JPH08293466A - Manufacture of semiconductor thin film - Google Patents
Manufacture of semiconductor thin filmInfo
- Publication number
- JPH08293466A JPH08293466A JP9715395A JP9715395A JPH08293466A JP H08293466 A JPH08293466 A JP H08293466A JP 9715395 A JP9715395 A JP 9715395A JP 9715395 A JP9715395 A JP 9715395A JP H08293466 A JPH08293466 A JP H08293466A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- irradiation
- substrate
- laser light
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Liquid Crystal (AREA)
- Thin Film Transistor (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えばアクティブマト
リックス型の画像表示装置やイメージセンサなどの薄膜
トランジスタ(以下TFTという)などに用いられる、
非単結晶半導体薄膜の多結晶化を行う半導体薄膜の製造
方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used, for example, in thin film transistors (hereinafter referred to as TFTs) for active matrix type image display devices and image sensors.
The present invention relates to a method for manufacturing a semiconductor thin film for polycrystallizing a non-single-crystal semiconductor thin film.
【0002】[0002]
【従来の技術】従来より、硝子などの絶縁性基板上にT
FTを有する半導体装置としては、TFTを画素の駆動
に用いるアクティブマトリクス型液晶表示装置やイメー
ジセンサーなどが知られている。これらの装置に用いら
れるTFTには、薄膜状のシリコン半導体を用いるのが
一般的である。この薄膜状のシリコン半導体としては、
非晶質シリコン半導体(a−Si)からなるものと結晶
性を有するシリコン半導体からなるものの2つに大別さ
れる。この非晶質シリコン半導体は成膜温度が低く、気
相法で比較的容易に作製することが可能で量産性に富む
ため、最も一般的に用いられているが、導電性などの物
性が結晶性を有するシリコン半導体に比べて劣るため、
今後、より高速特性を得るためには、結晶性を有するシ
リコン半導体からなるTFTの作製方法の確立が強く求
められていた。なお、結晶性を有するシリコン半導体と
しては、多結晶シリコン、微結晶シリコン、結晶成分を
含む非晶質シリコン、結晶性と非晶質性の中間の状態を
有するセミアモルファスシリコンなどが知られている。
これら結晶性を有する薄膜状のシリコン半導体を得る方
法としては、 (1)成膜時に結晶性を有する膜を直接成膜する。2. Description of the Related Art Conventionally, T has been formed on an insulating substrate such as glass.
As a semiconductor device having an FT, an active matrix type liquid crystal display device using an TFT for driving a pixel, an image sensor and the like are known. A thin film silicon semiconductor is generally used for the TFT used in these devices. As this thin film silicon semiconductor,
Amorphous silicon semiconductors (a-Si) and crystalline silicon semiconductors are roughly classified. This amorphous silicon semiconductor is the most commonly used because it has a low film formation temperature, can be relatively easily manufactured by the vapor phase method, and has high mass productivity. Since it is inferior to silicon semiconductors, which have properties,
In the future, in order to obtain higher speed characteristics, there has been a strong demand for establishment of a method for manufacturing a TFT made of a crystalline silicon semiconductor. Note that as a crystalline silicon semiconductor, polycrystalline silicon, microcrystalline silicon, amorphous silicon containing a crystalline component, semi-amorphous silicon having an intermediate state between crystalline and amorphous are known. .
As a method for obtaining these thin film silicon semiconductors having crystallinity, (1) a film having crystallinity is directly formed at the time of film formation.
【0003】(2)半導体膜を成膜しておき、熱エネル
ギーを加えることにより結晶性を有せしめる。(2) A semiconductor film is formed and crystallinity is imparted by applying heat energy.
【0004】(3)半導体膜を成膜しておき、レーザー
光のエネルギーにより結晶性を有せしめる。(3) A semiconductor film is formed and crystallinity is imparted by the energy of laser light.
【0005】といった上記(1)〜(3)の方法が知ら
れている。The above methods (1) to (3) are known.
【0006】しかしながら、(1)の方法では、成膜工
程と同時に結晶化が進行するので、大粒径の結晶性シリ
コンを得るにはシリコン膜の厚膜化が不可欠であり、良
好な半導体物性を有する膜を基板上の全面に渡って均一
に成膜することが技術上困難である。また、成膜温度が
600℃以上と高いので、安価な硝子基板が使用できな
いというコスト上の問題があった。However, in the method (1), since crystallization progresses at the same time as the film forming step, it is indispensable to increase the thickness of the silicon film in order to obtain crystalline silicon having a large grain size. It is technically difficult to uniformly form a film having a film on the entire surface of the substrate. Further, since the film forming temperature is as high as 600 ° C. or higher, there is a cost problem that an inexpensive glass substrate cannot be used.
【0007】また、(2)の方法では、大面積に対応で
きるという利点はあるが、結晶化に際し600℃以上の
高温にて数十時間にわたる加熱処理が必要である。即
ち、安価な硝子板の使用とスループットの向上を考える
と、加熱温度を下げ、さらに短時間で結晶化させるとい
う相反する問題点を同時に解決する必要があった。The method (2) has an advantage that it can be applied to a large area, but requires a heat treatment for several tens of hours at a high temperature of 600 ° C. or higher for crystallization. That is, considering the use of an inexpensive glass plate and the improvement of throughput, it was necessary to simultaneously solve the conflicting problems of lowering the heating temperature and crystallizing in a shorter time.
【0008】さらに、(3)の方法では、基板上の多結
晶または非晶質半導体に高エネルギービームのレーザ光
を照射しながら走査して、粒界のきれいな粗大粒の多結
晶または単結晶の半導体層を形成する結晶化処理方法
(特開昭56−103417号公報)が提案されてい
る。ただし、基板全体を一度に照射できるほど出力を得
ることができないのでビームを重ね合わせて照射する場
合、均一性を良くするのが難しい。結晶性を有する半導
体層を得るために、従来の方法でよく用いられている高
エネルギービームのレーザ光の走査方法を図4に示す。Further, in the method (3), the polycrystalline or amorphous semiconductor on the substrate is scanned while being irradiated with a laser beam of a high-energy beam to obtain a coarse-grained polycrystalline or single crystal having a fine grain boundary. A crystallization treatment method for forming a semiconductor layer (Japanese Patent Laid-Open No. 56-103417) has been proposed. However, since it is not possible to obtain an output enough to irradiate the entire substrate at one time, it is difficult to improve the uniformity when the beams are overlapped and irradiated. FIG. 4 shows a scanning method of a laser beam of a high energy beam, which is often used in a conventional method for obtaining a semiconductor layer having crystallinity.
【0009】図4は従来の半導体薄膜の製造方法の概要
を示す図であって、aはレーザ光を照射する基板を含む
装置の上面図、bはレーザ光を照射する基板を含む装置
の側面図、cはレーザ光の発振時間とエネルギー出力の
関係を示す図、dはレーザ光を順次照射した場合の基板
を含む装置の上面図である。FIG. 4 is a diagram showing an outline of a conventional method of manufacturing a semiconductor thin film, wherein a is a top view of an apparatus including a substrate for irradiating laser light, and b is a side view of the apparatus for irradiating the substrate with laser light. FIG. 1C is a diagram showing the relationship between the oscillation time of laser light and energy output, and FIG. 3D is a top view of an apparatus including a substrate when laser light is sequentially irradiated.
【0010】図4aに示すようにトレー1上に照射基板
2が載置され、この照射基板2の表面に、図4cに示す
発振時間を持つレーザ光3が帯状に照射される。また、
図4dに示すように矢印方向へのトレー1の走査によっ
てレーザ光3の未照射領域を形成しないようにレーザ光
3の照射領域4を順次重ね合わせながら繰り返し照射す
る必要がある(特開昭60−245124号公報および
特開平3−286518号公報)。また、図4bに示す
ようにトレー1上の照射基板2を、トレー1の下方に設
けられた電熱線よりなる加熱機構5によって加熱しなが
らレーザ光3を照射することにより、良質の結晶性を有
する半導体薄膜を得ることができることが知られている
(特開平1−196116号公報)。As shown in FIG. 4a, the irradiation substrate 2 is placed on the tray 1, and the surface of the irradiation substrate 2 is irradiated with the laser beam 3 having the oscillation time shown in FIG. Also,
As shown in FIG. 4d, it is necessary to repeatedly irradiate the irradiation region 4 of the laser light 3 while sequentially superimposing the irradiation region 4 of the laser light 3 so as not to form an unirradiated region of the laser light 3 by scanning the tray 1 in the direction of the arrow (Japanese Patent Laid-Open No. Sho 60). -245124 and JP-A-3-286518). Further, as shown in FIG. 4b, the irradiation substrate 2 on the tray 1 is irradiated with the laser beam 3 while being heated by the heating mechanism 5 composed of a heating wire provided below the tray 1, thereby obtaining good crystallinity. It is known that a semiconductor thin film having the same can be obtained (JP-A-1-196116).
【0011】[0011]
【発明が解決しようとする課題】上記従来の半導体薄膜
の製造方法において、均一な物性で良質の結晶性を有す
る半導体層を得るためには、レーザ光の形状、エネルギ
ー均一性、ビーム内均一性の良いレーザ光を基板に対し
て高い精度で走査する必要がある。特に、硝子などの絶
縁性基板上に設けられたアクティブマトリックス型の画
像表示装置やイメージセンサーなどに利用できるTFT
に用いる半導体薄膜においては、TFTの間隔が数十μ
m単位となって狭くて要求される精度は高く、レーザア
ニール装置のトレー走査機構には、半導体薄膜をパター
ニングする露光機と同程度の寸法精度が要求される。し
かし、照射基板を加熱しながら搬送する機構を持つトレ
ーでは高い精度のレーザ光の走査は困難となっていた。In order to obtain a semiconductor layer having uniform physical properties and good crystallinity in the above-mentioned conventional method for manufacturing a semiconductor thin film, the shape of the laser beam, the energy uniformity, and the in-beam uniformity are required. It is necessary to scan the substrate with a good laser beam with high accuracy. In particular, a TFT that can be used for an active matrix type image display device or image sensor provided on an insulating substrate such as glass
In the semiconductor thin film used for
The accuracy is high because it is narrow in m units, and the tray scanning mechanism of the laser annealing apparatus is required to have the same dimensional accuracy as that of an exposure device that patterns a semiconductor thin film. However, it has been difficult to scan the laser beam with high accuracy using a tray having a mechanism for transporting the irradiation substrate while heating it.
【0012】本発明は、上記従来の問題を解決するもの
で、走査による寸法精度を向上させるとともに、大面積
基板全面にわたって、均一で良質の半導体薄膜を得るこ
とができる半導体薄膜の製造方法を提供することを目的
とする。The present invention solves the above-mentioned conventional problems, and provides a method for manufacturing a semiconductor thin film, which can improve the dimensional accuracy by scanning and can obtain a uniform and good quality semiconductor thin film over the entire surface of a large area substrate. The purpose is to do.
【0013】[0013]
【課題を解決するための手段】本発明の半導体薄膜の製
造方法は、非単結晶半導体膜をレーザ光によりアニール
して多結晶化する半導体薄膜の製造方法において、該非
単結晶半導体膜全体に強光を照射して加熱する加熱工程
と、該加熱工程の後、該非単結晶半導体膜上に該強光と
同時に、強光照射領域中に該レーザ光を照射し、該非単
結晶半導体膜の多結晶化を行う多結晶化工程とを有する
ものであり、そのことにより上記目的が達成される。A method of manufacturing a semiconductor thin film according to the present invention is a method of manufacturing a semiconductor thin film in which a non-single crystal semiconductor film is annealed by laser light to be polycrystallized. After the heating step of irradiating with light and heating, the non-single crystal semiconductor film is irradiated with the laser light at the same time as the strong light on the non-single crystal semiconductor film, and the non-single crystal semiconductor film And a polycrystallization step for performing crystallization, whereby the above object is achieved.
【0014】また、本発明の半導体薄膜の製造方法は、
非単結晶半導体膜をレーザ光によりアニールして多結晶
化する半導体薄膜の製造方法において、該非単結晶半導
体膜全体に、照射エネルギー密度が該レーザ光の照射エ
ネルギー密度よりも低い強光を照射して加熱する加熱工
程と、該加熱工程の後、該非単結晶半導体膜上に該強光
と同時に、強光照射領域中に該レーザ光を照射し、該非
単結晶半導体膜の多結晶化を行う多結晶化工程とを有す
るものであり、そのことにより上記目的が達成される。The method of manufacturing a semiconductor thin film of the present invention is
In a method for manufacturing a semiconductor thin film in which a non-single-crystal semiconductor film is annealed by laser light to be polycrystallized, the entire non-single-crystal semiconductor film is irradiated with strong light whose irradiation energy density is lower than the irradiation energy density of the laser light. And heating the non-single crystal semiconductor film simultaneously with the intense light, and irradiating the non-single crystal semiconductor film with the laser light in a strong light irradiation region to polycrystallize the non-single crystal semiconductor film. And a polycrystallization step, whereby the above object is achieved.
【0015】さらに、本発明の半導体薄膜の製造方法
は、絶縁性基板上または該絶縁性基板上に設けられた絶
縁膜上に非単結晶半導体膜を形成し、該非単結晶半導体
膜をレーザ光によりアニールして多結晶化する半導体薄
膜の製造方法において、該絶縁性基板よりも照射面積が
大きくなるように、照射エネルギー密度が該レーザ光の
照射エネルギー密度よりも低い強光を照射して加熱する
加熱工程と、該加熱工程の後、該非単結晶半導体膜上に
該強光と同時に、強光照射領域中に該レーザ光を照射
し、該非単結晶半導体膜の多結晶化を行う多結晶化工程
とを有するものであり、そのことにより上記目的が達成
される。Further, in the method for producing a semiconductor thin film of the present invention, a non-single-crystal semiconductor film is formed on an insulating substrate or an insulating film provided on the insulating substrate, and the non-single-crystal semiconductor film is irradiated with laser light. In the method of manufacturing a semiconductor thin film which is annealed to be polycrystallized by irradiation with intense light, the irradiation energy density of which is lower than the irradiation energy density of the laser light so that the irradiation area is larger than that of the insulating substrate. And a polycrystal for performing polycrystallization of the non-single-crystal semiconductor film by irradiating the non-single-crystal semiconductor film with the intense light at the same time as the intense light irradiation with the laser light after the heating step. The above-mentioned object is achieved by that.
【0016】また、好ましくは、本発明の半導体薄膜の
製造方法における強光の照射時間がレーザ光の照射時間
よりも長い。Further, preferably, the irradiation time of the strong light in the method for manufacturing a semiconductor thin film of the present invention is longer than the irradiation time of the laser light.
【0017】さらに、好ましくは、本発明の半導体薄膜
の製造方法におけるレーザ光として、波長が400nm
以下の紫外線を使用する。また、好ましくは、本発明の
半導体薄膜の製造方法におけるレーザ光として、発振時
間が60nsec(秒)以下の紫外線を使用する。Further preferably, the laser light used in the method for producing a semiconductor thin film of the present invention has a wavelength of 400 nm.
Use the following UV rays: Further, it is preferable to use ultraviolet rays having an oscillation time of 60 nsec (seconds) or less as laser light in the method for manufacturing a semiconductor thin film of the present invention.
【0018】[0018]
【作用】本発明においては、非単結晶半導体膜に高出力
のエネルギービームのレーザ光を連続的に照射し、この
レーザ光と同時に絶縁性基板面積よりも大きく、レーザ
光の照射時間よりも長く、レーザ光の照射エネルギー密
度よりも低い強光を非単結晶半導体膜全体に照射し、こ
の非単結晶半導体膜の多結晶化を行う。In the present invention, the non-single crystal semiconductor film is continuously irradiated with a laser beam of a high-power energy beam, and at the same time as this laser beam, the area of the insulating substrate is larger than the irradiation time of the laser beam. The non-single-crystal semiconductor film is polycrystallized by irradiating the whole non-single-crystal semiconductor film with intense light having a lower irradiation energy density of the laser light.
【0019】このように、非単結晶半導体膜の加熱を強
光により行うため、レーザアニール装置のトレー走査機
構には、従来のように加熱機構を持たせる必要がなくな
り、走査機構のみ持たせれば良いので、半導体薄膜をパ
ターニングする露光機と同等の寸法精度でレーザ光を走
査させることが可能となる。また、基板よりも大きな面
積に強光を照射して基板全体を一度に加熱するので、基
板温度の均一性も良く、スループットの上でも、例えば
トレーを予備加熱する必要がないので有利である。さら
に、例えば基板のトレーに走査機構を設ければ、光学系
を固定することができるので、レーザ光の形状、エネル
ギー均一性、ビーム内均一性の良いレーザ光を形成する
ことも可能となる。As described above, since the non-single-crystal semiconductor film is heated by intense light, it is not necessary to provide the tray scanning mechanism of the laser annealing apparatus with a heating mechanism as in the conventional case, and if only the scanning mechanism is provided. Since it is good, it is possible to scan the laser beam with the same dimensional accuracy as that of an exposure device that patterns a semiconductor thin film. In addition, since the entire substrate is heated at once by irradiating an area larger than the substrate with strong light, the substrate temperature is excellent in uniformity, and in terms of throughput, for example, there is no need to preheat the tray, which is advantageous. Further, for example, if the scanning mechanism is provided on the tray of the substrate, the optical system can be fixed, so that it becomes possible to form the laser light having good shape, energy uniformity, and in-beam uniformity.
【0020】また、このレーザ光として、波長が400
nm以下の紫外線を使用すれば、例えば半導体シリコン
膜の吸収係数にマッチングした波長であって、半導体シ
リコン膜の効率の良い加熱が可能となる。The wavelength of this laser light is 400
If ultraviolet rays having a wavelength of nm or less are used, it is possible to efficiently heat the semiconductor silicon film with a wavelength matching the absorption coefficient of the semiconductor silicon film, for example.
【0021】[0021]
【実施例】以下、本発明の実施例について説明する。Embodiments of the present invention will be described below.
【0022】図1は本発明の一実施例における半導体薄
膜の製造方法の概要を示す図であって、レーザアニール
装置の構成図である。FIG. 1 is a diagram showing an outline of a method for manufacturing a semiconductor thin film in one embodiment of the present invention, which is a configuration diagram of a laser annealing apparatus.
【0023】図1において、トレー11上に照射基板1
2が載置され、矢印Aの左右方向(走査方向)に搬送さ
れる。このトレー11上の照射基板12上方に、斜め方
向から紫外線の強光Bを照射して基板全体を加熱する強
光ユニット13が設けられている。この強光ユニット1
3の紫外線(UV)ランプ13aによって、照射基板1
2の全面、好ましくは、照射基板12よりも照射面積が
大きくなるように、照射エネルギー密度がレーザ光の照
射エネルギー密度よりも低い強光Bを照射して照射基板
12を所定温度まで加熱する。また、トレー11上の照
射基板12の真上には、例えばホモジナイザーであるビ
ーム整形ユニット14が設けられ、レーザ発振器15か
らの多結晶化用のレーザ光Cを反射鏡16で反射させて
ビーム整形ユニット14に導き、このビーム整形ユニッ
ト14で所定のビームに整形して照射基板12上に照射
する。このとき、レーザ光Cは、その波長が400nm
以下で、その発振時間が60nsec以下とする。以上
によりレーザアニール装置が構成される。In FIG. 1, the irradiation substrate 1 is placed on the tray 11.
2 is placed and conveyed in the left-right direction (scanning direction) of arrow A. Above the irradiation substrate 12 on the tray 11, a strong light unit 13 that heats the entire substrate by irradiating the strong light B of ultraviolet rays from an oblique direction is provided. This strong light unit 1
Irradiation substrate 1 by means of 3 ultraviolet (UV) lamps 13a
2, the irradiation substrate 12 is heated to a predetermined temperature by irradiating strong light B having an irradiation energy density lower than the irradiation energy density of the laser light so that the irradiation area is larger than that of the irradiation substrate 12. A beam shaping unit 14, which is, for example, a homogenizer, is provided directly above the irradiation substrate 12 on the tray 11, and the laser beam C for polycrystallization from the laser oscillator 15 is reflected by the reflecting mirror 16 to perform beam shaping. The beam is guided to the unit 14, and the beam shaping unit 14 shapes the beam into a predetermined beam and irradiates the irradiation substrate 12 with the beam. At this time, the laser light C has a wavelength of 400 nm.
Hereinafter, the oscillation time is set to 60 nsec or less. The laser annealing device is configured as described above.
【0024】このように、基板を加熱しながらレーザ照
射することにより、良質の結晶性を有する半導体薄膜の
結晶層を得ることができる。また、レーザアニール装置
のトレー走査機構には従来のように加熱機構を有する必
要はなく、強光Bによって基板全体を加熱するので、ト
レー走査機構や光学系の精度を上げることができる。Thus, by irradiating the laser while heating the substrate, it is possible to obtain a crystal layer of a semiconductor thin film having good crystallinity. Further, the tray scanning mechanism of the laser annealing apparatus does not need to have a heating mechanism as in the conventional case, and the whole substrate is heated by the strong light B, so that the accuracy of the tray scanning mechanism and the optical system can be improved.
【0025】ここで、まず、上記照射基板12につい
て、以下に説明する。First, the irradiation substrate 12 will be described below.
【0026】図2は図1の照射基板12の断面図であ
る。FIG. 2 is a sectional view of the irradiation substrate 12 shown in FIG.
【0027】図2において、絶縁性基板21上にベース
コート膜22が設けられ、このベースコート膜22上
に、レーザ光Cによって半導体薄膜としての例えば多結
晶シリコン膜となる非晶質シリコン膜23が設けられて
いる。これにより、照射基板12が構成されている。In FIG. 2, a base coat film 22 is provided on an insulating substrate 21, and an amorphous silicon film 23 serving as a semiconductor thin film, for example, a polycrystalline silicon film is provided on the base coat film 22 by laser light C. Has been. This forms the irradiation substrate 12.
【0028】この照射基板12の製造方法について説明
する。A method of manufacturing the irradiation substrate 12 will be described.
【0029】図2に示すように、300mm□程度の絶
縁性基板(例えば硝子基板)21表面を洗浄後、絶縁性
基板21上にベースコート膜22として二酸化シリコン
を、スパッタリング装置を用いて厚さ300nm程度堆
積させる。このベースコート膜22の必要膜厚は、絶縁
性基板21の表面状態によって異なり、十分に平坦で、
かつナトリウムイオンなどの半導体特性に悪影響を与え
るイオンの濃度が十分に低い基板であれば、省略するこ
とも可能であり、逆に表面の状態が、傷や凹凸の激しい
ものであれば上記の膜厚よりも厚く堆積させる必要があ
る。このベースコート膜22上に化学的気相成長法(C
VD法)やスパッタリング法を用いて非晶質シリコン膜
23を50nm程度の厚さに堆積させる。以上によって
照射基板12が得られる。As shown in FIG. 2, after cleaning the surface of an insulating substrate (for example, a glass substrate) 21 of about 300 mm □, silicon dioxide is used as a base coat film 22 on the insulating substrate 21 and a thickness of 300 nm is formed by using a sputtering device. Deposit to a degree. The required film thickness of the base coat film 22 varies depending on the surface condition of the insulating substrate 21, is sufficiently flat,
Also, it can be omitted if the substrate has a sufficiently low concentration of ions such as sodium ions which adversely affect the semiconductor characteristics. Conversely, if the surface condition is such that scratches or irregularities are severe, the above film It should be deposited thicker than thick. On this base coat film 22, a chemical vapor deposition method (C
The amorphous silicon film 23 is deposited to a thickness of about 50 nm by using the VD method) or the sputtering method. The irradiation substrate 12 is obtained by the above.
【0030】次に、本発明の半導体薄膜の製造方法につ
いて、以下に説明する。Next, a method for manufacturing a semiconductor thin film of the present invention will be described below.
【0031】図3は本発明の一実施例における半導体薄
膜の製造方法の概要を示す図であって、aはレーザ光C
および強光Bを照射する基板を含む装置の上面図、bは
レーザ光Cおよび強光Bを照射する基板を含む装置の側
面図、cはレーザ光Cおよび強光Bの時間とエネルギー
出力の関係を示す図である。FIG. 3 is a diagram showing an outline of a method of manufacturing a semiconductor thin film in one embodiment of the present invention, in which a is a laser beam C.
And a top view of an apparatus including a substrate for irradiating strong light B, b is a side view of an apparatus including a substrate for irradiating laser light C and strong light B, and c is a time and energy output of laser light C and strong light B. It is a figure which shows a relationship.
【0032】図3a〜図3cに示すように、照射基板1
2の非晶質シリコン膜23上全体に強光Bを照射して照
射基板12を所定温度に加熱する。この加熱の後にも、
非晶質シリコン膜23上に強光Bが照射され、この強光
照射領域中にレーザ光Cを強光Bの照射と同時に照射し
て、シリコンの熔融再結晶化で結晶成長させることによ
り、均一な物性で良質の結晶性を有する半導体薄膜の結
晶層を得る。As shown in FIGS. 3a to 3c, the irradiation substrate 1
The entire surface of the amorphous silicon film 23 of No. 2 is irradiated with strong light B to heat the irradiation substrate 12 to a predetermined temperature. After this heating,
The strong light B is irradiated onto the amorphous silicon film 23, and the laser light C is simultaneously irradiated in the strong light irradiation region at the same time as the strong light B is irradiated to cause crystal growth by melt recrystallization of silicon. A crystalline layer of a semiconductor thin film having uniform physical properties and good crystallinity is obtained.
【0033】このとき、レーザ光Cの照射領域17は、
強光Bの照射領域18に含まれている。このレーザ光C
の発振波長はXeClエキシマレーザの308nm、エ
ネルギー出力は700mJ/パルスで、発振時間(パル
ス幅)は約50nsであり、発振周波数は300Hzと
した。また、ビーム形状は300×0.5mmで基板表
面のエネルギー密度は300mJ/cm2程度とする。At this time, the irradiation area 17 of the laser light C is
It is included in the irradiation region 18 of the strong light B. This laser light C
The oscillation wavelength of XeCl excimer laser was 308 nm, the energy output was 700 mJ / pulse, the oscillation time (pulse width) was about 50 ns, and the oscillation frequency was 300 Hz. The beam shape is 300 × 0.5 mm and the energy density on the substrate surface is about 300 mJ / cm 2 .
【0034】また、照射基板12の走査方法として、矢
印Aの左右方向に15mm/secの速度でトレー11
を動作させてレーザ光Cを順次走査させる。As a method of scanning the irradiation substrate 12, the tray 11 is moved at a speed of 15 mm / sec in the left and right direction of the arrow A.
Are operated to sequentially scan the laser light C.
【0035】さらに、強光Bについては、UVランプ1
3aである毛細管型高圧水銀ランプを用いて、レーザ光
Cを照射する以前に、350mm□程度の範囲で、基板
面積よりも照射面積が大きくなるように照射して加熱
し、照射基板12の表面が所定温度の400℃程度とな
るようにした。また、図3cに示すように、点線の強光
Bの照射時間は実線のレーザ光Cの発振照射時間より長
くしている。これにより、均一な物性で良質の結晶性を
有する半導体薄膜結晶層が得られるアニールが可能とな
った。また、強光Bはレーザ光Cの照射が完了した後も
ある一定時間照射しておいても良い。実際のレーザ光C
の照射条件は、膜厚などにより最適値は異なるが、レー
ザ光Cのエネルギー密度が200〜400mJ/cm2
程度で、強光Bによる照射基板12の表面温度が200
〜500℃程度になるようにする。Further, for the strong light B, the UV lamp 1
The surface of the irradiation substrate 12 is heated by irradiation with a capillary type high pressure mercury lamp 3a before irradiation with the laser beam C so that the irradiation area is larger than the substrate area within a range of about 350 mm □. Was set to a predetermined temperature of about 400 ° C. Further, as shown in FIG. 3c, the irradiation time of the strong light B indicated by the dotted line is longer than the oscillation irradiation time of the laser light C indicated by the solid line. As a result, it becomes possible to perform an annealing to obtain a semiconductor thin film crystal layer having uniform physical properties and good crystallinity. The intense light B may be irradiated for a certain period of time even after the irradiation of the laser light C is completed. Actual laser light C
The optimum value of the irradiation conditions of No. 2 differs depending on the film thickness and the like, but the energy density of the laser light C is 200 to 400 mJ / cm 2
The surface temperature of the irradiation substrate 12 by the strong light B is about 200
Set to about 500 ° C.
【0036】以上により、本発明の半導体薄膜結晶層の
製造方法におけるレーザアニール装置の加熱機構を用い
て、絶縁性基板21上に堆積された非晶質シリコン膜2
3にレーザ光Cを連続的に照射し、レーザ光Cと同時に
絶縁性基板11の面積よりも大きく、レーザ光Cの発振
照射時間よりも長く、レーザ光Cの照射エネルギー密度
よりも低い強光Bを照射して、非単結晶半導体膜の多結
晶化を行う。As described above, the amorphous silicon film 2 deposited on the insulating substrate 21 by using the heating mechanism of the laser annealing apparatus in the method of manufacturing a semiconductor thin film crystal layer of the present invention.
3 is continuously irradiated with the laser light C, and at the same time as the laser light C, strong light larger than the area of the insulating substrate 11, longer than the oscillation irradiation time of the laser light C, and lower than the irradiation energy density of the laser light C. B is irradiated to polycrystallize the non-single-crystal semiconductor film.
【0037】つまり、本発明においては、非晶質シリコ
ン膜23に高出力のエネルギービームのレーザ光Cを連
続的に順次照射し、膜の結晶粒径拡大または単結晶化を
図る半導体薄膜のレーザ光の照射方法と、レーザアニー
ル装置において、レーザ光Cと同時に基板面積よりも大
きく、レーザ光Cの照射時間よりも長く、レーザ光Cの
照射エネルギー密度よりも低い強光Bを照射し、非単結
晶半導体膜である非晶質シリコン膜23の熔融再結晶化
で結晶成長させることにより、均一な物性で良質の結晶
性を有する半導体薄膜結晶層を得るレーザアニール装置
による加熱方法とを有している。That is, in the present invention, a laser beam of a semiconductor thin film for irradiating the amorphous silicon film 23 with a laser beam C of a high-power energy beam continuously and sequentially to enlarge the crystal grain size of the film or to single crystallize the film. In the light irradiation method and the laser annealing apparatus, strong light B that is larger than the substrate area at the same time as the laser light C, is longer than the irradiation time of the laser light C, and is lower than the irradiation energy density of the laser light C, And a heating method using a laser annealing apparatus for obtaining a semiconductor thin film crystal layer having uniform physical properties and good crystallinity by crystallizing the amorphous silicon film 23 which is a single crystal semiconductor film by melt recrystallization. ing.
【0038】上記構成により、照射基板12全体の加熱
を強光Bにより行うため、レーザアニール装置のトレー
走査機構には、従来のように加熱機構を持たせる必要が
なく、走査機構のみ持たせれば良いので、半導体薄膜を
パターニングする露光機と同等の走査精度が可能であ
る。また、照射基板12よりも大きな面積に強光Bを照
射して基板全体を一度に加熱するので、基板温度の均一
性も良く、スループットの上でも、トレーを予備加熱す
る必要がないので有利である。その上、基板のトレーに
走査機構を設けることにより、光学系を固定することが
できるので、レーザ光の形状、エネルギー均一性、ビー
ム内均一性の良いレーザ光を形成することが可能とな
る。With the above structure, since the entire irradiation substrate 12 is heated by the strong light B, the tray scanning mechanism of the laser annealing apparatus does not need to have a heating mechanism as in the conventional case, but only the scanning mechanism needs to be provided. Since it is good, scanning accuracy equivalent to that of an exposure device for patterning a semiconductor thin film is possible. In addition, since the whole substrate is heated at once by irradiating the area larger than the irradiation substrate 12 with the strong light B, the substrate temperature is excellent in uniformity, and in terms of throughput, there is no need to preheat the tray, which is advantageous. is there. In addition, since the optical system can be fixed by providing the scanning mechanism on the tray of the substrate, it becomes possible to form the laser light with good shape, energy uniformity, and in-beam uniformity.
【0039】なお、本実施例では、強光Bの光源は紫外
線(UV)ランプ13aとしたが、レーザ光、赤外線ラ
ンプ、可視光ランプなどが考えられ、基板全体を、照射
エネルギー密度がレーザ光Cの照射エネルギー密度より
も低い強光Bが照射できればよい。また、イオン注入層
の活性化に本発明を適用し、アニール領域を均一にする
ことも可能である。In this embodiment, the light source of the strong light B is the ultraviolet (UV) lamp 13a, but laser light, infrared lamp, visible light lamp, etc. are conceivable, and the irradiation energy density of the entire substrate is laser light. It suffices that strong light B lower than the irradiation energy density of C can be irradiated. Further, it is possible to apply the present invention to the activation of the ion-implanted layer and make the annealed region uniform.
【0040】また、本実施例では、レーザ光の発振波長
をXeClエキシマレーザの308nmとし、レーザ光
の発振波長を400nm以下としたが、これは、半導体
膜、例えば半導体シリコン膜などの吸収係数にマッチン
グした波長であることが必要であり、また、半導体シリ
コン膜の効率の良い加熱を行うためには、発振波長が4
00nm以下の紫外線を照射することが必要であるため
である。例えば、ハロゲンランプなどの光の波長が1μ
m程度にピークを持つ幅広い波長である場合、この光の
大部分(恐らく90パーセント以上)が半導体シリコン
膜を透過してしまい、半導体シリコン膜の充分な加熱が
行われない。Further, in the present embodiment, the oscillation wavelength of the laser light is set to 308 nm of the XeCl excimer laser and the oscillation wavelength of the laser light is set to 400 nm or less. This is due to the absorption coefficient of the semiconductor film, for example, the semiconductor silicon film. It is necessary that the wavelengths are matched, and in order to efficiently heat the semiconductor silicon film, the oscillation wavelength is 4
This is because it is necessary to irradiate ultraviolet rays having a wavelength of 00 nm or less. For example, the wavelength of light from a halogen lamp is 1μ
In the case of a wide wavelength having a peak at about m, most of this light (probably 90% or more) passes through the semiconductor silicon film, and the semiconductor silicon film is not sufficiently heated.
【0041】[0041]
【発明の効果】以上のように本発明によれば、基板や非
単結晶半導体膜全体の加熱を強光で行うため、基板のト
レー走査機構には、従来のように加熱機構を持たせる必
要がなく、走査機構のみを設ければよく、走査における
寸法精度を向上させることができる。このため、レーザ
照射の重複部分の寸法精度の向上と均一な加熱によりア
ニール領域における半導体薄膜の物性のばらつきもなく
なる。これによって、均一で良質の半導体薄膜の結晶層
を形成することができ、例えば高精細で大面積なアクテ
ィブマトリクス基板で、実用上十分なTFT特性を持た
せることができる。As described above, according to the present invention, since the substrate and the entire non-single-crystal semiconductor film are heated by strong light, the tray scanning mechanism of the substrate needs to have a heating mechanism as in the conventional case. However, it is sufficient to provide only the scanning mechanism, and the dimensional accuracy in scanning can be improved. Therefore, the dimensional accuracy of the overlapping portion of the laser irradiation is improved and the uniform heating eliminates variations in the physical properties of the semiconductor thin film in the annealed region. As a result, a uniform and good-quality crystal layer of a semiconductor thin film can be formed, and for example, an active matrix substrate having a high definition and a large area can have TFT characteristics practically sufficient.
【図1】本発明の一実施例における半導体薄膜の製造方
法の概要を示す図であって、レーザアニール装置の構成
図である。FIG. 1 is a diagram showing an outline of a method for manufacturing a semiconductor thin film in one embodiment of the present invention, which is a configuration diagram of a laser annealing apparatus.
【図2】図1の照射基板12の断面図である。FIG. 2 is a sectional view of an irradiation substrate 12 of FIG.
【図3】本発明の一実施例における半導体薄膜の製造方
法の概要を示す図であって、aはレーザ光および強光を
照射する基板を含む装置の上面図、bはレーザ光および
強光を照射する基板を含む装置の側面図、cはレーザ光
および強光の時間とエネルギー出力の関係を示す図であ
る。FIG. 3 is a diagram showing an outline of a method for manufacturing a semiconductor thin film in one embodiment of the present invention, in which a is a top view of an apparatus including a substrate for irradiating laser light and strong light, and b is laser light and strong light. FIG. 3 is a side view of an apparatus including a substrate for irradiating with, and c is a diagram showing a relationship between time and energy output of laser light and intense light.
【図4】従来の半導体薄膜の製造方法の概要を示す図で
あって、aはレーザ光を照射する基板を含む装置の上面
図、bはレーザ光を照射する基板を含む装置の側面図、
cはレーザ光の発振時間とエネルギー出力の関係を示す
図、dはレーザ光を照射した場合の基板を含む装置の上
面図である。FIG. 4 is a diagram showing an outline of a conventional method for manufacturing a semiconductor thin film, in which a is a top view of an apparatus including a substrate for irradiating laser light, and b is a side view of an apparatus including a substrate for irradiating laser light.
c is a diagram showing a relationship between an oscillation time of laser light and energy output, and d is a top view of an apparatus including a substrate when laser light is irradiated.
12 照射基板 17 レーザ光Cの照射領域 18 強光Bの照射領域 23 非晶質シリコン膜(非単結晶半導体膜) B 強光 C レーザ光 12 irradiation substrate 17 irradiation area of laser light C 18 irradiation area of strong light B 23 amorphous silicon film (non-single crystal semiconductor film) B strong light C laser light
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/336 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01L 21/336
Claims (5)
ールして多結晶化する半導体薄膜の製造方法において、 該非単結晶半導体膜全体に強光を照射して加熱する加熱
工程と、 該加熱工程の後、該非単結晶半導体膜上に該強光と同時
に、強光照射領域中に該レーザ光を照射し、該非単結晶
半導体膜の多結晶化を行う多結晶化工程とを有する半導
体薄膜の製造方法。1. A method of manufacturing a semiconductor thin film in which a non-single-crystal semiconductor film is annealed by laser light to be polycrystallized, wherein a heating step of irradiating the entire non-single-crystal semiconductor film with intense light to heat it, and the heating step. After that, simultaneously with the intense light on the non-single-crystal semiconductor film, the laser light is irradiated in the intense light irradiation region to polycrystallize the non-single-crystal semiconductor film, Production method.
ールして多結晶化する半導体薄膜の製造方法において、 該非単結晶半導体膜全体に、照射エネルギー密度が該レ
ーザ光の照射エネルギー密度よりも低い強光を照射して
加熱する加熱工程と、 該加熱工程の後、該非単結晶半導体膜上に該強光と同時
に、強光照射領域中に該レーザ光を照射し、該非単結晶
半導体膜の多結晶化を行う多結晶化工程とを有する半導
体薄膜の製造方法。2. A method of manufacturing a semiconductor thin film in which a non-single-crystal semiconductor film is annealed by laser light to be polycrystallized, wherein the irradiation energy density is lower than the irradiation energy density of the laser light over the entire non-single-crystal semiconductor film. A heating step of irradiating with intense light and heating, and after the heating step, the non-single-crystal semiconductor film is irradiated with the laser light at the same time as the intense light in the intense light irradiation region. A method of manufacturing a semiconductor thin film, comprising a polycrystallization step of performing polycrystallization.
けられた絶縁膜上に非単結晶半導体膜を形成し、該非単
結晶半導体膜をレーザ光によりアニールして多結晶化す
る半導体薄膜の製造方法において、 該絶縁性基板よりも照射面積が大きくなるように、照射
エネルギー密度が該レーザ光の照射エネルギー密度より
も低い強光を照射して加熱する加熱工程と、 該加熱工程の後、該非単結晶半導体膜上に該強光と同時
に、強光照射領域中に該レーザ光を照射し、該非単結晶
半導体膜の多結晶化を行う多結晶化工程とを有する半導
体薄膜の製造方法。3. A semiconductor thin film in which a non-single-crystal semiconductor film is formed on an insulating substrate or an insulating film provided on the insulating substrate, and the non-single-crystal semiconductor film is annealed by laser light to be polycrystallized. In the manufacturing method of 1., a heating step of irradiating and heating with intense light having an irradiation energy density lower than the irradiation energy density of the laser light so that the irradiation area is larger than that of the insulating substrate, and after the heating step A method of manufacturing a semiconductor thin film, comprising: a polycrystallizing step of irradiating the non-single crystal semiconductor film with the intense light at the same time as the intense light irradiation with the laser light to polycrystallize the non-single crystal semiconductor film. .
間よりも長い請求項1または2、3記載の半導体薄膜の
製造方法。4. The method for manufacturing a semiconductor thin film according to claim 1, 2 or 3, wherein the intense light irradiation time is longer than the laser light irradiation time.
以下の紫外線を使用する請求項1または2、3記載の半
導体薄膜の製造方法。5. The laser light having a wavelength of 400 nm
The method for producing a semiconductor thin film according to claim 1, wherein the following ultraviolet rays are used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9715395A JPH08293466A (en) | 1995-04-21 | 1995-04-21 | Manufacture of semiconductor thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9715395A JPH08293466A (en) | 1995-04-21 | 1995-04-21 | Manufacture of semiconductor thin film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08293466A true JPH08293466A (en) | 1996-11-05 |
Family
ID=14184631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9715395A Withdrawn JPH08293466A (en) | 1995-04-21 | 1995-04-21 | Manufacture of semiconductor thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08293466A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999031719A1 (en) * | 1997-12-17 | 1999-06-24 | Matsushita Electric Industrial Co., Ltd. | Semiconductor thin film, method of producing the same, apparatus for producing the same, semiconductor device and method of producing the same |
US7214574B2 (en) | 1997-03-11 | 2007-05-08 | Semiconductor Energy Laboratory Co., Ltd. | Heating treatment device, heating treatment method and fabrication method of semiconductor device |
KR100785542B1 (en) * | 1999-09-22 | 2007-12-12 | 소니 가부시끼 가이샤 | Method of producing liquid crystal display panel |
-
1995
- 1995-04-21 JP JP9715395A patent/JPH08293466A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7214574B2 (en) | 1997-03-11 | 2007-05-08 | Semiconductor Energy Laboratory Co., Ltd. | Heating treatment device, heating treatment method and fabrication method of semiconductor device |
US7410850B2 (en) | 1997-03-11 | 2008-08-12 | Semiconductor Energy Laboratory Co., Ltd. | Heating treatment device, heating treatment method and fabrication method of semiconductor device |
WO1999031719A1 (en) * | 1997-12-17 | 1999-06-24 | Matsushita Electric Industrial Co., Ltd. | Semiconductor thin film, method of producing the same, apparatus for producing the same, semiconductor device and method of producing the same |
US6528397B1 (en) | 1997-12-17 | 2003-03-04 | Matsushita Electric Industrial Co., Ltd. | Semiconductor thin film, method of producing the same, apparatus for producing the same, semiconductor device and method of producing the same |
US6806498B2 (en) | 1997-12-17 | 2004-10-19 | Matsushita Electric Industrial Co., Ltd. | Semiconductor thin film, method and apparatus for producing the same, and semiconductor device and method of producing the same |
KR100785542B1 (en) * | 1999-09-22 | 2007-12-12 | 소니 가부시끼 가이샤 | Method of producing liquid crystal display panel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3586558B2 (en) | Method for reforming thin film and apparatus used for implementing the method | |
US7517774B2 (en) | Laser annealing method | |
JP3204307B2 (en) | Laser irradiation method and laser irradiation device | |
US20030003636A1 (en) | Thin film crystal growth by laser annealing | |
EP0730292A1 (en) | Method of growing semiconductor crystal and semiconductor fabricating apparatus | |
US20040009632A1 (en) | Thin film processing method and thin film processing apparatus | |
JP2002524874A (en) | Double pulse laser crystallization of thin semiconductor films | |
JPH11354463A (en) | Laser annealing device and manufacture of poly crystalline semiconductor film | |
US5840118A (en) | Laser process system and method of using the same | |
US20030148566A1 (en) | Production method for flat panel display | |
JPH118205A (en) | Manufacture of semiconductor device and laser beam irradiation device | |
JPH0883765A (en) | Manufacture of polycrystalline semiconductor film | |
JP2603418B2 (en) | Method for manufacturing polycrystalline semiconductor thin film | |
JP3587900B2 (en) | Method for manufacturing crystalline silicon film | |
US6759284B2 (en) | Method for polysilicon crystallization by simultaneous laser and rapid thermal annealing | |
JPH08293466A (en) | Manufacture of semiconductor thin film | |
JP4354015B2 (en) | Manufacturing method of semiconductor device | |
JP2002057105A (en) | Method and device for manufacturing semiconductor thin film, and matrix circuit-driving device | |
JPH09213651A (en) | Semiconductor thin film manufacturing device and method of manufacturing semiconductor thin film | |
JP2000012461A (en) | Method for producing crystalline semiconductor thin film | |
JPH09293872A (en) | Manufacture of thin-film transistor | |
JPH10125614A (en) | Laser irradiation device | |
JP2001176814A (en) | Method and device for manufacturing thin-film semiconductor device | |
JPH07235498A (en) | Formation of crystalline silicon film | |
JPH06177033A (en) | Laser annealing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20020702 |