JPH08292197A - Scanning probe microscope wader high-pressure environmental - Google Patents
Scanning probe microscope wader high-pressure environmentalInfo
- Publication number
- JPH08292197A JPH08292197A JP13096995A JP13096995A JPH08292197A JP H08292197 A JPH08292197 A JP H08292197A JP 13096995 A JP13096995 A JP 13096995A JP 13096995 A JP13096995 A JP 13096995A JP H08292197 A JPH08292197 A JP H08292197A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- atmosphere
- scanning probe
- probe microscope
- scanning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用】本発明は走査式プローブ顕微鏡技術に
関する。This invention relates to scanning probe microscope technology.
【0002】[0002]
【従来の技術および発明が解決しようとしている課題】
走査式トンネル顕微鏡に代表される走査式プローブ顕微
鏡は、真空、大気圧あるいは低圧ガス中、液体中での固
体表面構造の解析に広く用いられている。[Prior Art and Problems to be Solved by the Invention]
A scanning probe microscope typified by a scanning tunneling microscope is widely used for analysis of solid surface structure in vacuum, atmospheric pressure or low pressure gas, or liquid.
【0003】しかしながら、従来の技術では、全て、大
気圧以下での測定装置のため、高圧ガス雰囲気、高圧液
体雰囲気中、超臨界流体雰囲気での計測が不可能であっ
た。However, all of the conventional techniques cannot measure in a high-pressure gas atmosphere, a high-pressure liquid atmosphere, or a supercritical fluid atmosphere because they are all measuring devices under atmospheric pressure.
【0004】本発明は、かかる状況の下で、高圧ガス雰
囲気、高圧液体雰囲気、超臨界流体雰囲気での計測が可
能な走査式プローブ顕微鏡を提供することを目的とす
る。Under the circumstances, it is an object of the present invention to provide a scanning probe microscope capable of measuring in a high pressure gas atmosphere, a high pressure liquid atmosphere, and a supercritical fluid atmosphere.
【0005】[0005]
【課題を解決するための手段】本発明者は、前記課題を
解決するために、高圧容器内部に走査式プローブ顕微鏡
を有し、大気圧以上200気圧以下の高圧環境下で動作
する走査式プローブ顕微鏡の開発に至った。In order to solve the above-mentioned problems, the present inventor has a scanning probe microscope inside a high-pressure container and operates in a high-pressure environment of not less than atmospheric pressure and not more than 200 atm. We came to the development of a microscope.
【0006】[0006]
【作用】本発明は以上のような構成であり、従来、大気
圧以下の測定装置であり、大気圧以下のガス雰囲気、液
体雰囲気、真空雰囲気での計測にかぎられていたもの
を、大気圧以上の高圧ガス雰囲気、高圧液体雰囲気中、
超臨界流体雰囲気中での走査式プローブ顕微鏡測定を可
能とする。The present invention has the above-described structure, and is a measuring device under atmospheric pressure, which has been limited to measurement in a gas atmosphere, a liquid atmosphere, or a vacuum atmosphere under atmospheric pressure. In the above high pressure gas atmosphere, high pressure liquid atmosphere,
It enables scanning probe microscope measurements in a supercritical fluid atmosphere.
【0007】[0007]
【実施例】図1は本発明装置の実施例を示す概略図であ
る。図において、1はプローブ、2は試料部、3は、ピ
エゾアクチュエーターなどのプローブ走査ユニット、4
は試料走査ユニットであり、これら走査式プローブ顕微
鏡システム一式が、高圧容器5の中に収められ、高圧ガ
ス導入口6、同排出口7が設置されている。図面は本研
究の実施例であり、本発明の範囲がこれらにより限定さ
れるものでないことは勿論である。一方、図2は、超臨
界流体N2(窒素)中(室温、40気圧)で得られた走
査式トンネル顕微鏡のグラファイト格子像である。超臨
界流体中での原子レベルの構造解析の初めての測定例で
ある。さらに、図3は、高圧水素環境下(室温、(A)
2気圧水素環境下(吸蔵前)と(B)5気圧水素環境下
((吸蔵後))での水素吸蔵金属LaNi5の水素吸蔵
相変態に伴う表面構造変化の走査式トンネル顕微鏡像で
ある。これらは、本発明によってはじめて測定可能とな
ったものである。1 is a schematic view showing an embodiment of the device of the present invention. In the figure, 1 is a probe, 2 is a sample part, 3 is a probe scanning unit such as a piezo actuator, 4
Is a sample scanning unit, and a set of these scanning probe microscope systems is housed in a high-pressure container 5, and a high-pressure gas inlet 6 and an outlet 7 are installed. It is needless to say that the drawings are examples of the present research and the scope of the present invention is not limited by these. On the other hand, FIG. 2 is a graphite lattice image of a scanning tunneling microscope obtained in a supercritical fluid N 2 (nitrogen) (room temperature, 40 atm). This is the first measurement example of atomic-level structural analysis in a supercritical fluid. Furthermore, FIG. 3 shows a high-pressure hydrogen environment (room temperature, (A)
2 is a scanning tunneling microscope image of a surface structure change accompanying a hydrogen storage phase transformation of a hydrogen storage metal LaNi 5 under a 2 atmosphere hydrogen environment (before storage) and (B) 5 atmosphere hydrogen environment ((after storage)). These can be measured for the first time by the present invention.
【0008】[0008]
【発明の効果】従来、大気圧以下の測定装置であり、大
気圧以下のガス雰囲気、液体雰囲気、真空雰囲気での計
測に限られていた走査式プローブ顕微鏡を、大気圧以上
の高圧ガス雰囲気、高圧液体雰囲気中、超臨界流体雰囲
気中での測定を可能とする。また、これら走査式プロー
ブ顕微鏡を利用した、高圧環境下という新たな条件下で
の成膜、エッチング、化学反応、表面処理などの物質合
成方法を提供する。EFFECT OF THE INVENTION Conventionally, a scanning probe microscope, which is a measuring device at atmospheric pressure or less and is limited to measurement in a gas atmosphere, a liquid atmosphere, or a vacuum atmosphere at an atmospheric pressure or less, is It enables measurement in a high-pressure liquid atmosphere or a supercritical fluid atmosphere. Further, the present invention provides a method for synthesizing a substance such as film formation, etching, chemical reaction, and surface treatment under a new condition of high pressure environment using these scanning probe microscopes.
【図1】実験装置の概略を示す図である。FIG. 1 is a diagram showing an outline of an experimental device.
【図2】超臨界流体N2(窒素)中(室温、40気圧)
で測定した走査式トンネル顕微鏡のグラファイト格子像
である。超臨界流体中での原子レベルの構造解析の初め
ての例である。FIG. 2 Supercritical fluid N 2 (nitrogen) (room temperature, 40 atm)
3 is a graphite lattice image of a scanning tunneling microscope measured in 1. This is the first example of atomic-level structural analysis in a supercritical fluid.
【図3】高圧水素環境下(室温、(A)2気圧水素環境
下(吸蔵前)と(B)5気圧水素環境(吸蔵後))での
水素吸蔵金属LaNi5の水素吸蔵相変態に伴う表面構
造変化の走査式トンネル顕微鏡像である。FIG. 3 shows the hydrogen storage phase transformation of the hydrogen storage metal LaNi 5 under high pressure hydrogen environment (room temperature, (A) 2 atmosphere hydrogen environment (before storage) and (B) 5 atmosphere hydrogen environment (after storage)). It is a scanning tunneling microscope image of surface structure change.
1 プローブ 2 試料部 3 プローブ走査ユニット 4 試料走査ユニット 5 高圧容器 6 高圧ガス導入口 7 高圧ガス排出口 1 probe 2 sample part 3 probe scanning unit 4 sample scanning unit 5 high-pressure container 6 high-pressure gas inlet 7 high-pressure gas outlet
Claims (2)
微鏡を有し、大気圧以上、200気圧以下の高圧環境下
で動作する走査式プローブ顕微鏡。1. A scanning probe microscope having a high-pressure container and a scanning probe microscope in the interior thereof, which operates under a high-pressure environment of not less than atmospheric pressure and not more than 200 atmospheres.
反応、表面処理などの物質合成方法。2. A substance synthesizing method using the above apparatus, such as film formation, etching, chemical reaction, and surface treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13096995A JPH08292197A (en) | 1995-04-21 | 1995-04-21 | Scanning probe microscope wader high-pressure environmental |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13096995A JPH08292197A (en) | 1995-04-21 | 1995-04-21 | Scanning probe microscope wader high-pressure environmental |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08292197A true JPH08292197A (en) | 1996-11-05 |
Family
ID=15046851
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13096995A Pending JPH08292197A (en) | 1995-04-21 | 1995-04-21 | Scanning probe microscope wader high-pressure environmental |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08292197A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6674076B1 (en) | 2002-12-12 | 2004-01-06 | Ballard Power Systems Inc. | Humidified imaging with an environmental scanning electron microscope |
US20150226766A1 (en) * | 2012-07-05 | 2015-08-13 | Bruker Nano, Inc. | Apparatus and method for atomic force microscopy |
-
1995
- 1995-04-21 JP JP13096995A patent/JPH08292197A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6674076B1 (en) | 2002-12-12 | 2004-01-06 | Ballard Power Systems Inc. | Humidified imaging with an environmental scanning electron microscope |
US20150226766A1 (en) * | 2012-07-05 | 2015-08-13 | Bruker Nano, Inc. | Apparatus and method for atomic force microscopy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lægsgaard et al. | A high-pressure scanning tunneling microscope | |
Gimzewski et al. | Observation of a chemical reaction using a micromechanical sensor | |
Yee et al. | Application of a Kelvin microprobe to the corrosion of metals in humid atmospheres | |
Stratmann et al. | On the atmospheric corrosion of metals which are covered with thin electrolyte layers—I. Verification of the experimental technique | |
Comrie et al. | The chemisorption of carbon monoxide on the iridium (III) surface | |
McIntyre et al. | A scanning tunneling microscope that operates at high pressures and high temperatures (430 K) and during catalytic reactions | |
Hines | In search of perfection: Understanding the highly defect-selective chemistry of anisotropic etching | |
Kim et al. | Evolution of a surface-roughness spectrum caused by stress in nanometer-scale chemical etching | |
Kawaguchi et al. | Fast continuous measurement of synchrotron powder diffraction synchronized with controlling gas and vapour pressures at beamline BL02B2 of SPring-8 | |
de Ridder et al. | Growth of iron oxide on yttria-stabilized zirconia by atomic layer deposition | |
Maclay et al. | Microfabricated amperometric gas sensors | |
JPH08292197A (en) | Scanning probe microscope wader high-pressure environmental | |
Kang et al. | Ultra-high vacuum investigation of the surface chemistry of zirconium | |
Tsuji et al. | Moisture adsorption desorption characteristics of stainless steel tubing measured by ball surface acoustic wave trace moisture analyzer | |
Fan et al. | Scanning tunneling microscopic studies of platinum electrode surfaces | |
Kerger et al. | Electrochemistry in ultra-high vacuum: The fully transferrable ultra-high vacuum compatible electrochemical cell | |
Barreca et al. | Gas sensing properties of columnar CeO2 nanostructures prepared by chemical vapor deposition | |
Glaves et al. | Pore structure characterization of porous films | |
JP2008267889A (en) | Sample holder for electron microscope, observing method and sampling device for electron microscope | |
US4675071A (en) | Method of preparing thin crystal or film | |
Barton et al. | Does a supported monolayer induce structure in the supporting liquid: a synchrotron x-ray study of stearic acid on mercury | |
RU94037781A (en) | Device measuring heat conduction of solids and liquid solutions | |
JP2003121312A (en) | Fluid sampling container and fluid sampling method | |
Sekhar et al. | Fabrication, performance characteristics and gas analysis in a clean uhv system | |
JPS636682Y2 (en) |