[go: up one dir, main page]

JPH0829314A - Static and dynamic gas adsorption capacity measuring device, and its gas adsorption capacity measuring method and desorption capacity measuring method - Google Patents

Static and dynamic gas adsorption capacity measuring device, and its gas adsorption capacity measuring method and desorption capacity measuring method

Info

Publication number
JPH0829314A
JPH0829314A JP16359294A JP16359294A JPH0829314A JP H0829314 A JPH0829314 A JP H0829314A JP 16359294 A JP16359294 A JP 16359294A JP 16359294 A JP16359294 A JP 16359294A JP H0829314 A JPH0829314 A JP H0829314A
Authority
JP
Japan
Prior art keywords
gas
adsorption
adsorption capacity
adsorbed
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16359294A
Other languages
Japanese (ja)
Other versions
JP3389685B2 (en
Inventor
Sonoko Kikuchi
園子 菊池
Yuko Hida
祐子 肥田
Kazuhisa Yamazaki
一寿 山崎
皓男 ▲やぎ▼下
Akio Yagishita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16359294A priority Critical patent/JP3389685B2/en
Publication of JPH0829314A publication Critical patent/JPH0829314A/en
Application granted granted Critical
Publication of JP3389685B2 publication Critical patent/JP3389685B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

(57)【要約】 【目的】 ガス吸着能測定装置と測定方法に関し、ガス
体のみならず、蒸気圧の高い液体および固体についても
測定することを目的とする。 【構成】 硝子容器の底部に吸着媒体を、また、複数の
液溜め部に秤量した液状または固体状をしたガス成分
と、調湿が必要な場合は水を入れて密封し、硝子容器を
所定の温度に保持してガス成分をガス化せしめた後、コ
ック付き中空管を通じて硝子容器中のガスの一定量を採
取し、分析することにより硝子容器中に残存するガス成
分量を求め、先に秤量したガス成分量との差を求めるこ
とで静的なガス吸着能測定方法を構成する。
(57) [Abstract] [Purpose] With regard to a gas adsorption capacity measuring device and measuring method, it is intended to measure not only gas bodies but also liquids and solids with high vapor pressure. [Structure] Adsorption medium is placed at the bottom of the glass container, and liquid or solid gas components weighed in a plurality of liquid reservoirs and water are added if humidity control is necessary, and the glass container is sealed. After gasifying the gas components by holding at the temperature of 1, the gas amount in the glass container was sampled through a hollow tube with a cock, and the amount of the gas component remaining in the glass container was analyzed to obtain the A static gas adsorption capacity measuring method is constructed by obtaining the difference from the amount of gas component weighed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はガス吸着媒体のガス吸着
能測定装置とそれを用いたガス吸着能および脱離能の測
定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for measuring gas adsorption capacity of a gas adsorption medium and a method for measuring gas adsorption capacity and desorption capacity using the same.

【0002】大量の情報を高速に処理する必要から、情
報処理装置は電子部品の小形化と高密度実装により大容
量化が行なわれており、また、これらの電子部品を装着
する配線基板にパターン形成されている配線幅も極度に
縮小されている。
Due to the need to process a large amount of information at high speed, information processing apparatuses have been made large in capacity by downsizing and high-density mounting of electronic components, and a wiring board on which these electronic components are mounted has a pattern. The width of the formed wiring is also extremely reduced.

【0003】そのため、電子機器は湿度や環境雰囲気の
影響を受けて故障が生じ易いことから、これを避けるた
めに密封構造が採られている場合が多いが、その場合で
も、使用機器の温度上昇に伴って配線基板や電子部品を
構成する材料から腐食性ガスを生じ、これが原因で故障
が発生することがある。
Therefore, since electronic devices are susceptible to failure due to the influence of humidity and environmental atmosphere, a sealed structure is often adopted to avoid this, but even in that case, the temperature rise of the device used. Accordingly, a corrosive gas is generated from the material forming the wiring board or the electronic component, which may cause a failure.

【0004】また、クリーンルーム内でも作業中に発生
する腐食性ガスにより、製品の不良が発生する場合があ
る。これらのことから、活性炭やシリカゲルなどの従来
の吸着材や繊維質の吸着材からなるフィルタなどのガス
吸着媒体を用いて腐食性ガスを除去することが行なわれ
ている。
Further, even in a clean room, the product may be defective due to the corrosive gas generated during the work. For these reasons, corrosive gases are removed by using a conventional adsorbent such as activated carbon or silica gel or a gas adsorbent such as a filter made of a fibrous adsorbent.

【0005】[0005]

【従来の技術】活性炭やシリカゲルなど従来より知られ
た吸着材の他に繊維質の吸着材からなるフィルタが市販
されているが、これら吸着材のガス吸着能測定方法とし
ては、標準ガス発生装置〔パーミエータ(Permeator)]
などを用いて一定の濃度に調節した吸着ガスを吸着媒体
と共にテドラーバッグ(Tedlar Bag)に入れ、一定時間経
過した後のテドラーバッグ内の吸着ガス濃度をガスクロ
マトグラフ法や検知管法により測定している。
2. Description of the Related Art Filters made of fibrous adsorbents are commercially available in addition to conventionally known adsorbents such as activated carbon and silica gel. The gas adsorption capacity of these adsorbents is measured by a standard gas generator. [Permeator]
The adsorbed gas adjusted to a certain concentration by using, for example, is put in a Tedlar bag together with the adsorbent medium, and the adsorbed gas concentration in the Tedlar bag after a certain period of time is measured by a gas chromatograph method or a detection tube method.

【0006】こゝで、検知管法は図5に示すようにガラ
ス製の円筒状をした検知管1と検知器2を用いるもの
で、検知管1の中にはガスと反応して変色する物質が詰
められており、吸着対象ガスの濃度と種類に応じて各種
のものが用意されている。
Here, the detector tube method uses a glass-made cylindrical detector tube 1 and a detector 2 as shown in FIG. 5, and the inside of the detector tube 1 is discolored by reacting with gas. It is packed with substances, and various substances are prepared according to the concentration and type of the gas to be adsorbed.

【0007】そして、使用法としては検知管1と検知器
2をテドラーバッグのコックに接続して検知器2で一定
量の吸着ガスを吸引し、検知管1の変色長から吸着ガス
の濃度を求める方法である。
As a method of use, the detector tube 1 and the detector 2 are connected to a cock of a Tedlar bag, a certain amount of adsorbed gas is sucked by the detector 2, and the concentration of the adsorbed gas is obtained from the discoloration length of the detector tube 1. Is the way.

【0008】[0008]

【発明が解決しようとする課題】従来の方法は、一定の
濃度に希釈した吸着ガスを吸着媒体と共にテドラーバッ
グに入れて吸着能を測定する方法であり、対象が液体や
固体の場合は測定が困難であり、また、検知管法を用い
る場合は対象ガスが特定のものに限られると云う問題が
あった。
The conventional method is a method in which an adsorption gas diluted to a certain concentration is put in a Tedlar bag together with an adsorption medium to measure the adsorption ability, and it is difficult to measure when the object is a liquid or a solid. Further, when the detector tube method is used, there is a problem that the target gas is limited to a specific gas.

【0009】また、流動状態にある吸着ガスについては
吸着能を測定する方法はなかった。そこで、 ガス状のものに限らず、蒸気圧の高い液体や昇華性
の固体に対しても吸着能が測定できるようにすること、 流動状態の吸着ガスについて吸着能を測定でき、吸
着媒体の吸着率の経時変化を測定できるようにするこ
と、 吸着媒体に吸着している吸着ガスが、他のガスの通
気により脱離する脱離能を測定できるようにすること、
が課題である。
Further, there is no method for measuring the adsorption capacity of the adsorbed gas in the fluidized state. Therefore, it is possible to measure the adsorption ability not only for gaseous substances but also for liquids with high vapor pressure and sublimable solids, and for adsorbed gas in a fluid state, to measure the adsorption ability of the adsorption medium. To be able to measure the change with time of the rate, to be able to measure the desorption ability of the adsorbed gas adsorbed in the adsorption medium to be desorbed by aeration of other gas,
Is an issue.

【0010】[0010]

【課題を解決するための手段】上記の課題はガス吸着能
測定装置を静的なものと動的をものと区別し、それぞれ
について、測定装置を設計し、測定方法を実用化するこ
とにより解決することができる。
[Means for Solving the Problems] The above problems are solved by distinguishing a gas adsorption capacity measuring device from a static one and a dynamic one, designing a measuring device for each, and putting the measuring method to practical use. can do.

【0011】すなわち、静的なガス吸着能測定装置を使
用する場合には、密封構造をとる硝子容器の底部に吸着
媒体を、また、複数の液溜め部に秤量した液状または固
体状をしたガス成分と調湿が必要な場合は水を入れて密
封し、この硝子容器を所定の温度に保持してガス成分を
ガス化せしめた後、密封栓のコック付き中空管を通じて
硝子容器中のガスの一定量を採取し、分析することによ
り硝子容器中に残存するガス成分量を求め、先に秤量し
たガス成分量との差を求めることでガスの吸着能を測定
し、また、動的なガス吸着能測定装置を使用する場合に
は、ガス溜め部の中にある既知濃度の吸着ガスを吸引ポ
ンプにより流量を制御しながら吸引することにより、吸
着媒体保持部を通過する吸着ガスをガス採取部において
採取して吸着ガス中の成分濃度を測定し、ガス溜め部と
の濃度差から試料の吸着能を求めればよい。
That is, when a static gas adsorption capacity measuring device is used, an adsorption medium is placed at the bottom of a glass container having a sealed structure, and a liquid or solid gas weighed in a plurality of liquid reservoirs. If the composition and humidity control are necessary, put water and seal it, and after keeping this glass container at a predetermined temperature to gasify the gas component, gas in the glass container through the hollow tube with a cock of a sealing stopper. The amount of gas component remaining in the glass container is obtained by collecting and analyzing a certain amount of the gas component, and the gas adsorption capacity is measured by obtaining the difference from the amount of the gas component weighed previously. When using a gas adsorption capacity measuring device, the adsorption gas passing through the adsorption medium holding portion is sampled by sucking the adsorption gas with a known concentration in the gas reservoir while controlling the flow rate with a suction pump. Adsorbed gas collected in the department The component concentration measurements may be obtained adsorbability of the sample from the concentration difference between the gas reservoir.

【0012】[0012]

【作用】電子機器を腐食させるガスとしては常温におい
てガス状のものが多いが、常温においては液体であるが
蒸気圧の高いもの、また、常温においては固体である
が、加熱により容易に昇華するものがある。
Most of the gases that corrode electronic devices are gaseous at room temperature, but they are liquid at room temperature but have a high vapor pressure, and they are solid at room temperature, but easily sublime by heating. There is something.

【0013】前者は硫酸(H2SO4), 硝酸(HNO3), 燐酸(H
3PO4) などの強酸がこれに当たり、後者は沃素(I2), 樟
脳, ナフタリンなど蒸気圧の高い材料がこれに当たる。
また、クリーンルームにおいて使用する場合のようにガ
スは常に流動しており、吸着媒体はガス吸着能が低下次
第、交換する必要がある。
The former is sulfuric acid (H 2 SO 4 ), nitric acid (HNO 3 ), phosphoric acid (H
The strong acid such as 3 PO 4 ) corresponds to this, and the latter is a material with a high vapor pressure such as iodine (I 2 ), camphor, and naphthalene.
Further, as in the case of using in a clean room, the gas is constantly flowing, and the adsorption medium needs to be replaced as soon as the gas adsorption capacity decreases.

【0014】そこで、本発明は吸着能測定装置を静的用
と動的用に分け、それぞれについて吸着媒体で処理する
前後における反応ガス濃度を測定することにより吸着媒
体のガス吸着能を求めるものである。
Therefore, in the present invention, the adsorption capacity measuring device is divided into a static capacity device and a dynamic capacity device, and the gas adsorption capacity of the adsorption medium is determined by measuring the reaction gas concentrations before and after the treatment with the adsorption medium. is there.

【0015】図1は本発明に係る静的ガス吸着能測定装
置の断面図であって所定の容積をもつガラス容器4に摺
り合わせ可能な密封栓5が備えてあり、この密封栓5に
は複数の(この図の場合は2個)の液溜め部6がコック
7が付いた中空管8の先端に設けられている。
FIG. 1 is a cross-sectional view of a static gas adsorption capacity measuring device according to the present invention, which is provided with a sealing plug 5 which can be slid on a glass container 4 having a predetermined volume. A plurality of (two in the case of this figure) liquid reservoirs 6 are provided at the tip of a hollow tube 8 having a cock 7.

【0016】そして、測定方法としてはガラス容器4の
中にガス吸着能を測定する吸着媒体9をいれ、また、液
溜め部6の一方には吸着させようとするガス成分からな
る液体または固体を秤量して入れ、また、一定の湿度の
下での吸着量を測定したい場合には他方の液溜め部6に
水を入れ、この装置を温度設定してある恒温槽にいれて
保持する。
As a measuring method, an adsorption medium 9 for measuring gas adsorption capacity is placed in the glass container 4, and one of the liquid reservoirs 6 is filled with a liquid or a solid consisting of a gas component to be adsorbed. When weighed and put in, or when it is desired to measure the amount of adsorption under a constant humidity, water is put in the other liquid reservoir 6 and this device is put and held in a thermostatic chamber in which the temperature is set.

【0017】液溜め部6には、設定温度において必ず速
やかに気化するだけの量の液体または固体を添加する。
吸着媒体9の周囲のガス濃度が吸着媒体9への吸着のみ
で変動することがポイントである。仮に、一部液体が残
った状態で吸着媒体9への吸収が始まると、吸着量に見
合うだけのガス成分が気化し、そのため周囲のガス濃度
が変動して実際の吸収量が判らなくなる。
To the liquid reservoir 6 is added an amount of liquid or solid which is always vaporized at a set temperature.
The point is that the gas concentration around the adsorption medium 9 changes only by adsorption to the adsorption medium 9. If absorption into the adsorption medium 9 starts with a part of the liquid remaining, gas components commensurate with the adsorption amount are vaporized, so that the ambient gas concentration fluctuates and the actual absorption amount cannot be known.

【0018】そこで、対象ガスの検知管が存在する場合
は中空管8のコック7を開け、この先端に先に図5で示
した検知管1と検知器2をチューブを用いて連結し、検
知器2を吸引して一定量のガスを吸引すると、検知管1
の変色量より対象ガスの濃度を知ることができ、これよ
りガラス容器4の中の対象ガス成分の量が判り、先に秤
量して入れた量との差が吸着媒体の吸収量となる。
Therefore, when there is a detection tube for the target gas, the cock 7 of the hollow tube 8 is opened, and the detection tube 1 and the detector 2 shown in FIG. When the detector 2 is sucked and a certain amount of gas is sucked, the detector tube 1
The concentration of the target gas can be known from the amount of discoloration, and the amount of the target gas component in the glass container 4 can be known from this, and the difference from the previously weighed amount is the absorption amount of the adsorption medium.

【0019】また、検知管1を用いないか、或いは対象
ガスの検知管が存在しない場合は、図2に示すように密
封栓5をシリコン樹脂のような弾性体で形成すると共に
中空管の代わりにガラス棒10の先に液溜め部6を設けた
ものを使用し、ガスの採取は密封栓5にガスタイトシリ
ンジの針を貫通させて一定量を吸引し、このガスをガス
クロマトグラフなどを用いて分析することにより対象ガ
スの成分量を求めるものである。
If the detector tube 1 is not used, or if the detector tube for the target gas is not present, the sealing plug 5 is made of an elastic material such as silicon resin as shown in FIG. Instead, a glass rod 10 provided with a liquid reservoir 6 at the tip is used. To collect gas, a needle of a gas-tight syringe is passed through the sealing stopper 5 and a certain amount is sucked, and this gas is collected by a gas chromatograph or the like. The amount of the component of the target gas is obtained by performing analysis.

【0020】次に、図3は本発明に係る動的ガス吸着能
測定装置の構成図であって吸着させたいガスと希釈ガス
とからなる混合ガスを保持するガス溜め部〔テドラーバ
ッグ(Tedlar Bag)]12と吸着媒体13を挟持する吸着媒体
保持部14とガス溜め部(テドラーバッグ)12の混合ガス
を吸引してガス採取部(テドラーバッグ)15に送り込む
吸引ポンプ16と、この吸引量を調節する流量制御部(流
量計)17の組合せから構成されている。
Next, FIG. 3 is a block diagram of a dynamic gas adsorption capacity measuring apparatus according to the present invention, in which a gas reservoir for holding a mixed gas consisting of a gas to be adsorbed and a diluent gas [Tedlar Bag] ] The suction pump 16 that sucks the mixed gas of the adsorption medium holding portion 14 that sandwiches the adsorption medium 13 and the adsorption medium 13 and the gas reservoir portion (Tedlar bag) 12 and sends it to the gas sampling portion (Tedlar bag) 15, and the flow rate that adjusts this suction amount It is composed of a combination of control units (flow meters) 17.

【0021】そして、ガス溜め部12と吸着媒体13の部分
を恒温槽18に格納して一定の温度に保ち、吸引ポンプ16
と流量制御部17により一定の流量でガス採取部15に蓄え
られた混合ガスを静的ガス吸着能測定装置と同様に分析
することにより吸着媒体保持部14にある吸着媒体13のガ
ス吸収量が求まるのである。
Then, the gas reservoir 12 and the adsorption medium 13 are stored in a thermostatic chamber 18 to maintain a constant temperature, and the suction pump 16
And the gas absorption amount of the adsorption medium 13 in the adsorption medium holding unit 14 by analyzing the mixed gas stored in the gas sampling unit 15 at a constant flow rate by the flow rate control unit 17 in the same manner as in the static gas adsorption capacity measuring device. It is found.

【0022】また、図4は別の構成の吸着能測定装置の
構成を示すもので、ガス溜め部(テドラーバッグ)12と
吸着媒体保持部14とガス採取部(捕集瓶)20と吸引ポン
プ16と流量制御部(流量計)17が直列に並んで構成され
ており、ガス溜め部(テドラーバッグ)12にある混合ガ
スは吸引ポンプ16により吸着媒体保持部14にある吸着媒
体13で大部分が吸収された後、ガス採取部(捕集瓶)20
で残りの全部が捕集され、この捕集液21を分析すること
により、吸着媒体13のガス吸収量を求めることができ
る。
FIG. 4 shows the structure of an adsorption capacity measuring device having another structure. A gas reservoir (Tedlar bag) 12, an adsorption medium holding unit 14, a gas sampling unit (collection bottle) 20, and a suction pump 16 are shown. And a flow rate control unit (flow meter) 17 are arranged in series, and most of the mixed gas in the gas reservoir (Tedlar bag) 12 is absorbed by the suction medium 16 in the suction medium holding unit 14 by the suction pump 16. After collection, gas sampling unit (collection bottle) 20
The remaining whole is collected by and the amount of gas absorbed by the adsorption medium 13 can be obtained by analyzing the collected liquid 21.

【0023】次に、吸着対象ガスは当初、吸着媒体に一
方的に吸着されるものゝ、吸着能が飽和に近づいた場合
や、温度が高い場合は、物理吸着されている対象ガスは
吸着媒体からの離脱を生ずる。
Next, the target gas to be adsorbed is initially unilaterally adsorbed on the adsorbent medium. When the adsorbing capacity approaches saturation or when the temperature is high, the target gas that is physically adsorbed is the adsorbent medium. Results in a departure from.

【0024】この離脱量の測定方法としては図3または
図4に示すガス溜め部(テドラーバッグ)12に吸着成分
を含まないガス( 例えばN2 ガス) を入れておき、一
方、吸着ガスを吸着している吸着媒体13は吸着媒体保持
部14に挟持し、吸着成分を含まないガス( 例えばN2
ス) を通気させてガス採取部15, または20で採取し、そ
の量を測定することにより脱離能を知ることができる。
As a method of measuring the amount of the released gas, a gas (eg, N 2 gas) containing no adsorbed component is placed in the gas reservoir (Tedlar bag) 12 shown in FIG. 3 or 4, while adsorbing the adsorbed gas. The adsorbent medium 13 is sandwiched between the adsorbent medium holders 14, a gas (for example, N 2 gas) containing no adsorbed component is aerated, and the adsorbent 13 is sampled by the gas sampling part 15 or 20, and the amount of the adsorbent is removed by measuring the amount. You can know your disability.

【0025】[0025]

【実施例】【Example】

実施例1:(静的ガス吸着能測定例,図1および2対
応) 活性炭を主構成分とする繊維状をしたフィルタ(面積15
cm2,商品名KYNOL ,ドナルドソン社製)を吸着媒体とし
て用い、湿度100 %RHにおけるぎ酸ガスの吸着能を次の
ようにして測定した。
Example 1: (Example of measuring static gas adsorption capacity, corresponding to FIGS. 1 and 2) A fibrous filter containing activated carbon as a main constituent (area 15
cm 2 (trade name: KYNOL, manufactured by Donaldson) was used as an adsorption medium, and the adsorption capacity of formic acid gas at a humidity of 100% RH was measured as follows.

【0026】内容積が2リットルの図1に示すガラス容
器4の中にフィルタを入れ、中空管8の代わりにガラス
棒10を用い、図2に示す2個の液溜め部6の一方に純水
500cc とぎ酸21μl(27.20mg)を入れ、素早くガラス容器
4を密封した。
A filter is put in a glass container 4 shown in FIG. 1 having an internal volume of 2 liters, and a glass rod 10 is used in place of the hollow tube 8, and one of the two liquid reservoirs 6 shown in FIG. Pure water
21 ml (27.20 mg) of 500 cc of formic acid was added, and the glass container 4 was quickly sealed.

【0027】これを室温のまゝ30時間放置した後、密封
栓5を形成するシリコーン栓にガスタイトシリンジの針
を貫通させ、ガラス容器4の中のガス5ccを採取し、こ
れを約8ccの純水に吹き込み、10ccに定容した後、溶液
中のぎ酸イオン量をイオンクロマトグラフで測定し、2
リットル容器中の残存ガス量を算出したところ、ぎ酸仕
込み量27.20mg に対し、残存量は1.46mgであった。
After leaving this at room temperature for 30 hours, a needle of a gas tight syringe is penetrated through a silicone stopper forming a sealing stopper 5 and 5 cc of gas in the glass container 4 is sampled. After blowing into pure water and adjusting the volume to 10 cc, measure the amount of formate ion in the solution by ion chromatography.
When the amount of residual gas in the liter container was calculated, the residual amount was 1.46 mg, while the charged amount of formic acid was 27.20 mg.

【0028】これから、フィルタのガス吸着量は25.74m
g であることが判った。 実施例2:(動的ガス吸着能測定例,図3,図6対応) 紙状をしたフィルタ(品名CAR-51,ゴアテックス社製)
を吸着媒体として用い、塩素ガス(Cl2)を通気させた場
合の吸着率の変化を測定した。
From this, the gas adsorption amount of the filter is 25.74 m.
It turned out to be g. Example 2: (Example of measuring dynamic gas adsorption capacity, corresponding to FIGS. 3 and 6) Paper-shaped filter (product name CAR-51, manufactured by Gore-Tex)
Was used as an adsorption medium, and a change in adsorption rate when chlorine gas (Cl 2 ) was aerated was measured.

【0029】まず、パーミーエータで発生させたCl2
スを容量30リットルのテドラーバッグ12に正確に30リッ
トル封入した。そして、このテドラーバッグ12とフィル
タを挟持させた吸着媒体保持部14を60℃の恒温槽内に保
持し、その先に流量計17, 吸引ポンプ16, 容量が5リッ
トルで空のテドラーバッグ15の順に配置し、流量計17は
300cc/分の流量となるように設定した。
First, 30 liters of Cl 2 gas generated by the permeator was accurately filled in a Tedlar bag 12 having a volume of 30 liters. The Tedlar bag 12 and the adsorption medium holding unit 14 holding the filter are held in a constant temperature bath at 60 ° C., and the flow meter 17, the suction pump 16, and the empty Tedlar bag 15 with a capacity of 5 liters are arranged in this order. Flow meter 17
The flow rate was set to 300 cc / min.

【0030】そして、10分おきに吸引ポンプ16を止め、
その度にテドラーバッグ15を交換し、この操作を10回に
亙って繰り返し、それぞれのテドラーバッグ15の中のCl
2 ガス濃度を検知管を用いて検出した。
Then, stop the suction pump 16 every 10 minutes,
The Tedlar bag 15 is replaced each time, and this operation is repeated 10 times, and the Cl in each Tedlar bag 15 is changed.
Two gas concentrations were detected using a detector tube.

【0031】図6の実線はCl2 ガスの通気時間と吸着率
の関係で、このフィルタに60℃で正確には267cc/分の流
速でCl2 ガスを通気した場合、100 分経過後においても
フィルタ通過後のガスからはCl2 は検出されず、吸着率
が100 %であることが判り、このことから、100 分間の
吸着量は5.83mgとなり、少なくともこのフィルタは単位
面積当たり、0.44mgまでのCl2 ガスを確実に吸着できる
ことが判った。 実施例3:(動的ガス吸着能測定例,図3,図6対応) 紙状をしたフィルタ(品名CAR-51,ゴアテックス社製)
を吸着媒体として用い、亜硫酸ガス(SO2)を通気させた
場合の吸着率の変化を測定した。
The solid line in FIG. 6 shows the relationship between the aeration time of Cl 2 gas and the adsorption rate, and when Cl 2 gas was aerated at a flow rate of 267 cc / min at 60 ° C., even after 100 minutes, Cl 2 was not detected in the gas after passing through the filter, and it was found that the adsorption rate was 100%. Therefore, the adsorption amount for 100 minutes was 5.83 mg, and at least 0.44 mg per unit area for this filter. It was found that the Cl 2 gas of 3 can be reliably adsorbed. Example 3: (Dynamic gas adsorption capacity measurement example, corresponding to FIGS. 3 and 6) Paper-shaped filter (product name CAR-51, manufactured by GORE-TEX Co., Ltd.)
Was used as an adsorption medium, and a change in adsorption rate was measured when sulfurous acid gas (SO 2 ) was aerated.

【0032】まず、パーミーエータで発生させたSO2
スを容量30リットルのテドラーバッグ12に正確に30リッ
トル封入した。そして、このテドラーバッグ12とフィル
タを挟持させた吸着媒体保持部14を60℃の恒温槽内に保
持し、その先に流量計17, 吸引ポンプ16, 容量が5リッ
トルで空のテドラーバッグ15の順に配置し、流量計17は
300cc/分の流量となるように設定した。
First, exactly 30 liters of SO 2 gas generated by a permeator was filled in a Tedlar bag 12 having a volume of 30 liters. The Tedlar bag 12 and the adsorption medium holding unit 14 holding the filter are held in a constant temperature bath at 60 ° C., and the flow meter 17, the suction pump 16, and the empty Tedlar bag 15 with a capacity of 5 liters are arranged in this order. Flow meter 17
The flow rate was set to 300 cc / min.

【0033】そして、10分おきに吸引ポンプ16を止め、
その度にテドラーバッグ15を交換し、この操作を10回に
亙って繰り返し、それぞれのテドラーバッグ15の中のSO
2 ガス濃度を検知管を用いて検出した。
Then, the suction pump 16 is stopped every 10 minutes,
Each time the Tedlar bag 15 is replaced, this operation is repeated 10 times, and the SO in each Tedlar bag 15 is changed.
Two gas concentrations were detected using a detector tube.

【0034】図6の破線はSO2 ガスの通気時間と吸着率
の関係で、このフィルタに60℃で正確には267cc/分の流
速でSO2 ガスを通気した場合、40分までは99%以上の吸
着率が得られるものゝ、40分を超えると急激に吸着率が
低下することが判った。
The broken line in FIG. 6 shows the relationship between the aeration time of SO 2 gas and the adsorption rate, and when SO 2 gas was aerated at a flow rate of 267 cc / min at 60 ° C., 99% up to 40 minutes. It was found that when the above adsorption rate was obtained, the adsorption rate decreased sharply after 40 minutes.

【0035】これは、SO2 ガスを通気させて吸着させて
行くと、約40分で化学吸着の飽和量に達し、その後は物
理吸着に変わるためと考えられる。 実施例4:(動的ガス吸着能測定例,図4対応) 紙状をしたフィルタ(品名CAR-51,ゴアテックス社製)
からなる吸着媒体13を吸着媒体保持部14に挟み、この吸
着媒体13のぎ酸ガスに対する室温での最大吸着量を測定
した。
It is considered that this is because when SO 2 gas is aerated and adsorbed, the saturated amount of chemisorption is reached in about 40 minutes, and then it is changed to physical adsorption. Example 4: (Example of measuring dynamic gas adsorption capacity, corresponding to FIG. 4) Paper-shaped filter (product name CAR-51, manufactured by GORE-TEX Co., Ltd.)
The adsorption medium 13 made of was sandwiched between the adsorption medium holding portions 14, and the maximum adsorption amount of this adsorption medium 13 with respect to formic acid gas at room temperature was measured.

【0036】すなわち、容量が30リットルのテドラーバ
ッグ12に過剰量のぎ酸(100μl)を入れてぎ酸濃度が3300
ppm の窒素(N2)ガスを作り、吸引ポンプ16と流量計17で
流量が500cc/分となるように調節しつゝテドラーバッグ
12が空になるまで吸引し、この蟻酸ガスを捕集瓶20で15
ccの純水に捕集させた。
That is, an excess amount of formic acid (100 μl) was put into a Tedlar bag 12 having a volume of 30 liters to give a formic acid concentration of 3300.
Create a ppm nitrogen (N 2 ) gas and adjust the flow rate to 500cc / min with the suction pump 16 and flow meter 17 Tedlar bag
Aspirate until 12 is empty and collect this formic acid gas in collection bottle 20 for 15
It was collected in cc of pure water.

【0037】一方、同じ工程で吸着媒体13のないブラン
クテストを行い、その差を求めた。その結果、フィルタ
の最大捕集量は2.88mg/cm2でg換算で86.9mg/gであり、
フィルタの捕集率は96%であった。 実施例5:(ガス脱離能測定例,図4対応) 紙状をしたフィルタ(品名CAR-51,ゴアテックス社製)
からなる吸着媒体13を吸着媒体保持部14に挟み、また、
ガス溜め部12として容量が30リットルのテドラーバッグ
を用い、約80ppm のぎ酸ガスをパーミエータで調製し
た。
On the other hand, a blank test without the adsorption medium 13 was carried out in the same step, and the difference was obtained. As a result, the maximum collection amount of the filter was 2.88 mg / cm 2, which was 86.9 mg / g in terms of g,
The filter collection rate was 96%. Example 5: (Example of measuring gas desorption capacity, corresponding to FIG. 4) Paper-shaped filter (product name CAR-51, manufactured by GORE-TEX Co., Ltd.)
The adsorption medium 13 consisting of is sandwiched between the adsorption medium holding portion 14,
A Tedlar bag having a capacity of 30 liters was used as the gas reservoir 12, and about 80 ppm of formic acid gas was prepared with a permeator.

【0038】そして、ガス溜め部12からぎ酸ガスを190m
l/分の速度で通気し、捕集液21からぎ酸が検出されるま
で通気を行い、通気時間と捕集液21のぎ酸濃度から、吸
着媒体に吸着されているぎ酸の量は3.598mg であること
が判った。
Then, 190 m of formic acid gas from the gas reservoir 12
Aeration is performed at a rate of 1 / min until formic acid is detected in the collection liquid 21, and the amount of formic acid adsorbed on the adsorption medium is determined based on the aeration time and the concentration of formic acid in the collection liquid 21. It was found to be 3.598 mg.

【0039】次に、ガス溜め部12にN2ガスを封入し、N2
ガスを吸着媒体保持部14に178ml/分の速度で30リットル
を通気し、通気後に捕集液21中のぎ酸濃度を測定した結
果、0.575mg であり、これより脱離率は16%であること
が判った。
Next, the N 2 gas is sealed in the gas reservoir 12, N 2
Gas was bubbled through the adsorption medium holding part 14 at a rate of 178 ml / min at a rate of 178 ml / min, and the concentration of formic acid in the collected liquid 21 was measured after aeration and was 0.575 mg, from which the desorption rate was 16%. I knew it was.

【0040】[0040]

【発明の効果】本発明は静的と動的なガス吸着能測定装
置からなるが、前者の場合、ガス体に限らず、液体や固
体についても吸着能を測定することができ、また、後者
の場合、任意のガス流量での吸着能と吸着効率および脱
離能を測定することができる。
The present invention comprises a static and dynamic gas adsorption capacity measuring device. In the former case, the adsorption capacity can be measured not only for gas bodies but also for liquids and solids, and the latter. In this case, the adsorption capacity at any gas flow rate and the adsorption efficiency and desorption capacity can be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】 静的ガス吸着能測定装置の断面図である。FIG. 1 is a cross-sectional view of a static gas adsorption capacity measuring device.

【図2】 別な液溜め部の断面図である。FIG. 2 is a sectional view of another liquid reservoir.

【図3】 動的ガス吸着能測定装置の構成図である。FIG. 3 is a configuration diagram of a dynamic gas adsorption capacity measuring device.

【図4】 別な動的ガス吸着能測定装置の構成図であ
る。
FIG. 4 is a configuration diagram of another dynamic gas adsorption capacity measuring device.

【図5】 検知器と検知管の断面図である。FIG. 5 is a sectional view of a detector and a detector tube.

【図6】 各ガスのフィルタ通過時間と吸着率との関係
図である。
FIG. 6 is a relationship diagram between a filter passage time and adsorption rate of each gas.

【符号の説明】 1 検知管 2 検知器 4 ガラス容器 5 密封栓 6 液溜め部 9,13 吸着媒体 12 ガス溜め部(テドラーバッグ) 14 吸着媒体保持部 15 ガス採取部(テドラーバッグ) 16 吸引ポンプ 17 流量制御部 18 恒温槽 20 ガス採取部(捕集瓶) 21 捕集液[Explanation of symbols] 1 Detector tube 2 Detector 4 Glass container 5 Sealing plug 6 Liquid reservoir 9,13 Adsorption medium 12 Gas reservoir (Tedlar bag) 14 Adsorption medium holding unit 15 Gas sampling unit (Tedlar bag) 16 Suction pump 17 Flow rate Control part 18 Constant temperature bath 20 Gas sampling part (collection bottle) 21 Collection liquid

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ▲やぎ▼下 皓男 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor ▲ Yagi ▼ Kazuo Shimo 1015 Kamiodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa Fujitsu Limited

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ガス吸着能を測定する吸着媒体を入れる
硝子容器と密封栓よりなり、該密封栓が複数の液溜め部
をもつコック付き中空管を備えてなることを特徴とする
静的ガス吸着能測定装置。
1. A static characterized in that it comprises a glass container containing an adsorption medium for measuring gas adsorption capacity and a sealing plug, and the sealing plug comprises a hollow tube with a cock having a plurality of liquid reservoirs. Gas adsorption capacity measuring device.
【請求項2】 請求項1記載の硝子容器の底部に吸着媒
体を、また、複数の液溜め部に秤量した液状または固体
状をしたガス成分と、調湿が必要な場合は水を入れて密
封し、該硝子容器を所定の温度に保持してガス成分をガ
ス化せしめた後、請求項1記載のコック付き中空管を通
じて硝子容器中のガスの一定量を採取し、分析すること
により硝子容器中に残存するガス成分量を求め、先に秤
量したガス成分量との差を求めることを特徴とする静的
なガス吸着能測定方法。
2. An adsorbent medium is placed at the bottom of the glass container according to claim 1, liquid or solid gas components weighed in a plurality of liquid reservoirs, and water are added if humidity control is required. By hermetically sealing and holding the glass container at a predetermined temperature to gasify the gas components, a fixed amount of gas in the glass container is sampled through the hollow tube with a cock according to claim 1 and analyzed. A static gas adsorption capacity measuring method, characterized in that the amount of gas component remaining in a glass container is determined and the difference from the amount of gas component weighed previously is determined.
【請求項3】 吸着させるガスと該ガスを希釈するガス
からなる混合ガスを保持するガス溜め部と、吸着媒体を
保持する吸着媒体保持部と、該吸着媒体保持部を通過し
てきた混合ガスを採取するガス採取部と、混合ガスを吸
引する吸引ポンプと、吸引量を調節する流量制御部とよ
りなることを特徴とする動的ガス吸着能測定装置。
3. A gas reservoir for holding a mixed gas composed of a gas to be adsorbed and a gas for diluting the gas, an adsorption medium holding unit for holding an adsorption medium, and a mixed gas passing through the adsorption medium holding unit. A dynamic gas adsorption capacity measuring device comprising a gas sampling unit for sampling, a suction pump for sucking a mixed gas, and a flow rate control unit for adjusting the suction amount.
【請求項4】 請求項3記載のガス溜め部の中にある既
知濃度の混合ガスを吸引ポンプにより流量を制御しなが
ら吸引することにより、吸着媒体保持部を通過する混合
ガスをガス採取部において採取して混合ガス中の成分濃
度を測定し、ガス溜め部との濃度差から吸着媒体の吸着
能を求めることを特徴とする動的なガス吸着能測定方
法。
4. The mixed gas having a known concentration in the gas reservoir according to claim 3 is sucked while controlling a flow rate by a suction pump, so that the mixed gas passing through the adsorption medium holding unit is sucked in the gas sampling unit. A dynamic gas adsorption capacity measurement method, which comprises collecting and measuring the concentration of components in a mixed gas, and determining the adsorption capacity of the adsorption medium from the difference in concentration with the gas reservoir.
【請求項5】 請求項4記載のガス採取部におけるガス
成分濃度の測定が、ガスタイトシリンジを用いて一定量
の混合ガスを採取して行なうか、或いは混合ガスを捕集
液に吹き込み溶解させて行なうことを特徴とする動的な
ガス吸着能測定方法。
5. The measurement of the gas component concentration in the gas sampling section according to claim 4 is performed by sampling a fixed amount of mixed gas using a gas tight syringe, or blowing the mixed gas into a collection liquid to dissolve it. A method for measuring a dynamic gas adsorption capacity, which is characterized in that
【請求項6】 請求項3記載のガス溜め部に吸着対象ガ
スを含まないガスを充填し、吸着媒体保持部に予め吸着
対象ガスを吸着させた吸着媒体を設置した状態で前記ガ
ス溜め部より吸着対象ガスを含まないガスを前記吸着媒
体に通気させ、ガス採取部で吸着対象ガスの濃度を測定
し、予め吸着媒体に吸着させておいたガスの濃度との比
を求めることを特徴とする吸着ガスの脱離能測定方法。
6. The gas reservoir according to claim 3 is filled with a gas not containing an adsorption target gas, and the adsorption medium holding unit is provided with an adsorption medium in which the adsorption target gas is adsorbed in advance. A gas containing no gas to be adsorbed is ventilated through the adsorption medium, the concentration of the gas to be adsorbed is measured in the gas sampling unit, and the ratio with the concentration of the gas previously adsorbed to the adsorption medium is obtained. Method for measuring desorption capacity of adsorbed gas.
JP16359294A 1994-07-15 1994-07-15 Gas adsorption capacity measurement method Expired - Fee Related JP3389685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16359294A JP3389685B2 (en) 1994-07-15 1994-07-15 Gas adsorption capacity measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16359294A JP3389685B2 (en) 1994-07-15 1994-07-15 Gas adsorption capacity measurement method

Publications (2)

Publication Number Publication Date
JPH0829314A true JPH0829314A (en) 1996-02-02
JP3389685B2 JP3389685B2 (en) 2003-03-24

Family

ID=15776854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16359294A Expired - Fee Related JP3389685B2 (en) 1994-07-15 1994-07-15 Gas adsorption capacity measurement method

Country Status (1)

Country Link
JP (1) JP3389685B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6906391B2 (en) 2002-06-12 2005-06-14 Sanyo Electric Co., Ltd. Semiconductor device having silicon oxide film
CN113295575A (en) * 2021-05-24 2021-08-24 合肥工业大学 Getter air suction performance test integrated device based on differential pressure method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6906391B2 (en) 2002-06-12 2005-06-14 Sanyo Electric Co., Ltd. Semiconductor device having silicon oxide film
CN113295575A (en) * 2021-05-24 2021-08-24 合肥工业大学 Getter air suction performance test integrated device based on differential pressure method

Also Published As

Publication number Publication date
JP3389685B2 (en) 2003-03-24

Similar Documents

Publication Publication Date Title
Cocheo et al. High uptake rate radial diffusive sampler suitable for both solvent and thermal desorption
Novak et al. Chromatographic method for the concentration of trace impurities in the atmosphere and other gases
Harper Evaluation of solid sorbent sampling methods by breakthrough volume studies
Lindgren et al. Measurement of atmospheric sulfur dioxide by diffusion scrubber coupled ion chromatography
Jayanty Evaluation of sampling and analytical methods for monitoring toxic organics in air
JPH09236564A (en) Method for detecting trace amount of interactive gas
US7114370B2 (en) Air quality sampler using solid phase coated material
Brown et al. Diffusive sampling using tube-type samplers
Patil et al. Determination of benzene, aniline and nitrobenzene in workplace air: a comparison of active and passive sampling
JPH0829314A (en) Static and dynamic gas adsorption capacity measuring device, and its gas adsorption capacity measuring method and desorption capacity measuring method
CN108387649A (en) Detection method that is a kind of while detecting a variety of pernicious gases in workplace
Gregory et al. Sample retentivity properties of passive organic vapor samplers and charcoal tubes under various conditions of sample loading, relative humidity, zero exposure level periods and a competitive solvent
Feldstein Methods for the determination of carbon monoxide
SEVERS et al. Dynamic U-tube system for solid sorbent air sampling method development
Severs et al. Monitoring personnel exposure to vinyl chloride, vinylidene chloride and methyl chloride in an industrial work environment
US3783697A (en) Method of determining small surface areas
Vecera et al. Continuous aerodispersive enrichment unit for trace determination of pollutants in air
Patil et al. Evaluation of Tenax TA for the determination of chlorobenzene and chloronitrobenzenes in air using capillary gas chromatography and thermal desorption
JP2002214116A (en) Gas removal rate test method and test apparatus for chemical filter
Fung et al. Determination of volatile organic compounds in air using a dehumidified and ventilated diffusive sampler, thermal desorption and gas chromatography with flame ionization detection
Knöppel Sampling and analysis of organic indoor air pollutants
Gesser et al. Validation of the new passive monitor without a membrane in indoor air
Alder et al. Detection of toluene diisocyanate in air with a coated piezoelectric crystal: Part 2. Development of an Instrumental Method For Personal Monitoring
GONZALEZ et al. Vapor phase spiking and thermal desorption of a passive sampler
Fothergill Gas chromatography: Technique

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021217

LAPS Cancellation because of no payment of annual fees