JPH08291362A - Steel with excellent cold workability - Google Patents
Steel with excellent cold workabilityInfo
- Publication number
- JPH08291362A JPH08291362A JP9657695A JP9657695A JPH08291362A JP H08291362 A JPH08291362 A JP H08291362A JP 9657695 A JP9657695 A JP 9657695A JP 9657695 A JP9657695 A JP 9657695A JP H08291362 A JPH08291362 A JP H08291362A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- graphitization
- less
- graphite particles
- working
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 69
- 239000010959 steel Substances 0.000 title claims abstract description 69
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 57
- 239000002245 particle Substances 0.000 claims abstract description 45
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 43
- 239000010439 graphite Substances 0.000 claims abstract description 43
- 239000000463 material Substances 0.000 claims abstract description 26
- 238000000137 annealing Methods 0.000 claims abstract description 18
- 238000001816 cooling Methods 0.000 claims abstract description 15
- 238000004519 manufacturing process Methods 0.000 claims abstract description 13
- 229910001567 cementite Inorganic materials 0.000 claims abstract description 10
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 6
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 15
- 239000012535 impurity Substances 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 abstract description 20
- 238000010438 heat treatment Methods 0.000 abstract description 18
- 238000005482 strain hardening Methods 0.000 abstract description 12
- 238000005096 rolling process Methods 0.000 abstract description 8
- 238000005242 forging Methods 0.000 abstract description 3
- 238000005087 graphitization Methods 0.000 description 59
- 230000000694 effects Effects 0.000 description 15
- 230000006698 induction Effects 0.000 description 13
- 238000010791 quenching Methods 0.000 description 12
- 230000000171 quenching effect Effects 0.000 description 12
- 238000009826 distribution Methods 0.000 description 8
- 230000009466 transformation Effects 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 238000010273 cold forging Methods 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 6
- 238000005098 hot rolling Methods 0.000 description 5
- 230000001737 promoting effect Effects 0.000 description 5
- 229910000677 High-carbon steel Inorganic materials 0.000 description 4
- 238000005255 carburizing Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000005496 tempering Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 3
- 238000005097 cold rolling Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000010622 cold drawing Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000009778 extrusion testing Methods 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 229910001562 pearlite Inorganic materials 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- -1 that is Substances 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
(57)【要約】 (修正有)
【目的】 各種機械、自動車等の部品に、鍛造、転造等
の冷間加工により成形し、熱処理して使用される冷間加
工性のすぐれた鋼材、およびその製造方法の提供。
【構成】 C,Si,Mn,SoL.AL,B,N,N
iおよびCaが特定された鋼において、組織がフェライ
ト、球状化セメンタイトおよび黒鉛粒子からなり、かつ
C含有量の20〜75%が黒鉛化していて、断面観察にて直
径20μm を超える黒鉛粒子がなく、かつ直径3 〜20μm
の粒子がC重量%×100 個/mm2 以上、C重量%×1000
個/mm2 以下の頻度で分布している加工性にすぐれた鋼
材。その製造方法は、800 〜1000℃の範囲で加工を完了
して、10〜100 ℃/min の冷却速度にて500 ℃以下まで
冷却した後、600 〜720 ℃にて4 〜50時間の焼鈍をおこ
なうか、または熱間加工の後、加工度3 〜40%の冷間加
工をおこない、600 〜720 ℃にて1 〜24時間の焼鈍を施
す。(57) [Summary] (Corrected) [Purpose] A steel material with excellent cold workability, which is used for various machinery, automobile parts, etc. by cold working such as forging and rolling, and heat treatment. And a method of manufacturing the same. [Structure] C, Si, Mn, SoL. AL, B, N, N
In the steels in which i and Ca are specified, the structure consists of ferrite, spheroidized cementite and graphite particles, and 20 to 75% of the C content is graphitized, and there is no graphite particle with a diameter of more than 20 μm in the cross-section observation. , And diameter 3 to 20 μm
Particles of C weight% x 100 / mm 2 or more, C weight% x 1000
Steel materials with excellent workability that are distributed at a frequency of less than 1 piece / mm 2 . The manufacturing method is to complete processing in the range of 800 to 1000 ° C, cool to 500 ° C or less at a cooling rate of 10 to 100 ° C / min, and then anneal at 600 to 720 ° C for 4 to 50 hours. Or, after hot working, cold working with a working ratio of 3 to 40% and annealing at 600 to 720 ° C for 1 to 24 hours.
Description
【0001】[0001]
【産業上の利用分野】本発明は各種機械、自動車等の部
品として、引抜き、鍛造、転造等の冷間加工により成形
し、熱処理して使用する鋼であって、特に冷間加工性を
向上させた鋼に関する。FIELD OF THE INVENTION The present invention relates to a steel which is used as a component of various machines, automobiles, etc. by cold working such as drawing, forging, rolling, etc., and heat-treated. For improved steel.
【0002】[0002]
【従来の技術】冷間で鍛造や転造などをおこなう鋼材の
加工は、切削加工に比較し生産効率や材料歩留が高く寸
法精度がすぐれているが、きわめて激しい加工方法であ
る。このため工具や潤滑の高性能化がきびしく要求され
る一方、被加工材の加工性も変形抵抗が小さく変形能が
大きいことが必要である。一般に鋼は炭素含有量が増す
と変形抵抗は増し変形能も劣化するので、このような冷
間加工は多くは炭素量の比較的低い0.25%C以下の鋼材
に適用されてきた。2. Description of the Related Art The processing of a steel material that is cold forged or rolled is a highly vigorous processing method, although it has higher production efficiency, higher material yield and higher dimensional accuracy than cutting. For this reason, while high performance of tools and lubrication is strictly required, it is also necessary that the workability of the work material is small in deformation resistance and large in deformability. In general, steel has increased deformation resistance and deteriorated deformability as the carbon content increases. Therefore, such cold working has been mostly applied to steel materials having a relatively low carbon content of 0.25% C or less.
【0003】加工後焼入れ焼戻しの熱処理により高強度
を得ようとする鋼では、通常0.30%以上の炭素量にな
る。その場合、冷間加工性を確保するための加工前の球
状化焼鈍をおこなうが、それでも用いられる鋼材の炭素
量は0.45%C程度までで、それ以上の炭素量では冷間鍛
造などの適用は困難である。In steels for which high strength is to be obtained by heat treatment such as quenching and tempering after working, the carbon content is usually 0.30% or more. In that case, spheroidizing annealing before working is performed to ensure cold workability, but the carbon content of the steel material still used is up to about 0.45% C, and if the carbon content is higher than that, cold forging or the like is not applicable. Have difficulty.
【0004】ギヤなど耐摩耗性が要求される用途には硬
さが高いばかりでなく、C含有量の高いことが必要であ
り、低炭素鋼材を用いて冷間鍛造や転造をその成形に適
用する場合は、加工した後に浸炭して接触部分の炭素量
を増し耐摩耗性や耐疲労性を向上させる。ところが、浸
炭方法は高温で長時間を要する熱処理であるため生産性
が悪く、その上浸炭後の焼入れによる歪みを生じやす
い。浸炭と同様な耐摩耗性向上のための表面硬化法に、
高周波焼入れ法あるいは火炎焼入れ法があり、短時間で
効率よく処理が可能であるが、所要の硬さや耐摩耗性を
得るには、母材にある程度のC量が必要である。For applications requiring wear resistance such as gears, not only high hardness but also high C content is required, and cold forging and rolling are used for forming the low carbon steel material. When applied, it is carburized after processing to increase the amount of carbon in the contact portion and improve wear resistance and fatigue resistance. However, since the carburizing method is a heat treatment that requires a long time at a high temperature, the productivity is poor, and distortion due to quenching after carburizing is likely to occur. A surface hardening method for improving wear resistance similar to carburizing,
There are induction hardening method and flame hardening method, and the treatment can be carried out efficiently in a short time, but a certain amount of C is required in the base material to obtain the required hardness and wear resistance.
【0005】このような用途に対し、より高いC含有量
でも冷間加工性にすぐれている鋼として黒鉛化鋼が注目
されている。これは鋼中の炭素をセメンタイトではなく
黒鉛化させておくと、同一C量でもセメンタイトの球状
化焼鈍を施した場合よりもさらに強度が低下し加工性が
向上するという鋼で、冷間鍛造用を対象にしたもので
は、例えば特開平3 −146618号公報に変形抵抗および変
形能が向上するという発明が提示されている。For such applications, graphitized steel has attracted attention as a steel excellent in cold workability even with a higher C content. This is a steel that if carbon in steel is graphitized instead of cementite, the strength will be further reduced and workability will be improved even if the same amount of C is subjected to spheroidizing annealing of cementite. For example, Japanese Patent Application Laid-Open No. 3-146618 proposes an invention in which deformation resistance and deformability are improved.
【0006】セメンタイトを黒鉛化することにより高炭
素の鋼でも確かに冷間加工性は向上するが、加工後の熱
処理において必要な焼入れ硬さを得るには、オーステナ
イト域に加熱した際にCを十分再固溶させねばならな
い。Cが鉄との化合物のセメンタイトのかたちで存在す
る従来の鋼の場合は、Cは容易に再固溶するのに対し、
黒鉛にまでなっていると再固溶にはより長時時間の加熱
が必要であり、特に高周波焼入れのような短時間加熱で
は、十分な焼入れ硬さが得られないという問題がある。Graphitization of cementite certainly improves the cold workability even in high carbon steel, but in order to obtain the necessary quenching hardness in the heat treatment after working, C is added when heated to the austenite region. It must be sufficiently re-dissolved. In the case of conventional steel in which C exists in the form of cementite, which is a compound with iron, C easily re-dissolves, whereas
If graphite is used, re-dissolution requires heating for a longer period of time, and there is a problem that sufficient quenching hardness cannot be obtained especially by short-time heating such as induction hardening.
【0007】[0007]
【発明が解決しようとする課題】本発明は、冷間鍛造や
転造などの冷間加工性にすぐれ、しかも高周波焼入れの
ような短時間加熱の熱処理性も良好な機械構造用鋼材と
その製造法に関する。DISCLOSURE OF THE INVENTION The present invention provides a steel for machine structural use which is excellent in cold workability such as cold forging and rolling, and also has good heat-treatability of short-time heating such as induction hardening, and its production. Concerning the law.
【0008】従来、低炭素鋼に多用されてきた冷間鍛造
などの加工法が、従来、主として切削加工法で成形され
ているより高い炭素の鋼に適用できれば、大幅な歩留向
上が可能である。あるいはまた、低炭素鋼を冷間加工し
た後に表面硬化のため浸炭する製造方法を、高炭素鋼を
冷間加工して高周波焼入れする方法に変える、という合
理化も考えられる。たとえば自動車のギヤのような部品
は、通常歯切り加工後浸炭されるが、同じ性能の製品を
得るのに切削を冷間鍛造に変え、表面硬化を浸炭焼入れ
から高周波焼入れに変えることができる。If a working method such as cold forging, which has been frequently used for low carbon steel, can be applied to a steel having a higher carbon, which is conventionally formed mainly by a cutting method, a significant improvement in yield can be achieved. is there. Alternatively, it is also possible to rationalize the manufacturing method in which low carbon steel is cold worked and then carburized for surface hardening to a method in which high carbon steel is cold worked and induction hardened. Parts such as automobile gears, for example, are usually carburized after gear cutting, but the cutting can be changed to cold forging and the surface hardening can be changed from carburizing and induction hardening to obtain products of the same performance.
【0009】[0009]
【課題を解決するための手段】本発明者らはこの目的に
対し、高炭素鋼鋼材で充分な冷間加工性が得られる可能
性のある鋼中の炭素の黒鉛化に関して、種々検討をおこ
なった。その結果、黒鉛化の進行により硬さは低下して
いくが、過度に進行すると変形能が劣化してくることが
わかった。析出した黒鉛粒子は小さすぎる場合は硬さ低
下にあまり効果がなく、大きすぎると変形時の割れ発生
の起点となる。したがって、冷間加工性の改善には鋼中
のCを特定の量だけ黒鉛化し、その上で析出黒鉛の粒子
の大きさの分布を制御する必要がある。[Means for Solving the Problems] To this end, the present inventors have made various studies on graphitization of carbon in steel, which may have sufficient cold workability in high carbon steel. It was As a result, it was found that the hardness decreases as the graphitization progresses, but the deformability deteriorates if it progresses excessively. If the precipitated graphite particles are too small, they are not very effective in decreasing the hardness, and if too large, they become the starting point of cracking during deformation. Therefore, in order to improve cold workability, it is necessary to graphitize a specific amount of C in steel and then control the particle size distribution of precipitated graphite.
【0010】さらに加工後の熱処理として高周波焼入れ
を検討したところ、短時間加熱による焼入れ硬さに対
し、過剰な黒鉛化や黒鉛粒子が粗大化した場合は充分な
硬さがえられず、熱処理時の炭素の固溶の点からも黒鉛
化の適度の管理が重要であることがわかった。そして、
このような冷間加工と熱処理に適した黒鉛化の組織形態
の鋼材を得るには、成分と製造条件の管理が重要である
ことを知って本発明を完成したが、その要旨とするとこ
ろは次の通りである。Further, as a heat treatment after working, induction hardening was examined, and it was found that sufficient hardness could not be obtained when excessive graphitization or coarsening of graphite particles was caused, as compared with the hardening hardness due to short-time heating. It was found that proper control of graphitization is important from the viewpoint of solid solution of carbon. And
In order to obtain a steel material having a graphitized structure morphology suitable for such cold working and heat treatment, the present invention has been completed by knowing that the control of components and manufacturing conditions is important, but the gist thereof is It is as follows.
【0011】(1) 重量割合にてC:0.30〜0.70%、S
i:0.20〜0.60%、Mn:0.05〜0.60%、sol.Al:0.
05〜0.50%、B:0.0005〜0.0050%、N: 0.002〜0.01
0 %、Ni:2.00%以下、およびCa:0.01%以下を含
み、残部が実質的にFeおよび不可避的不純物であっ
て、鋼組織がフェライト、球状化セメンタイトおよび黒
鉛粒子からなり、C含有量の20〜75%が黒鉛化してい
て、断面観察にて直径20μmを超える黒鉛粒子がなく、
かつ直径 3〜20μm の粒子がC重量%× 100個/mm2以
上、C重量%×1000個/mm2 以下の頻度で分布している
ことを特徴とする加工性にすぐれた鋼材。(1) C: 0.30 to 0.70% by weight, S
i: 0.20 to 0.60%, Mn: 0.05 to 0.60%, sol.Al: 0.
05 to 0.50%, B: 0.0005 to 0.0050%, N: 0.002 to 0.01
0%, Ni: 2.00% or less, and Ca: 0.01% or less, the balance being substantially Fe and unavoidable impurities, and the steel structure consisting of ferrite, spheroidized cementite and graphite particles, and having a C content of 20-75% is graphitized, and there are no graphite particles with a diameter of more than 20 μm in the cross-section observation.
And 100 particles having a diameter of 3~20μm is C wt% × / mm 2 or more, formability excellent steel which is characterized in that distributed in C wt% × 1000 pieces / mm 2 or less frequently.
【0012】その製造方法としては、 (2) 上記(1) に示した組成の鋼を、加熱して熱間加工す
る際、800 〜1000℃の範囲で加工を完了して、10〜 100
℃/min の冷却速度にて500 ℃以下まで冷却した後、 6
00〜 720℃にて 4〜50時間の焼鈍をおこなうことを特徴
とする上記 (1)の鋼材の製造方法。As the manufacturing method thereof, (2) when the steel having the composition shown in (1) above is heated and hot-worked, the working is completed within the range of 800 to 1000 ° C.
After cooling to below 500 ° C at a cooling rate of ° C / min,
The method for producing a steel product according to (1) above, which comprises performing annealing at 00 to 720 ° C for 4 to 50 hours.
【0013】または、 (3) 上記(1) に示した組成の鋼を熱間加工した後、加工
度 3〜40%の冷間加工をおこなって、 600〜 720℃にて
1〜24時間の焼鈍を施すことを特徴とする上記(1) の鋼
材の製造方法。Or (3) hot working the steel having the composition shown in (1) above, and then cold working at a working rate of 3 to 40%, at 600 to 720 ° C.
The method for producing a steel material according to the above (1), characterized in that annealing is performed for 1 to 24 hours.
【0014】なお、本発明で規定する黒鉛化の程度は、
酸溶解で黒鉛を抽出する化学分析で判定可能であり、黒
鉛粒子の粒径や分布は断面の研磨後光学顕微鏡や走査型
電子顕微鏡による観察で測定できる。The degree of graphitization specified in the present invention is
It can be determined by a chemical analysis in which graphite is extracted by acid dissolution, and the particle size and distribution of graphite particles can be measured by observing a cross section after polishing with an optical microscope or a scanning electron microscope.
【0015】[0015]
【作用】本発明において、鋼中の黒鉛化および黒鉛粒子
の分布の範囲、成分組成、およびその製造条件を限定し
た理由は次の通りである。In the present invention, the reason for limiting the range of graphitization and distribution of graphite particles in steel, the component composition, and the manufacturing conditions thereof is as follows.
【0016】(1) 黒鉛化および黒鉛粒子 セメンタイトの黒鉛化により、軟化や変形抵抗の低下が
顕著に現われるのは、黒鉛の量が鋼中に含まれる炭素の
総量の 1/5 、すなわち20%を超えてからである。黒鉛
化がさらに進むにつれて硬さおよび変形抵抗は低下して
いくが、変形能を調べると、黒鉛が炭素総量の 3/4 、
すなわち75%を超えれば逆に劣化してくる。特にこの変
形能に対しては、黒鉛粒子の分布も影響しており、黒鉛
化の割合が炭素総量の20〜75%であっても、大きな黒鉛
粒子が存在する場合や数が多すぎる場合には変形能が低
下する。(1) Graphitization and Graphite Particles Graphitization of cementite causes a remarkable decrease in softening and deformation resistance because the amount of graphite is 1/5 of the total amount of carbon contained in steel, that is, 20%. It is beyond. As the graphitization progresses further, the hardness and deformation resistance decrease, but when the deformability was examined, graphite contained 3/4 of the total carbon,
That is, if it exceeds 75%, it deteriorates. Especially for this deformability, the distribution of graphite particles also has an effect, and even if the graphitization ratio is 20 to 75% of the total carbon amount, when large graphite particles are present or the number is too large. Deformability decreases.
【0017】小さな黒鉛粒子、すなわち 3μm 未満のも
のは数多くあっても変形抵抗は大きくは低下しないの
で、黒鉛粒子は大きさが 3μm 以上のものに着目する必
要がある。この黒鉛粒子の大きさや数が直接冷間加工性
に影響するのかどうかは明らかでないが、黒鉛化のため
の焼鈍過程では、同時に析出セメンタイトの球状化も進
行しているので、 3μm 以上の黒鉛粒子がある程度以上
存在するということは球状化も充分進んでいることを示
している。一方、黒鉛粒子の大きなものが現われると、
変形抵抗は低いが変形能が劣化し、ことに20μm を超え
る大きさのものが観察される場合、顕著な劣化が認めら
れる。このように黒鉛粒子が大きすぎたり多すぎる場合
に冷間加工性、特に変形能が悪くなってくるのは、黒鉛
粒子を起点とした割れ発生の頻度が高くなってくるため
である。Even if there are many small graphite particles, that is, particles having a size of less than 3 μm, the deformation resistance does not decrease significantly, so it is necessary to pay attention to graphite particles having a size of 3 μm or more. It is not clear whether the size or number of these graphite particles directly affects the cold workability, but during the annealing process for graphitization, spheroidization of precipitated cementite is also progressing at the same time, so graphite particles of 3 μm or more The existence of a certain amount or more indicates that the spheroidization is sufficiently advanced. On the other hand, when large graphite particles appear,
Although the deformation resistance is low, the deformability is deteriorated, and when the size exceeding 20 μm is observed, remarkable deterioration is observed. When the graphite particles are too large or too large as described above, the cold workability, especially the deformability is deteriorated because the frequency of occurrence of cracks originating from the graphite particles increases.
【0018】この黒鉛粒子と冷間加工性の関係を調べる
と、断面の顕微鏡観察にて、析出黒鉛粒子の直径が 3μ
m 以上20μm 以下の大きさのものがC%×100 個/mm2
からC%×1000個/mm2 の範囲にある場合、変形抵抗が
低くかつ良好な変形能を示した。When the relationship between the graphite particles and the cold workability was investigated, the diameter of the precipitated graphite particles was 3 μm by observing the section with a microscope.
C% x 100 pieces / mm 2 for sizes between m and 20 μm
To C% × 1000 pieces / mm 2 , the deformation resistance was low and good deformability was exhibited.
【0019】次に、高周波焼入れのような短時間加熱の
場合の焼入れ硬さについては、黒鉛化が進行しすぎた場
合、硬さ不足が目立つようになる。また黒鉛化が同じ程
度であっても、大きな粒子が多くなるとやはり焼入れ硬
さが不十分になってくる。この焼入れ硬さ不足が生じる
黒鉛化の状態と、変形能の劣化が現われる黒鉛化の状態
とは、ほぼ共通するところがあり、変形能の劣化が現わ
れない範囲の黒鉛化の程度および黒鉛粒子の分布であれ
ば、焼入れ硬さの不足は生じない。Next, regarding the quenching hardness in the case of short-time heating such as induction hardening, when the graphitization proceeds too much, insufficient hardness becomes conspicuous. Further, even if the degree of graphitization is the same, quenching hardness becomes insufficient when the number of large particles increases. The graphitized state in which the quenching hardness is insufficient and the graphitized state in which the deformability is deteriorated are almost common, and the degree of graphitization and the distribution of the graphite particles in the range in which the deformability is not deteriorated In this case, quenching hardness will not be insufficient.
【0020】以上のように、冷間鍛造や転造などの冷間
加工性にすぐれ、しかも高周波焼入れのような短時間加
熱での熱処理性も良好な鋼材においては、鋼中Cの黒鉛
化の状態としては鋼中Cの総含有量の20〜75%が黒鉛化
していて、その断面の顕微鏡観察で直径20μm を超える
黒鉛粒子がなく、かつ直径 3〜20μm の粒子がC重量%
× 100個/mm2 以上、C重量%×1000個/mm2 以下の頻
度で分布していることと規制する。As described above, in a steel material having excellent cold workability such as cold forging and rolling, and having good heat treatability by short-time heating such as induction hardening, graphitization of C in steel As a state, 20 to 75% of the total C content in the steel is graphitized, and no microscopic observation of the cross section shows graphite particles with a diameter of 20 μm or more, and particles with a diameter of 3 to 20 μm are C weight%.
It is regulated that the distribution is × 100 pieces / mm 2 or more and C weight% × 1000 pieces / mm 2 or less.
【0021】つぎにに各成分の作用とその範囲の限定理
由を説明する。Next, the action of each component and the reason for limiting the range will be described.
【0022】(2) C量 加工性だけを考えればC含有量は低いほど良いが、加工
後焼入れ焼戻し等の熱処理により所要強度に調質するに
は、少なくとも0.30%以上は必要である。さらに、黒鉛
化の生じやすさや、最終製品の耐摩耗性が必要な場合を
考えれば、Cは多いほど良い。しかし、黒鉛化が充分お
こなわれたとしてもやはり加工性にはCの低い方がよ
く、また後述のようにMnを低くすることによる焼入れ
性の低下分をB添加で補っていて、Cを多くするとBの
焼入れ性向上効果がなくなるので、上限を0.70%とす
る。すなわちC含有量は0.30〜0.70%に限定する。(2) C content The lower the C content is, the better it is, considering only the workability, but at least 0.30% or more is necessary to adjust the strength to the required strength by heat treatment such as quenching and tempering after working. Further, considering the easiness of graphitization and the case where the wear resistance of the final product is required, the larger the content of C, the better. However, even if the graphitization is sufficiently performed, it is preferable that the workability be low in C, and as will be described later, the addition of B compensates for the decrease in the hardenability due to the decrease in Mn. Then, the effect of improving the hardenability of B is lost, so the upper limit is made 0.70%. That is, the C content is limited to 0.30 to 0.70%.
【0023】(3) Si量 黒鉛化を促進する成分なので、ある程度以上存在するこ
とが好ましいが、量が増すと素地が硬くなって変形抵抗
が高くなる。このため含有範囲を0.20〜0.60%とする。(3) Si content Since it is a component that promotes graphitization, it is preferable that it is present in a certain amount or more, but if the amount increases, the base becomes hard and the deformation resistance increases. Therefore, the content range is 0.20 to 0.60%.
【0024】(4) Mn量 Sによる熱間脆性の防止や焼入れ性確保のために、鋼で
はある程度の添加が必須の元素であるが、黒鉛化を阻害
するのでできるだけ低くしておきたい。0.05%未満では
Sの害を防止できず、0.60%を超えると黒鉛化を著しく
阻害するので、0.05%〜0.60%に限定する。(4) Mn content In order to prevent hot embrittlement due to S and to secure hardenability, it is an essential element to add to steel, but since it hinders graphitization, it should be kept as low as possible. If it is less than 0.05%, the damage of S cannot be prevented, and if it exceeds 0.60%, graphitization is significantly hindered, so the content is limited to 0.05% to 0.60%.
【0025】(5) sol.Al量 鋳造の際の脱酸剤として必要であり、高炭素鋼鋳片の表
面疵防止には0.01%以上の添加が普通である。その上、
黒鉛化の促進効果があるので、本発明では通常の脱酸剤
としてよりも多めに添加し、含有量を0.05%以上とす
る。ただし、多すぎると素地を硬くしたり、熱処理後の
製品の靱性を劣化させるので、0.50%までが限度であ
る。すなわちsol.Al(酸可溶Al)の含有量の範囲を
0.05〜0.50%とする。(5) sol.Al amount It is necessary as a deoxidizing agent in casting, and 0.01% or more is usually added to prevent surface flaws of a high carbon steel slab. Moreover,
Since it has an effect of promoting graphitization, it is added in a larger amount than the usual deoxidizing agent in the present invention, and the content is made 0.05% or more. However, if the amount is too large, the base material becomes hard and the toughness of the product after heat treatment deteriorates, so the upper limit is 0.50%. That is, the range of the content of sol.Al (acid-soluble Al)
0.05 to 0.50%.
【0026】(6) B量 黒鉛化阻害のためMnを多く添加できないので、焼入れ
性を確保するために添加する。また、Bの添加は黒鉛化
を促進する効果もある。添加量は少なすぎると効果がな
く、多くしても効果は飽和するので、その含有量を0.00
05〜0.0050%に限定する。(6) B content Since Mn cannot be added in a large amount due to inhibition of graphitization, it is added to ensure hardenability. Further, the addition of B also has the effect of promoting graphitization. If the addition amount is too small, there is no effect, and if the addition amount is too large, the effect is saturated.
Limited to 05-0.0050%.
【0027】(7) N量 Nは鋼中に不可避的に含有される不純物元素であり、加
工性阻害や靱性劣化の影響があるため通常の鋼では少な
いほどよいが、黒鉛化の促進効果やAlと共存して結晶
粒粗大化阻止効果があるので、 0.002〜 0.010%の範囲
で含有させる。(7) N content N is an impurity element that is unavoidably contained in steel and has the effect of workability hindrance and deterioration of toughness. Since it coexists with Al and has an effect of preventing crystal grain coarsening, it is contained in the range of 0.002 to 0.010%.
【0028】(8) PおよびS量 これらは不可避的不純物元素であり、黒鉛化を阻害する
ので少なければ少ないほどよい。阻害の影響が顕著でな
い限界として、いずれも0.02%までは許容できるが、望
ましくはいずれも 0.005%以下である。(8) P and S amounts These are unavoidable impurity elements and hinder graphitization, so the smaller the better. As a limit at which the effect of inhibition is not significant, 0.02% is acceptable in all cases, but 0.005% or less is desirable in each case.
【0029】(9) Ni量 黒鉛化を促進し、焼入れ性を向上させる効果があるが、
充分添加しなければ効果は顕著に現われず高価でもある
ので、添加しなくてもよい。Siほどには素地を硬化さ
せないため、最終用途の成形部品形状により、焼入れ性
が不足するような場合必要により添加する。添加する場
合は、 0.1%以上含有させるのが望ましいが、多くなれ
ば硬くなるので 2.0%までを限度とする。(9) Ni content It is effective in promoting graphitization and improving hardenability.
If it is not added sufficiently, the effect is not remarkable and it is expensive, so it is not necessary to add it. Since the base material is not hardened as much as Si, it is added as necessary when the hardenability is insufficient due to the shape of the molded part for the final use. When added, it is desirable to contain 0.1% or more, but if the content increases, it becomes harder, so the content is limited to 2.0%.
【0030】(10) Ca量 添加しなくてもよいが、黒鉛化の促進効果があり、硫化
物の形態を変えて加工性や靱性を向上させるので、最終
用途の部品の状況によりにより活用する。添加する場合
は、下限の含有量として 0.001%以上が望ましい。ただ
し、0.01%を超えると介在物が増加するので、含有量は
0.01%以下に限定する。(10) The amount of Ca does not have to be added, but it has the effect of promoting graphitization and changes the form of the sulfide to improve the workability and toughness, so depending on the situation of the part for the final use . When added, the lower limit content is preferably 0.001% or more. However, if it exceeds 0.01%, inclusions increase, so the content is
Limited to 0.01% or less.
【0031】次に、本発明の鋼の製造のための工程条件
について説明する。Next, the process conditions for producing the steel of the present invention will be described.
【0032】(11) 熱間圧延後黒鉛化 本発明で規定する成分の素材鋼を用い、鋼組織、含有炭
素の黒鉛化および黒鉛粒子の分布が所定の範囲である鋼
を得るための方法の一つとして、熱間加工後の黒鉛化が
ある。(11) Graphitization after hot rolling A method for obtaining a steel having a steel structure, graphitization of contained carbon and distribution of graphite particles within a predetermined range by using a raw material steel having the components specified in the present invention One is graphitization after hot working.
【0033】それは、規定成分の素材鋼を加熱し、熱間
圧延をおこなって所要形状とする際に 800〜1000℃の温
度範囲で仕上げ、10〜 100℃/min の冷却速度にて 500
℃以下まで冷却した後、 600〜 720℃にて 4〜50時間の
焼鈍をおこなうという方法である。It is performed by heating a raw material steel having a prescribed composition and performing hot rolling to obtain a desired shape, finishing in a temperature range of 800 to 1000 ° C., and cooling at a cooling rate of 10 to 100 ° C./min.
After cooling to below ℃, it is a method of annealing at 600 to 720 ℃ for 4 to 50 hours.
【0034】素材鋼の加熱温度は熱間加工に適した温度
であれば特には規制しない。しかし低すぎると熱間加工
時の変形抵抗が大きく、高すぎると脱炭の危険があるの
で、950 〜1200℃が望ましい。熱間加工完了の温度は、
後の黒鉛化を容易におこなわせ黒鉛粒子を本発明で定め
る範囲に分散させるために、低い方が好ましいが、低す
ぎると変形抵抗の増大や変態が始まるので、その温度範
囲を 800〜1000℃とする。加工後は黒鉛化の促進と黒鉛
粒子の好ましい分散の状態にするため、10℃/min 以上
の冷却速度にて 500℃ないしはそれ以下の温度まで冷却
する。その場合冷却が速すぎるとマルテンサイト変態や
ベイナイト変態が生じ必要以上に硬化するので、10〜 1
00℃/min の冷却速度にて 500℃以下まで冷却すること
とする。The heating temperature of the material steel is not particularly limited as long as it is a temperature suitable for hot working. However, if it is too low, the deformation resistance during hot working is large, and if it is too high, there is a risk of decarburization, so 950 to 1200 ° C is desirable. The temperature for hot working is
In order to facilitate the subsequent graphitization and disperse the graphite particles in the range defined by the present invention, a lower value is preferable, but if it is too low, the deformation resistance increases and transformation starts, so the temperature range is 800 to 1000 ° C. And After processing, in order to accelerate graphitization and bring the graphite particles into a preferable dispersion state, the material is cooled to a temperature of 500 ° C or lower at a cooling rate of 10 ° C / min or more. In that case, if cooling is too fast, martensitic transformation or bainite transformation will occur and harden more than necessary.
Cool down to 500 ° C or less at a cooling rate of 00 ° C / min.
【0035】冷却後、黒鉛化のための焼鈍をおこなう。
その温度は低すぎると黒鉛化が容易には進まず、変態点
以上では黒鉛化よりも変態が先行するので、 600〜 720
℃とする。時間は短いと黒鉛化が不十分で目的とする大
きさの黒鉛粒子の存在が不十分となり、長すぎると所要
の黒鉛化範囲をこえてしまい、その上粗大黒鉛粒子がで
きやすくなるので 4〜50時間とする。After cooling, annealing for graphitization is performed.
If the temperature is too low, graphitization does not proceed easily, and above the transformation point, the transformation precedes the graphitization, so 600-720
℃. If the time is short, the graphitization is insufficient and the existence of graphite particles of the desired size is insufficient, and if it is too long, the required graphitization range is exceeded, and coarse graphite particles are likely to be formed. 50 hours.
【0036】(12) 冷間加工後黒鉛化 本発明の鋼材の製造は、規定する成分の鋼ビレットを用
いて所定寸法に熱間圧延し、冷間抽伸などの冷間加工の
後、黒鉛化のための焼鈍をおこなっても可能である。(12) Graphitization after cold working: The steel material of the present invention is manufactured by hot rolling to a predetermined size using a steel billet having a prescribed composition, and after cold working such as cold drawing, graphitization. It is also possible to perform annealing for.
【0037】その方法は規定成分の素材鋼を熱間加工し
た後、 3〜40%の冷間加工をおこなって所要の形状と
し、 600〜 720℃にて 1〜24時間の焼鈍を施して本発明
に定める黒鉛化と黒鉛粒子の分布とした鋼を製造するも
のである。The method is as follows. After hot working a raw material steel with specified components, cold working at 3 to 40% to obtain a desired shape, and annealing at 600 to 720 ° C for 1 to 24 hours. It is intended to produce steel having graphitization and graphite particle distribution defined in the invention.
【0038】熱間加工の条件は、冷却後に冷間加工が可
能なフェライト・パーライト組織になっておりさえすれ
ば特に規制はしない。冷間加工はパーライト組織になっ
たセメンタイトを素地の塑性変形により細かく分断し、
焼鈍時の黒鉛化を促進させ黒鉛粒子を規制の範囲に分散
させる効果がある。 3%未満の加工ではこの効果が不十
分であり、40%を超えても効果は飽和するばかりでなく
加工が困難となる。黒鉛化のための焼鈍は、温度が低す
ぎると黒鉛化が容易には進行せず、変態点以上の温度で
は黒鉛化の進行よりも変態が先行するので、Ac3 変態
点以下の 600〜720 ℃とする。黒鉛化のための焼鈍時間
は冷間加工をおこなったことにより短縮できるが、 1時
間未満では黒鉛化が不十分であり、24時間を超えると過
度に進行して黒鉛の量が多すぎたり、粗大な黒鉛粒子が
できてくる。目的とする黒鉛粒子の得られる範囲は 1〜
24時間である。The hot working conditions are not particularly limited as long as they have a ferrite / pearlite structure that allows cold working after cooling. In cold working, cementite with a pearlite structure is finely divided by plastic deformation of the base material,
It has the effect of promoting graphitization during annealing and dispersing graphite particles within the regulated range. This effect is insufficient if the amount is less than 3%, and if the amount exceeds 40%, the effect is not only saturated but also difficult to process. Annealing for graphitization does not proceed to facilitate the graphitization temperature is too low, since transformation precedes the progress of graphitization is lower than the transformation point of the temperature, from 600 to 720 below Ac 3 transformation point ℃. The annealing time for graphitization can be shortened by performing cold working, but if it is less than 1 hour, graphitization is insufficient, and if it exceeds 24 hours, it progresses excessively and the amount of graphite is too large. Coarse graphite particles are created. The target graphite particle range is from 1 to
24 hours.
【0039】[0039]
〔実施例1〕転炉にて表1に示す10種の鋼を溶製し、直
径 200mmのビレットとした後、熱間圧延して直径30mmの
棒鋼とした。熱間圧延の仕上げ温度は 920℃で圧延後 5
00℃までの平均冷却速度は50℃/min である。この棒鋼
を表2に示す条件にて黒鉛化のための焼鈍を施した。燒
鈍後、黒鉛化の程度、断面の顕微鏡観察により黒鉛粒子
の析出粒数、粒径等の黒鉛化の状況を調査した。加工性
調査のため、硬さを測定し、直径20mm高さ30mmの試験片
を切削により作製してクランクプレスにより圧縮試験を
おこない変形抵抗を測定した。また直径28mm、長さ50mm
の試験片を作製し、ボンデライト・ボンダリューベ(商
品名:日本パーカ社製)の潤滑によりダイス角30°で減
面率10%/パスにて前方押出し試験をおこなって内部割
れ発生の加工限界を調べた。また高周波焼入れによる表
面硬さを確認するため、直径28mmの棒状試験片を用い、
40kHzの高周波誘導加熱により表面温度 950℃にて 5
s間均熱後焼入れし 180℃、45分の焼戻しをおこなって
表面硬さを測定した。これらの結果を併せて表2に示
す。[Example 1] Ten kinds of steel shown in Table 1 were melted in a converter to form a billet having a diameter of 200 mm, and then hot-rolled into a steel bar having a diameter of 30 mm. Finishing temperature of hot rolling is 920 ℃ and after rolling 5
The average cooling rate up to 00 ° C is 50 ° C / min. This steel bar was annealed for graphitization under the conditions shown in Table 2. After the annealing, the degree of graphitization and the cross-sectional microscopic observation were performed to examine the graphitization state such as the number of precipitated graphite particles and the particle size. For the workability investigation, the hardness was measured, a test piece having a diameter of 20 mm and a height of 30 mm was prepared by cutting, and a compression test was performed by a crank press to measure the deformation resistance. 28mm diameter and 50mm length
Of the test piece was prepared and subjected to a forward extrusion test with a die angle of 30 ° and a surface reduction rate of 10% / pass by lubrication with Bonderite Bonda Leube (product name: Nippon Parka) to determine the processing limit of internal cracking. Examined. Also, in order to confirm the surface hardness by induction hardening, a rod-shaped test piece with a diameter of 28 mm was used.
Surface temperature of 950 ℃ by high frequency induction heating of 40kHz 5
After soaking for s, quenching was performed, tempering was performed at 180 ° C for 45 minutes, and the surface hardness was measured. The results are shown together in Table 2.
【0040】[0040]
【表1】 [Table 1]
【0041】[0041]
【表2】 [Table 2]
【0042】試験番号1および2はすぐれた加工性を示
すが、C含有量が本発明で規定する範囲を下回る鋼であ
るため、焼入れ後の表面硬さが不十分である。試験番号
14はCが高くても変形抵抗は低下しているが、Cは本
発明で規定する範囲を超えていることもあって、黒鉛化
が過剰に進行し内部割れを起しやすくなっている。ま
た、試験番号3〜5、または6〜7から同じ鋼種での黒
鉛化条件の異る場合を比較できる。鋼成分は本発明の定
める範囲であっても、黒鉛化条件が不適切であれば本発
明で定める黒鉛化組織の状態は得られず、硬さが低く加
工性が良好な鋼材は得られないことがわかる。Test Nos. 1 and 2 show excellent workability, but the surface hardness after quenching is insufficient because the C content is less than the range specified by the present invention. In Test No. 14, the deformation resistance is lowered even if C is high, but since C exceeds the range specified in the present invention, graphitization excessively proceeds and internal cracking easily occurs. There is. Further, from the test numbers 3 to 5 or 6 to 7, it is possible to compare cases in which the same steel type but different graphitization conditions are used. Even if the steel composition is within the range defined by the present invention, if the graphitization conditions are inappropriate, the state of the graphitized structure defined by the present invention cannot be obtained, and a steel material having low hardness and good workability cannot be obtained. I understand.
【0043】〔実施例2〕表1に示した鋼のCおよびI
の直径 200mmのビレットを用い、表3に示す圧延終了温
度および圧延後の冷却速度として熱間圧延して、直径30
mmの棒とし、さらに黒鉛化のための焼鈍をおこなった。
得られた棒鋼について断面にて黒鉛化の状況および硬さ
を調査し、20mmφ×30mm Lの試験片により50%圧縮時の
変形抵抗を測定した。結果も併せて表3に示す。また、
実施例1と同様の方法にて前方押出し試験による内部割
れ発生の加工限界、および高周波焼入れによる表面硬さ
を測定した。これらの結果を表3に示す。Example 2 C and I of the steels shown in Table 1
Using a billet with a diameter of 200 mm, the rolling end temperature shown in Table 3 and the cooling rate after rolling were hot-rolled to a diameter of 30 mm.
mm rods were further annealed for graphitization.
The cross section of the obtained steel bar was examined for graphitization status and hardness, and the deformation resistance at 50% compression was measured using a 20 mmφ × 30 mm L test piece. The results are also shown in Table 3. Also,
In the same manner as in Example 1, the working limit of occurrence of internal cracks by the forward extrusion test and the surface hardness by induction hardening were measured. Table 3 shows the results.
【0044】[0044]
【表3】 [Table 3]
【0045】鋼Cおよび鋼Iはいずれも本発明で規定す
る化学成分の範囲の鋼である。しかし圧延条件または黒
鉛化焼鈍条件が不十分な場合、本発明で定める黒鉛化の
組織形態は得られない。すなわち、黒鉛化の比率が少な
い場合は軟化が不十分で変形抵抗が大きく、黒鉛の析出
粒数が多すぎる場合は高周波焼入れの際十分な表面硬さ
が得られず、大きな黒鉛粒子が発生すると内部割れを発
生しやすくなり加工限界が低下している。Both Steel C and Steel I are steels having chemical compositions within the ranges specified in the present invention. However, if the rolling conditions or the graphitization annealing conditions are insufficient, the graphitized structure morphology defined in the present invention cannot be obtained. That is, when the ratio of graphitization is low, softening is insufficient and deformation resistance is large, and when the number of precipitated particles of graphite is too large, sufficient surface hardness cannot be obtained during induction hardening, and large graphite particles are generated. Internal cracks are more likely to occur and the working limit is lowered.
【0046】〔実施例3〕表1に示した鋼のC、Fおよ
びIの直径 200mmのビレットを用い、熱間圧延の仕上げ
温度を 920℃、圧延後 500℃までの平均冷却速度を50℃
/min として直径30mmの棒鋼とした。これらの鋼を表4
に示すように冷間抽伸加工後、黒鉛化のための焼鈍をお
こなった。得られた棒鋼について、上記実施例と同様黒
鉛化の形態および組織、硬さ、変形抵抗などを調査し
た。前方押出しの内部割れ発生の加工限界、および高周
波焼入れによる表面硬さについては、直径20mmの棒鋼に
切削成形後実施例1と同じ方法で試験した。[Example 3] Using a steel billet having a diameter of 200 mm of C, F and I shown in Table 1, the finishing temperature of hot rolling was 920 ° C, and the average cooling rate up to 500 ° C after rolling was 50 ° C.
A steel bar with a diameter of 30 mm was used as the min. These steels are listed in Table 4.
After cold drawing, as shown in (4), annealing for graphitization was performed. Regarding the obtained steel bar, the morphology and structure of graphitization, the hardness, the deformation resistance and the like were investigated in the same manner as in the above examples. With respect to the working limit of the generation of internal cracks in the forward extrusion and the surface hardness due to induction hardening, the same method as in Example 1 was performed after cutting and forming a steel bar having a diameter of 20 mm.
【0047】[0047]
【表4】 [Table 4]
【0048】結果を併せて表4に示すが、黒鉛化の程
度、析出粒数および最大粒の径など本発明で定める範囲
にある黒鉛化組織形態の鋼材を得るには、冷間加工度お
よびその後の焼鈍条件を適切に選定する必要があること
がわかる。The results are also shown in Table 4. In order to obtain a steel material having a graphitized structure morphology within the ranges defined by the present invention such as the degree of graphitization, the number of precipitated grains and the diameter of the maximum grain, the cold workability and It is understood that it is necessary to appropriately select the subsequent annealing conditions.
【0049】[0049]
【発明の効果】本発明の鋼材は、引抜き、鍛造、転造等
の冷間加工性にすぐれ、かつ焼入れ焼戻しなど熱処理に
て容易に所要強度が得られる。各種機械、自動車等の部
品など複雑な形状の加工部品の製造にこの鋼材を適用す
ることによって、製造工程の合理化や、鋼素材の歩留を
向上させることができる。EFFECTS OF THE INVENTION The steel material of the present invention has excellent cold workability such as drawing, forging and rolling, and can easily obtain a required strength by heat treatment such as quenching and tempering. By applying this steel material to the manufacture of processed parts having complicated shapes such as parts of various machines and automobiles, the manufacturing process can be rationalized and the yield of steel materials can be improved.
Claims (3)
20〜0.60%、Mn:0.05〜0.60%、sol.Al:0.05〜0.
50%、B:0.0005〜0.0050%、N: 0.002〜 0.010%、
Ni:2.00%以下、およびCa:0.01%以下を含み、残
部が実質的にFeおよび不可避的不純物であって、鋼組
織がフェライト、球状化セメンタイトおよび黒鉛粒子か
らなり、C含有量の20〜75%が黒鉛化していて、断面観
察にて直径20μm を超える黒鉛粒子がなく、かつ直径 3
〜20μm の黒鉛粒子がC重量%× 100個/mm2以上、C
重量%×1000個/mm2 以下の頻度で分布していることを
特徴とする加工性に優れた鋼材。1. A weight ratio of C: 0.30 to 0.70%, Si: 0.
20-0.60%, Mn: 0.05-0.60%, sol.Al: 0.05-0.
50%, B: 0.0005 to 0.0050%, N: 0.002 to 0.010%,
Ni: 2.00% or less and Ca: 0.01% or less, the balance being substantially Fe and unavoidable impurities, the steel structure consisting of ferrite, spheroidized cementite and graphite particles, and having a C content of 20-75. % Is graphitized, cross-section observation shows no graphite particles with a diameter of 20 μm, and
Graphite particles of up to 20 μm are C weight% x 100 pieces / mm 2 or more, C
A steel material with excellent workability characterized by being distributed at a frequency of less than 1000% by weight / mm 2 .
20〜0.60%、Mn:0.05〜0.60%、sol.Al:0.05〜0.
50%、B:0.0005〜0.0050%、N: 0.002〜 0.010%、
Ni:2.00%以下、およびCa:0.01%以下を含み、残
部が実質的にFeおよび不可避的不純物である鋼を、加
熱して熱間加工する際、800 〜1000℃の範囲で加工を完
了して、10〜 100℃/min の冷却速度にて500 ℃以下ま
で冷却した後、 600〜720 ℃にて 4〜50時間の焼鈍をお
こなうことを特徴とする、請求項1に記載の鋼材の製造
方法。2. A weight ratio of C: 0.30 to 0.70%, Si: 0.
20-0.60%, Mn: 0.05-0.60%, sol.Al: 0.05-0.
50%, B: 0.0005 to 0.0050%, N: 0.002 to 0.010%,
When steel containing Ni: 2.00% or less and Ca: 0.01% or less and the balance being substantially Fe and unavoidable impurities is heated and hot-worked, the working is completed in the range of 800 to 1000 ° C. The steel material according to claim 1, wherein the steel material is cooled at a cooling rate of 10 to 100 ° C / min to 500 ° C or less and then annealed at 600 to 720 ° C for 4 to 50 hours. Method.
20〜0.60%、Mn:0.05〜0.60%、sol.Al:0.05〜0.
50%、B:0.0005〜0.0050%、N: 0.002〜 0.010%、
Ni:2.00%以下、およびCa:0.01%以下を含み、残
部が実質的にFeおよび不可避的不純物である鋼を、熱
間加工の後、加工度 3〜40%の冷間加工をおこない、60
0 〜 720℃にて 1〜24時間の焼鈍を施すことを特徴とす
る、請求項1に記載の鋼材の製造方法。3. A weight ratio of C: 0.30 to 0.70%, Si: 0.
20-0.60%, Mn: 0.05-0.60%, sol.Al: 0.05-0.
50%, B: 0.0005 to 0.0050%, N: 0.002 to 0.010%,
Steel containing Ni: 2.00% or less and Ca: 0.01% or less, the balance being substantially Fe and unavoidable impurities, is hot-worked and then cold-worked at a workability of 3 to 40%.
The method for producing a steel product according to claim 1, wherein annealing is performed at 0 to 720 ° C for 1 to 24 hours.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9657695A JPH08291362A (en) | 1995-04-21 | 1995-04-21 | Steel with excellent cold workability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9657695A JPH08291362A (en) | 1995-04-21 | 1995-04-21 | Steel with excellent cold workability |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08291362A true JPH08291362A (en) | 1996-11-05 |
Family
ID=14168810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9657695A Pending JPH08291362A (en) | 1995-04-21 | 1995-04-21 | Steel with excellent cold workability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08291362A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2246450A1 (en) * | 2007-12-19 | 2010-11-03 | JFE Steel Corporation | Steel sheets and process for manufacturing the same |
CN104040000A (en) * | 2012-01-05 | 2014-09-10 | 杰富意钢铁株式会社 | High carbon hot-rolled steel sheet and method for producing same |
CN106282837A (en) * | 2016-08-24 | 2017-01-04 | 江苏金源高端装备股份有限公司 | A kind of Forging Technology of bulking machine pressure roller |
-
1995
- 1995-04-21 JP JP9657695A patent/JPH08291362A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2246450A1 (en) * | 2007-12-19 | 2010-11-03 | JFE Steel Corporation | Steel sheets and process for manufacturing the same |
EP2246450A4 (en) * | 2007-12-19 | 2012-01-25 | Jfe Steel Corp | Steel sheets and process for manufacturing the same |
CN104040000A (en) * | 2012-01-05 | 2014-09-10 | 杰富意钢铁株式会社 | High carbon hot-rolled steel sheet and method for producing same |
CN106282837A (en) * | 2016-08-24 | 2017-01-04 | 江苏金源高端装备股份有限公司 | A kind of Forging Technology of bulking machine pressure roller |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6226086B2 (en) | Rolled steel bar or wire rod for cold forging parts | |
EP1178126A1 (en) | Bar or wire product for use in cold forging and method for producing the same | |
JP6226085B2 (en) | Rolled steel bar or wire rod for cold forging parts | |
JP6652019B2 (en) | Machine structural steel and induction hardened steel parts for induction hardening | |
KR20130108403A (en) | Rolled steel bar or wire for hot forging | |
JP5649886B2 (en) | Case-hardened steel and method for producing the same | |
JP3879459B2 (en) | Manufacturing method of high hardenability high carbon hot rolled steel sheet | |
JP3738003B2 (en) | Steel for case hardening excellent in cold workability and properties of preventing coarse grains during carburizing and method for producing the same | |
JP5649887B2 (en) | Case-hardened steel and method for producing the same | |
JP2938101B2 (en) | Manufacturing method of steel for cold forging | |
JP3550886B2 (en) | Manufacturing method of gear steel for induction hardening excellent in machinability and fatigue strength | |
JP7472992B2 (en) | Cold-rolled steel sheet and method for producing the same | |
JP2001181791A (en) | Bar wire for cold forging excellent in induction hardening and cold forging | |
JP3458604B2 (en) | Manufacturing method of induction hardened parts | |
JP4393344B2 (en) | Manufacturing method of case hardening steel with excellent cold workability and grain coarsening resistance | |
JPH08291362A (en) | Steel with excellent cold workability | |
WO2017069064A1 (en) | Steel for mechanical structures and induction hardened steel parts | |
JP4488228B2 (en) | Induction hardening steel | |
JPH09202921A (en) | Method for manufacturing wire for cold forging | |
JPH11106863A (en) | Steel for mechanical structure excellent in cold workability and method for producing the same | |
JP7329780B2 (en) | Cold-rolled steel and steel parts | |
JP3428282B2 (en) | Gear steel for induction hardening and method of manufacturing the same | |
JPH08246051A (en) | Method for producing medium carbon steel sheet with excellent workability | |
JP3282491B2 (en) | Steel for mechanical structure excellent in cold workability and method for producing the same | |
JPH11106864A (en) | Steel for mechanical structure excellent in cold workability and method for producing the same |