大させられる。したがって、アキ
シアル方向の負荷容量が向上し、より重量の大きい回転
体(2) を支持することができる。
When the bearing (65) utilizing such magnetic force is provided, due to the magnetic repulsive force generated between the electromagnet (66) and the permanent magnet (52) on the rotor (2) side, the rotor (2) The magnetic repulsive force of the electromagnet (66) is increased by the permanent magnet (67) below the electromagnet (66) while supporting a part of its weight. Therefore, the load capacity in the axial direction is improved, and the heavier rotating body (2) can be supported.

【0042】なお、図6において、電磁石(66)のコイル
としては、超電導線材からなるものを用いてもよい。こ
の場合、永久磁石(52)に作用する電磁石(66)の磁気反発
力は一層大きくなる。
In FIG. 6, the coil of the electromagnet (66) may be made of a superconducting wire. In this case, the magnetic repulsion force of the electromagnet (66) acting on the permanent magnet (52) is further increased.

【0043】[0043]

【発明の効果】この発明の軸受装置およびその始動方法
によれば、上述のように、アキシアル方向の負荷容量が
向上する。したがって、より重量の大きい回転体を支持
することが可能になる。その結果、たとえば電力貯蔵装
置に適用した場合には、大型のフライホイールを有する
回転体を支持することが可能になり、電力貯蔵効率が向
上する。
As described above, according to the bearing device and the method of starting the same of the present invention, the load capacity in the axial direction is improved. Therefore, it becomes possible to support a heavier rotating body. As a result, for example, when applied to a power storage device, it becomes possible to support a rotating body having a large flywheel, and power storage efficiency is improved.

【0044】この発明の軸受装置において、固定部の下
向き面と回転体の上向き面との間に、さらに吸引力によ
り回転体を上向きに付勢する永久磁石軸受が設けられて
いると、この永久磁石軸受の吸引力によっても回転体の
重量の一部が支持されるので、アキシアル方向の負荷容
量が向上する。また、永久磁石軸受の吸引力によっても
回転体の重量の一部が支持されると、制御型磁気軸受の
電磁石に流す電流を小さくすることができるので、うず
電流損を減少させることができる。
In the bearing device of the present invention, if a permanent magnet bearing is provided between the downward surface of the fixed portion and the upward surface of the rotating body to further urge the rotating body upward by a suction force, this permanent magnet bearing is provided. Part of the weight of the rotating body is also supported by the attractive force of the magnet bearings, so that the load capacity in the axial direction is improved. Further, if a part of the weight of the rotating body is supported by the attraction force of the permanent magnet bearing, the current flowing through the electromagnet of the control type magnetic bearing can be reduced, so that the eddy current loss can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示す軸受装置を適用した停
止状態の電力貯蔵装置の概略縦断面図である。
FIG. 1 is a schematic vertical cross-sectional view of a power storage device in a stopped state to which a bearing device according to an embodiment of the present invention is applied.

【図2】この発明の実施例を示す軸受装置を適用した作
動状態の電力貯蔵装置の概略縦断面図である。
FIG. 2 is a schematic vertical cross-sectional view of a power storage device in an operating state to which the bearing device according to the embodiment of the present invention is applied.

【図3】磁力利用軸受の第1の変形例を概略的に示す一
部を省略した部分拡大断面図である。
FIG. 3 is a partially enlarged cross-sectional view schematically showing a first modification of the magnetic force utilizing bearing, with a part thereof omitted.

【図4】磁力利用軸受の第2の変形例を概略的に示す一
部を省略した部分拡大断面図である。
FIG. 4 is a partially enlarged cross-sectional view schematically showing a second modification of the magnetic force utilizing bearing, with a part thereof omitted.

【図5】磁力利用軸受の第3の変形例を概略的に示す一
部を省略した部分拡大断面図である。
FIG. 5 is a partially enlarged cross-sectional view schematically showing a third modification of the magnetic force utilizing bearing, with a part omitted.

【図6】磁力利用軸受の第4の変形例を概略的に示す一
部を省略した部分拡大断面図である。
FIG. 6 is a partially enlarged sectional view schematically showing a fourth modification of the magnetic force utilizing bearing, with a part omitted.

【符号の説明】[Explanation of symbols]

(1) 真空チャンバ(固定部) (2) 回転体 (9) 制御型アキシアル磁気軸受 (11) 超電導軸受(磁力利用軸受) (12) 制御型ラジアル磁気軸受 (13) 制御型ラジアル磁気軸受 (16) 電磁石 (20) 強磁性体 (32) 永久磁石部(回転体側軸受構成体) (33) 超電導体部(固定部側軸受構成体) (50) 超電導軸受(磁力利用軸受) (52) 永久磁石(回転体側軸受構成体) (55) 超電導軸受(磁力利用軸受) (60) 永久磁石軸受(磁力利用軸受) (61) 永久磁石(固定部側軸受構成体) (65) 磁力利用軸受 (66) 電磁石(固定部側軸受構成体) (1) Vacuum chamber (fixed part) (2) Rotating body (9) Controlled axial magnetic bearing (11) Superconducting bearing (bearing using magnetic force) (12) Controlled radial magnetic bearing (13) Controlled radial magnetic bearing (16) ) Electromagnet (20) Ferromagnetic material (32) Permanent magnet part (rotor side bearing structure) (33) Superconductor part (fixed part side bearing structure) (50) Superconducting bearing (magnetic force bearing) (52) Permanent magnet (Rotor side bearing structure) (55) Superconducting bearing (Magnetic force bearing) (60) Permanent magnet bearing (Magnetic force bearing) (61) Permanent magnet (Fixed side bearing structure) (65) Magnetic force bearing (66) Electromagnet (fixed part side bearing structure)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 固定部と、垂直軸を中心に回転する回転
体と、回転体を固定部に対してアキシアル方向に非接触
支持する軸受手段と、回転体を固定部に対してラジアル
方向に非接触支持する軸受手段とを備えた軸受装置であ
って、 固定部が下向き面および上向き面を有するとともに、回
転体が固定部の下向き面に対向する上向き面および固定
部の上向き面に対向する下向き面を有しており、回転体
を固定部に対してアキシアル方向に非接触支持する軸受
手段が、固定部の下向き面と回転体の上向き面との間に
設けられかつ吸引力により回転体を上向きに付勢する制
御型磁気軸受と、固定部の上向き面と回転体の下向き面
との間に設けられかつ反発力により回転体を上向きに付
勢する磁力利用軸受とよりなり、制御型磁気軸受が、固
定部に設けられた電磁石および回転体に設けられた強磁
性体を備えており、磁力利用軸受が、固定部に設けられ
た軸受構成体および回転体に設けられた軸受構成体から
なり、かつ固定部側の軸受構成体が上下動するようにな
されている軸受装置。
1. A fixed part, a rotating body that rotates about a vertical axis, a bearing means that supports the rotating body in a non-contact manner with respect to the fixed part in the axial direction, and a rotating body in the radial direction with respect to the fixed part. A bearing device having contact means for supporting in a non-contact manner, wherein the fixed portion has a downward surface and an upward surface, and the rotating body faces an upward surface facing the downward surface of the fixed portion and an upward surface of the fixed portion. Bearing means for supporting the rotating body in the axial direction in a non-contact manner with respect to the fixed portion is provided between the downward surface of the fixed portion and the upward surface of the rotating body, and the rotating body is attracted by a suction force. Control type magnetic bearing for urging the rotor upward, and a magnetic-force-bearing bearing provided between the upper surface of the fixed portion and the lower surface of the rotor and biasing the rotor upward by repulsive force. Magnetic bearing installed on the fixed part And a ferromagnetic body provided on the rotating body, wherein the magnetic force utilizing bearing is composed of a bearing structure body provided on the fixed portion and a bearing structure body provided on the rotating body, and A bearing device in which the bearing structure moves up and down.
【請求項2】 固定部の下向き面と回転体の上向き面と
の間に、さらに吸引力により回転体を上向きに付勢する
永久磁石軸受が設けられている請求項1記載の軸受装
置。
2. The bearing device according to claim 1, further comprising a permanent magnet bearing provided between the downward surface of the fixed portion and the upward surface of the rotating body to urge the rotating body upward by a suction force.
【請求項3】 請求項1記載の軸受装置を始動する方法
であって、 磁力利用軸受の固定部側の軸受構成体を下降させておく
こと、制御型磁気軸受の電磁石に通電し、制御型磁気軸
受の電磁石からの吸引力により強磁性体を上向きに付勢
すること、磁力利用軸受の固定部側の軸受構成体を上昇
させ、この軸受構成体からの反発力により回転体側の軸
受構成体を上向きに付勢すること、ならびに上記吸引力
および反発力により回転体をアキシアル方向に非接触支
持することを含む軸受装置の始動方法。
3. The method for starting the bearing device according to claim 1, wherein the bearing structure on the fixed portion side of the magnetic force utilizing bearing is lowered, and the electromagnet of the control type magnetic bearing is energized to control type. The ferromagnetic body is biased upward by the attraction force from the electromagnet of the magnetic bearing, the bearing structure on the fixed side of the bearing utilizing magnetic force is raised, and the repulsive force from this bearing structure causes the bearing structure on the rotating body side. A starting method of the bearing device, comprising: urging the rotor upward, and supporting the rotating body in the axial direction in a non-contact manner by the suction force and the repulsive force.
JP10183995A 1995-04-26 1995-04-26 Bearing device and starting method thereof Expired - Fee Related JP3665878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10183995A JP3665878B2 (en) 1995-04-26 1995-04-26 Bearing device and starting method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10183995A JP3665878B2 (en) 1995-04-26 1995-04-26 Bearing device and starting method thereof

Publications (2)

Publication Number Publication Date
JPH08296648A true JPH08296648A (en) 1996-11-12
JP3665878B2 JP3665878B2 (en) 2005-06-29

Family

ID=14311244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10183995A Expired - Fee Related JP3665878B2 (en) 1995-04-26 1995-04-26 Bearing device and starting method thereof

Country Status (1)

Country Link
JP (1) JP3665878B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7002273B2 (en) 2003-11-27 2006-02-21 Nexans Magnetic bearing
WO2007069433A1 (en) * 2005-12-16 2007-06-21 Niigata University Noncontact rotating processor
JP2007160282A (en) * 2005-11-21 2007-06-28 Niigata Univ Non-contact type workpiece processing equipment
JP2008039163A (en) * 2006-08-10 2008-02-21 Toshiba Corp Superconductivity-using support mechanism
JP2008073636A (en) * 2006-09-22 2008-04-03 Niigata Univ Magnetic levitation rotation processing equipment
WO2010020204A1 (en) * 2008-08-16 2010-02-25 Forschungszentrum Jülich GmbH Magnetic guidance device comprising electromagnetic damping
EP2380192A2 (en) * 2008-12-19 2011-10-26 Lam Research AG Device for treating disc-like articles and method for oparating same
JP2016017427A (en) * 2014-07-07 2016-02-01 三菱重工業株式会社 Turbocharger thrust reaction force application device, turbocharger including same, and turbocharger thrust reaction force application method
CN107299938A (en) * 2016-12-07 2017-10-27 江苏国泉泵业制造有限公司 A kind of vertical magnetic thrust bearing of magnetic fluid medium lubrication
CN114496452A (en) * 2020-11-13 2022-05-13 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) Dynamic superconducting magnet and magnetic levitation train

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7002273B2 (en) 2003-11-27 2006-02-21 Nexans Magnetic bearing
JP4644766B2 (en) * 2005-11-21 2011-03-02 国立大学法人 新潟大学 Non-contact type workpiece processing equipment
JP2007160282A (en) * 2005-11-21 2007-06-28 Niigata Univ Non-contact type workpiece processing equipment
WO2007069433A1 (en) * 2005-12-16 2007-06-21 Niigata University Noncontact rotating processor
US7959139B2 (en) 2005-12-16 2011-06-14 Niigata University Noncontact rotating processor
JP2008039163A (en) * 2006-08-10 2008-02-21 Toshiba Corp Superconductivity-using support mechanism
JP2008073636A (en) * 2006-09-22 2008-04-03 Niigata Univ Magnetic levitation rotation processing equipment
JP4671292B2 (en) * 2006-09-22 2011-04-13 国立大学法人 新潟大学 Magnetic levitation rotation processing equipment
WO2010020204A1 (en) * 2008-08-16 2010-02-25 Forschungszentrum Jülich GmbH Magnetic guidance device comprising electromagnetic damping
EP2380192A2 (en) * 2008-12-19 2011-10-26 Lam Research AG Device for treating disc-like articles and method for oparating same
EP2380192A4 (en) * 2008-12-19 2014-07-30 Lam Res Ag Device for treating disc-like articles and method for oparating same
JP2016017427A (en) * 2014-07-07 2016-02-01 三菱重工業株式会社 Turbocharger thrust reaction force application device, turbocharger including same, and turbocharger thrust reaction force application method
CN107299938A (en) * 2016-12-07 2017-10-27 江苏国泉泵业制造有限公司 A kind of vertical magnetic thrust bearing of magnetic fluid medium lubrication
CN107299938B (en) * 2016-12-07 2018-11-30 江苏国泉泵业制造有限公司 A kind of vertical magnetic thrust bearing of magnetic fluid medium lubrication
CN114496452A (en) * 2020-11-13 2022-05-13 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) Dynamic superconducting magnet and magnetic levitation train
CN114496452B (en) * 2020-11-13 2024-05-03 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) Dynamic superconducting magnet and magnetic levitation train

Also Published As

Publication number Publication date
JP3665878B2 (en) 2005-06-29

Similar Documents

Publication Publication Date Title
JP3961032B2 (en) Magnetic bearing device for rotor shaft
EP0526903B1 (en) Bearing device
WO1995020264A1 (en) Magnetic levitation device
CN101115930A (en) Method for stabilising a magnetically levitated object
JP3665878B2 (en) Bearing device and starting method thereof
JPH08178011A (en) Flywheel device
JP3554070B2 (en) Superconducting magnetic bearing device
JP3551537B2 (en) Flywheel equipment
JP4200775B2 (en) Flywheel power storage device
JPH08296645A (en) Magnetic bearing device
JP3084132B2 (en) Magnetic levitation device
JP3577559B2 (en) Flywheel equipment
JP3663472B2 (en) Permanent magnet bearing device and permanent magnet rotating device
JPH0681845A (en) Supercondctive bearing device
JP3735742B2 (en) Superconducting bearing rotation loss measurement device
JPH10299772A (en) Bearing device
JP3622041B2 (en) Superconducting bearing device
JP3632101B2 (en) Power storage device
JP2003004041A (en) Fly wheel type super conductivity magnetic bearing and its system
JP3663470B2 (en) Superconducting bearing device
JPH09233803A (en) Braking device for high-speed rotating equipment
JP2000136825A (en) Starting method for superconducting bearing device
JP3616856B2 (en) Bearing device
JP3680231B2 (en) Control method for starting operation of superconducting magnetic bearing device
JP3471441B2 (en) Energy storage device with ring flywheel

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees