[go: up one dir, main page]

JPH08290236A - Continuous cast slab manufacturing method - Google Patents

Continuous cast slab manufacturing method

Info

Publication number
JPH08290236A
JPH08290236A JP11528495A JP11528495A JPH08290236A JP H08290236 A JPH08290236 A JP H08290236A JP 11528495 A JP11528495 A JP 11528495A JP 11528495 A JP11528495 A JP 11528495A JP H08290236 A JPH08290236 A JP H08290236A
Authority
JP
Japan
Prior art keywords
slab
molten steel
mold
continuous casting
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11528495A
Other languages
Japanese (ja)
Inventor
Hiroshi Harada
寛 原田
Makoto Tanaka
田中  誠
Eiichi Takeuchi
栄一 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11528495A priority Critical patent/JPH08290236A/en
Publication of JPH08290236A publication Critical patent/JPH08290236A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

(57)【要約】 【目的】 本発明は、溶鋼から直接連続鋳造鋳型内にお
いて、鋳片表層部の合金元素濃度が内層部に比較して高
い、複層状連鋳鋳片の製造方法を提供する。 【構成】 合金元素を含有させた連鋳パウダー10を用
い、連続鋳造鋳型1内の上部に電磁攪拌装置30を設置
して鋳型内上部溶鋼プール3中の水平断面内で合金元素
を溶解・混合する攪拌流31を形成し、その下方に幅方
向に直流磁界21を鋳片の厚み方向に印加して溶鋼プー
ル中に制動域5を形成し、かつ直流磁界域の下方に浸漬
ノズル2により溶鋼を供給して鋳造することで、合金元
素の鋳片表層部の濃度が内層に比べて高い複層状の鋳片
を製造する。 【効果】 表層部のニッケル濃度等を高くして、この鋼
種特有の銅起因の表面疵を抑制し、さらに本発明は、小
断面サイズの鋳片の鋳造にも応用可能である。
(57) [Summary] [Object] The present invention provides a method for producing a multi-layer continuous cast slab, in which the alloy element concentration in the surface layer of the slab is higher than that in the inner layer in a continuous casting mold directly from molten steel. To do. [Structure] A continuous casting powder 10 containing an alloy element is used, and an electromagnetic stirrer 30 is installed in the upper part of the continuous casting mold 1 to melt and mix the alloy element in a horizontal cross section in the upper molten steel pool 3 in the mold. A stir flow 31 is formed, and a DC magnetic field 21 is applied in the width direction in the width direction below the stir flow 31 to form a braking region 5 in the molten steel pool. By supplying and casting, the multi-layered slab having a higher concentration of alloy elements in the surface layer of the slab than in the inner layer is produced. [Effect] By increasing the nickel concentration and the like in the surface layer portion, the surface defects due to copper peculiar to this steel type are suppressed, and the present invention is also applicable to casting of a slab having a small cross-sectional size.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶鋼から直接連続鋳造
鋳型内において、鋳片表層部の合金元素濃度が鋳片内部
と比較して高い複層状の連鋳鋳片の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a multi-layered continuous cast slab, in which the alloy element concentration in the surface layer of the slab is higher in the continuous casting mold directly from molten steel than in the slab.

【0002】[0002]

【従来の技術】本発明者らは、特願平06−10436
5号において、所定の合金元素を含有させた連鋳パウダ
ーを用いるとともに、連続鋳造鋳型内の溶鋼メニスカス
から一定距離下方の位置において、鋳片の厚みを横切る
ように鋳片幅方向に亘ってほぼ均一な磁束密度分布を有
する直流磁界を印加しつつ一定の組成の溶鋼を注入し、
その直流磁界帯で区分される上下溶鋼プールのうち上部
溶鋼プール中に前述の連鋳パウダーを通じて、合金元素
を混入させながら連続鋳造して、表層の合金元素の濃度
が内層に比べて高い複層状の鋳片を製造する方法を提案
した。
2. Description of the Related Art The present inventors have filed Japanese Patent Application No. 06-10436.
In No. 5, while using a continuous casting powder containing a predetermined alloy element, at a position a certain distance below the molten steel meniscus in the continuous casting mold, it is almost across the thickness of the slab across the width of the slab. Injection of molten steel with a constant composition while applying a DC magnetic field having a uniform magnetic flux density distribution,
Of the upper and lower molten steel pools divided by the DC magnetic field zone, continuous casting is performed in the upper molten steel pool through the continuous casting powder while mixing alloy elements, and the concentration of alloy elements in the surface layer is higher than that in the inner layer. A method for manufacturing the cast slab has been proposed.

【0003】[0003]

【発明が解決しようとする課題】上記特願平06−10
4365号で提案した方法によると、表層の合金元素の
濃度が内層に比べて高い複層状の鋳片を製造することが
可能となった。しかしながらこの方法では、連続鋳造用
パウダー内に添加した合金元素を鋳片表層部に富化でき
るものの、鋳片表層の濃度分布に不均一が生じやすいと
いう問題点が生じた。
[Patent Document 1] Japanese Patent Application No. 06-10
According to the method proposed in No. 4365, it has become possible to manufacture a multi-layered slab having a higher concentration of alloying elements in the surface layer than in the inner layer. However, with this method, although the alloy elements added to the powder for continuous casting can be enriched in the surface layer of the slab, there is a problem in that the concentration distribution in the surface layer of the slab tends to become uneven.

【0004】本発明は上記課題を解決し、表層部におけ
る合金元素濃度の均一化を図る連鋳鋳片の製造方法を提
供する。
The present invention solves the above-mentioned problems and provides a method for producing a continuous cast slab for achieving uniform alloy element concentration in the surface layer portion.

【0005】[0005]

【課題を解決するための手段】本発明は、所定の合金元
素を含有させた連続鋳造用パウダーを用いるとともに、
連続鋳造鋳型内の上部に設置した電磁攪拌装置により、
鋳型内溶鋼プール中の水平断面内で攪拌流を形成し、か
つその下方に幅方向に均一な磁束密度分布を有する直流
磁界を鋳片の厚み方向に印加することで鋳型内溶鋼プー
ル中に制動域を形成し、直流磁界域の下方に浸漬ノズル
により溶鋼を供給しつつ鋳造することで、合金元素の鋳
片表層部の濃度が内層に比べて高い複層状の鋳片を製造
することを特徴とする連鋳鋳片の製造方法である。
The present invention uses a powder for continuous casting containing a predetermined alloy element,
With an electromagnetic stirrer installed in the upper part of the continuous casting mold,
A stir flow is formed in the horizontal cross section in the molten steel pool in the mold, and a DC magnetic field with a uniform magnetic flux density distribution in the width direction is applied below it to dampen the molten steel pool in the mold by applying it in the thickness direction of the slab. By forming a zone and casting molten steel under the direct current magnetic field while supplying molten steel with a dipping nozzle, it is possible to manufacture a multi-layered slab with a higher concentration of alloy element slab surface layer than in the inner layer. The method for producing a continuous cast slab is as follows.

【0006】また上記連鋳鋳片の製造方法において、浸
漬ノズルのノズル吐出孔位置と直流磁界との位置関係を
調整することにより、鋳片の内層部への合金元素の混入
量を制御することを特徴とするものである。
In the method for producing a continuous cast slab described above, the amount of alloying element mixed into the inner layer portion of the slab is controlled by adjusting the positional relationship between the nozzle discharge hole position of the immersion nozzle and the DC magnetic field. It is characterized by.

【0007】さらにまた上記連鋳鋳片の製造方法におい
て、電磁攪拌装置の攪拌強度をコントロールすることに
より、鋳片表層部における鋳片厚み方向の合金元素の濃
度分布を制御することを特徴とするものである。
Furthermore, in the above-mentioned continuous cast slab manufacturing method, the concentration distribution of alloy elements in the slab thickness direction in the slab surface layer portion is controlled by controlling the stirring strength of the electromagnetic stirrer. It is a thing.

【0008】[0008]

【作用】本発明を図1を用いて作用とともに以下説明す
る。
The operation of the present invention will be described below with reference to FIG.

【0009】先ず、所定の合金元素の粒あるいは粉13
を含有させた連続鋳造用パウダー10を用い、連続的に
鋳型1上方から湯面全体に添加する。そして、鋳型1内
メニスカス上で連続鋳造用パウダー10が溶融していく
過程で、所定元素の粒あるいは粉13がメニスカスで溶
鋼と接触し、メニスカスより上部溶鋼プール3中に混合
・拡散する。
First, a grain or powder of a predetermined alloy element 13
The powder 10 for continuous casting containing the above is continuously added to the entire molten metal surface from above the mold 1. Then, in the process in which the continuous casting powder 10 is melted on the meniscus in the mold 1, the particles or powder 13 of the predetermined element come into contact with the molten steel at the meniscus, and are mixed and diffused from the meniscus into the upper molten steel pool 3.

【0010】次いで、鋳型1内上部溶鋼プール3の濃度
分布を水平断面内で均一化させる必要があるが、鋳型1
内のように矩形断面の溶鋼プール中では、上下方向の攪
拌流で混合させるよりも、水平断面内で攪拌流31をあ
る深さにわたって形成する流動パターンの方が濃度分布
を均一にするには有効である。
Next, it is necessary to make the concentration distribution of the upper molten steel pool 3 in the mold 1 uniform in the horizontal section.
In the molten steel pool having a rectangular cross section as shown in the inside, the flow pattern formed by the stirring flow 31 over a certain depth in the horizontal cross section has a more uniform concentration distribution than mixing by the vertical stirring flow. It is valid.

【0011】そこで、連続鋳造鋳型1内の上部に電磁攪
拌装置30を設け、溶鋼プール中に水平断面内で攪拌流
31を形成することで、攪拌域9内の合金元素の濃度分
布を均一にする。濃度分布を均一にするためには、攪拌
流速として最低10cm/秒以上必要である。
Therefore, an electromagnetic stirrer 30 is provided in the upper part of the continuous casting mold 1 and a stir flow 31 is formed in the molten steel pool in a horizontal cross section so that the concentration distribution of alloying elements in the stir zone 9 is made uniform. To do. In order to make the concentration distribution uniform, a stirring flow rate of at least 10 cm / sec or more is required.

【0012】そのうえ、その攪拌域9よりも下方に、幅
方向に均一な磁束密度分布を有する直流磁界21を鋳片
の厚み方向に印加することで、溶鋼プール中に制動域5
を形成する。さらに鋳型内下部溶鋼プール4への鋳型内
上部の合金成分濃度の高い溶鋼の混入を防止するにあた
っては、浸漬ノズル2の吐出孔位置が重要となる。
Further, a DC magnetic field 21 having a uniform magnetic flux density distribution in the width direction is applied below the stirring area 9 in the thickness direction of the slab, so that the braking area 5 is formed in the molten steel pool.
To form. Further, in order to prevent the molten steel having a high alloy component concentration in the upper part of the mold from mixing into the lower molten steel pool 4 in the mold, the position of the discharge hole of the immersion nozzle 2 is important.

【0013】基本的には、浸漬ノズル2の吐出孔位置を
下げるに従い、下部溶鋼プール4への混入量は少なくな
る。そこで、鋳型内下部溶鋼プール4への上部溶鋼の混
入量を最小にするためには、鋳型1内に溶鋼を供給する
浸漬ノズル2のノズル吐出孔を、その直流磁界21によ
り形成される制動域5よりも下方に設ける。
Basically, as the position of the discharge hole of the immersion nozzle 2 is lowered, the amount mixed into the lower molten steel pool 4 becomes smaller. Therefore, in order to minimize the mixing amount of the upper molten steel into the lower molten steel pool 4 in the mold, the nozzle discharge hole of the immersion nozzle 2 for supplying the molten steel into the mold 1 has a braking area formed by the DC magnetic field 21 thereof. It is provided below 5.

【0014】その結果、制動域5よりも上部溶鋼プール
3では、合金元素の濃度が高い溶鋼プールを形成するこ
とができ、かつ制動域5よりも下方の下部溶鋼プール4
では、浸漬ノズル2を介して鋳型1内に供給される母溶
鋼の成分組成からなる溶鋼プールを形成することができ
る。
As a result, a molten steel pool having a higher concentration of alloying elements can be formed in the upper molten steel pool 3 below the braking area 5, and a lower molten steel pool 4 below the braking area 5 can be formed.
Then, it is possible to form the molten steel pool having the composition of the mother molten steel supplied into the mold 1 through the immersion nozzle 2.

【0015】このようにして、合金元素に応じ整粒化し
た粒かあるいは粉13を、鋳片の表層部6に添加したい
成分濃度に応じて連続鋳造用パウダー10中に含有させ
ることで、所定濃度の成分に攪拌域9内の溶鋼成分を調
整できる。
In this way, the particles or powder 13 that has been sized according to the alloying element is contained in the continuous casting powder 10 in accordance with the concentration of the component to be added to the surface layer portion 6 of the cast slab. The molten steel component in the stirring area 9 can be adjusted to the concentration component.

【0016】そのうえ攪拌域9よりも下方に、直流磁界
21により溶鋼プール中に制動域5を形成し、さらに浸
漬ノズル2のノズル吐出孔を制動域5よりも下方に設け
ることで、制動域5よりも下方の下部溶鋼プール4にお
ける合金元素の成分を母溶鋼の成分にすることができ
る。
In addition, a braking area 5 is formed in the molten steel pool below the stirring area 9 by the DC magnetic field 21, and the nozzle discharge holes of the immersion nozzle 2 are provided below the braking area 5 so that the braking area 5 is formed. The components of the alloy elements in the lower molten steel pool 4 below can be used as the components of the mother molten steel.

【0017】その結果、添加した合金元素を該攪拌域9
内に封じ込めることができ、鋳片表層部6の成分濃度
が、内層部7に比べて高い複層状の鋳片を鋳造すること
ができる。
As a result, the added alloy elements are added to the stirring zone 9
It is possible to enclose the slab, and it is possible to cast a multi-layered slab in which the component concentration of the slab surface layer portion 6 is higher than that of the inner layer portion 7.

【0018】また電磁攪拌装置30により、鋳型内上部
溶鋼プール3中に形成する攪拌流の強度を制御すること
で、プール水平断面内での攪拌流の強度だけでなく、制
動域5よりも上部の、攪拌域9の範囲をも併せてコント
ロールすることができる。そのため鋳型内上部溶鋼プー
ル3中の上下方向の合金元素の成分濃度分布、すなわち
鋳片表層部6における鋳片厚み方向の合金元素の成分濃
度分布を制御することもできる。
By controlling the strength of the stirring flow formed in the upper molten steel pool 3 in the mold by the electromagnetic stirring device 30, not only the strength of the stirring flow in the horizontal section of the pool but also above the braking area 5 is controlled. It is also possible to control the range of the stirring area 9 together. Therefore, it is also possible to control the component concentration distribution of the alloy element in the vertical direction in the upper molten steel pool 3 in the mold, that is, the component concentration distribution of the alloy element in the slab surface layer portion 6 in the thickness direction of the slab.

【0019】さらに本発明においては、浸漬ノズル2の
ノズル吐出孔数は基本的に下向き一孔でかまわないが、
図2に示すように一般的に用いられる二孔,さらに二孔
に下向きの吐出孔を一孔加えた三孔の吐出孔を有する浸
漬ノズル2を用いることにより、制動域5よりも下方の
下部溶鋼プール中の流動をより安定化させることができ
るので、これらの方法は良好な内部品質の鋳片を製造す
る点で、これらの浸漬ノズル2を用いることも有効であ
る。
Further, in the present invention, the number of nozzle discharge holes of the immersion nozzle 2 may basically be one downward hole,
As shown in FIG. 2, by using the submerged nozzle 2 having two holes that are generally used and three discharge holes including one downward discharge hole, the lower part below the braking area 5 is used. The use of these dipping nozzles 2 is also effective in that these methods produce slabs of good internal quality, because the flow in the molten steel pool can be more stabilized.

【0020】[0020]

【実施例】鋳型1内の湯面レベルから150mm下方に
電磁攪拌装置30のコア中心を設け、鋳型1内の上部溶
鋼プール3中に水平断面内で旋回流を形成できるように
し、かつ湯面レベルから600mm下方に、幅方向に均
一な磁束密度分布を有する直流磁界21を、鋳片の厚み
方向に印加することがてきる直流磁界発生装置20を設
けた連続鋳造プロセス(図1)において、表1に示す条
件で鋳造を行った。鋳型1内に溶鋼を供給する浸漬ノズ
ル2のノズル吐出孔位置は、湯面レベルからノズル吐出
孔までの距離を700mmとした。
EXAMPLE A core center of an electromagnetic stirrer 30 is provided 150 mm below the level of the molten metal in the mold 1 so that a swirl flow can be formed in a horizontal cross section in the upper molten steel pool 3 in the mold 1, and In a continuous casting process (FIG. 1) provided with a DC magnetic field generator 20 capable of applying a DC magnetic field 21 having a uniform magnetic flux density distribution in the width direction 600 mm below the level in the thickness direction of the slab, Casting was performed under the conditions shown in Table 1. As for the nozzle discharge hole position of the immersion nozzle 2 for supplying molten steel into the mold 1, the distance from the molten metal level to the nozzle discharge hole was 700 mm.

【0021】[0021]

【表1】 [Table 1]

【0022】また、連続鋳造用パウダー10中に炭素粉
を20重量%だけ含有させ、鋳型1上方から湯面全体に
わたって、鋳造中連続的に供給した。鋳造後、鋳片内の
炭素濃度分布を調査した結果を図3に示す。
Carbon powder was contained in the continuous casting powder 10 in an amount of 20% by weight and continuously supplied from above the mold 1 over the entire molten metal surface during casting. The result of investigating the carbon concentration distribution in the slab after casting is shown in FIG.

【0023】図3は、(a)は幅方向中心での鋳片厚み
方向炭素濃度分布,(b)は表面から10mmでの鋳片
幅方向炭素濃度分布を示し、これより、鋳片表層のみ炭
素濃度が高くなっていること、鋳片内部の炭素濃度はタ
ンディッシュ内の炭素濃度と同じであること、またその
炭素濃度が幅方向に均一であることが判る。そのうえ、
電磁攪拌装置30の攪拌強度により、鋳片表層部6の炭
素濃度分布が変化していることも明らかである(図
4)。
FIG. 3 (a) shows the carbon concentration distribution in the thickness direction of the slab at the center in the width direction, and (b) shows the carbon concentration distribution in the width direction of the slab at 10 mm from the surface. It can be seen that the carbon concentration is high, the carbon concentration inside the slab is the same as the carbon concentration inside the tundish, and that the carbon concentration is uniform in the width direction. Besides,
It is also clear that the carbon concentration distribution of the cast slab surface layer portion 6 changes depending on the stirring strength of the electromagnetic stirring device 30 (FIG. 4).

【0024】さらに、浸漬ノズルの吐出孔位置と鋳片内
部への炭素の混入量を調査したところ、制動域よりも下
方の鋳型内下部溶鋼プール中にノズル吐出孔を設けた場
合が、炭素の混入量は最も少ないことが判る(図5)。
Further, the discharge hole position of the immersion nozzle and the amount of carbon mixed into the slab were investigated, and when the nozzle discharge hole was provided in the lower molten steel pool in the mold below the braking area, carbon It can be seen that the mixed amount is the smallest (Fig. 5).

【0025】また、珪素,マンガン,ニッケルについて
も、同様な実験をしたところ、添加元素の種類によら
ず、どの元素においても、鋳片表層部6のみ合金元素の
濃度が高い鋳片を製造することができた。
Similar experiments were conducted for silicon, manganese, and nickel. As a result, a slab having a high alloy element concentration only in the slab surface layer portion 6 was produced regardless of the type of additive element. I was able to.

【0026】[0026]

【発明の効果】本発明による連鋳鋳片の製造方法によれ
ば、合金元素を含む連鋳パウダーを用い、鋳型内上部溶
鋼プール中で攪拌流を形成し、その下方に鋳片厚み方向
に直流磁界を印加して溶鋼プール中に制動域を形成し、
この直流磁界域の下方に浸漬ノズルにより溶鋼を供給す
ることにより、鋳片の内部はタンディッシュ内の溶鋼成
分で、鋳片の表層部のみ合金元素の濃度が高く、またそ
の濃度分布が鋳片幅方向に均一である鋳片を製造するこ
とができる。
EFFECTS OF THE INVENTION According to the method for producing a continuously cast slab according to the present invention, a continuous casting powder containing an alloy element is used to form a stirring flow in the upper molten steel pool in the mold, and below the stirring flow in the thickness direction of the slab. Applying a DC magnetic field to form a braking zone in the molten steel pool,
By supplying molten steel below this DC magnetic field with a dipping nozzle, the inside of the slab is the molten steel component in the tundish, the concentration of alloying elements is high only in the surface layer of the slab, and its concentration distribution is A slab that is uniform in the width direction can be manufactured.

【0027】そこでこの方法を、鋼の炭素濃度に依存し
て表面欠陥の発生しやすい鋼種,例えば中炭素鋼や極低
炭素鋼(中炭素鋼;鋳片表面に発生する縦割れ、極低炭
素鋼;介在物,気泡系の表面疵並びに酸化スケールの剥
離性不良によるスケー疵)に適用することで、鋳造条件
によらず、また鋳片だけでなく製品の表面欠陥をも容易
に回避することができる。
Therefore, this method is applied to steel types in which surface defects are likely to occur depending on the carbon concentration of the steel, such as medium carbon steel and ultra low carbon steel (medium carbon steel; vertical cracks and ultra low carbon that occur on the surface of the slab. Steel: It is possible to easily avoid not only casting conditions, but also surface defects of products as well as casting slabs by applying it to inclusions, surface defects of bubble systems and scale defects due to poor peelability of oxide scale. You can

【0028】また銅を含有した鋼の鋳造にあたっては、
鋳片表層部のみにニッケルを添加することで、銅を含有
した鋼特有の割れ疵の発生を抑制することができる。ま
たこれらの欠陥を抑制するためにどれだけ合金元素の高
い表層厚を形成するかは、それぞれの欠陥の種類とどの
工程で発生するかによる。
When casting steel containing copper,
By adding nickel only to the surface layer of the cast slab, it is possible to suppress the occurrence of cracking defects peculiar to steel containing copper. Further, how high the surface layer thickness of the alloy element is formed in order to suppress these defects depends on the type of each defect and in which process it occurs.

【0029】そのため、鋳片表層部における鋳片厚み方
向の濃度分布が制御出来ることは、必要厚みだけ確実に
合金元素の高い層を形成することができるため、極めて
有効である。さらに、本発明は、鋳片サイズによらず、
ブルーム,ビレットのような小断面サイズの鋳造にも応
用可能である。
Therefore, it is extremely effective that the concentration distribution in the thickness direction of the slab in the surface layer of the slab can be controlled because a layer having a high alloying element with a required thickness can be reliably formed. Furthermore, the present invention, regardless of the slab size,
It can also be applied to castings with small cross-section sizes such as blooms and billets.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施する下向き一孔タイプの浸
漬ノズルを用いた場合の鋳造中の状況を例示し、(a)
は鋳型上方からみた鋳造状況,(b)は鋳型内溶鋼プー
ルの鉛直断面での構造,(c)は鋳片水平断面での合金
元素の濃度分布の状況をそれぞれ示した図面である。
FIG. 1 illustrates a situation during casting when a downward single hole type immersion nozzle for carrying out the method of the present invention is used, (a)
FIG. 3 is a drawing showing the casting condition as seen from above the mold, FIG. 7 (b) is the structure of the molten steel pool in the mold in the vertical section, and FIG.

【図2】本発明の方法を実施する二孔タイプの浸漬ノズ
ルを用いた場合の鋳造中の状況を例示し、(a)は鋳型
上方からみた鋳造状況,(b)は鋳型内溶鋼プールの鉛
直断面での構造,(c)は鋳片水平断面での合金元素の
濃度分布の状況をそれぞれ示した図面である。
FIG. 2 illustrates a situation during casting when a two-hole type immersion nozzle for carrying out the method of the present invention is used. (A) is a casting situation viewed from above the mold, (b) is a molten steel pool in the mold. The structure in the vertical cross section, (c) is a drawing showing the state of the concentration distribution of the alloying element in the horizontal cross section of the slab.

【図3】鋳造した鋳片内の炭素濃度分布を調査した結果
を示し、(a)は鋳片の幅方向中心における鋳片厚み方
向の炭素濃度の分布,(b)は鋳片の幅方向における炭
素濃度の分布をそれぞれ示した図面である。
FIG. 3 shows the results of investigating the carbon concentration distribution in the cast slab, where (a) is the carbon concentration distribution in the slab thickness direction at the center of the slab width direction, and (b) is the slab width direction. 2 is a drawing showing the distribution of carbon concentration in FIG.

【図4】電磁攪拌装置の攪拌強度を変化させて鋳造した
時の鋳造した鋳片の表層部における炭素濃度分布を調査
した結果を示し、鋳片の幅方向中心における鋳片厚み方
向の炭素濃度分布を示した図面である。
FIG. 4 shows the results of investigating the carbon concentration distribution in the surface layer portion of the cast slab when casting was performed by changing the stirring strength of the electromagnetic stirrer, and the carbon concentration in the slab thickness direction at the widthwise center of the slab was shown. It is the drawing which showed distribution.

【図5】浸漬ノズルのノズル吐出孔位置を変化させて鋳
造した時の鋳造した鋳片内部への炭素の混入量を調査し
た結果を示した図面である。
FIG. 5 is a drawing showing the results of investigating the amount of carbon mixed into the cast slab when casting was performed by changing the nozzle discharge hole position of the immersion nozzle.

【符号の説明】[Explanation of symbols]

1 鋳型 2 浸漬ノズル 3 上部溶鋼プール 4 下部溶鋼プール 5 制動域(=上部と下部溶鋼プールの遷移域) 6 鋳片の表層部 7 鋳片の内層部 8 鋳片の濃度遷移域 9 攪拌域 10 連続鋳造用パウダー 13 合金元素の粒あるいは粉 20 直流磁界発生装置 21 直流磁界 30 電磁攪拌装置 31 攪拌流 1 Mold 2 Immersion Nozzle 3 Upper Molten Steel Pool 4 Lower Molten Steel Pool 5 Braking Area (= Transition Area of Upper and Lower Molten Steel Pool) 6 Surface Layer of Cast Piece 7 Inner Layer of Cast Piece 8 Concentration Transition Area of Cast Piece 9 Stirring Area 10 Powder for continuous casting 13 Grain or powder of alloy element 20 DC magnetic field generator 21 DC magnetic field 30 Electromagnetic stirrer 31 Stirring flow

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B22D 11/16 B22D 11/16 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location B22D 11/16 B22D 11/16 Z

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 所定の合金元素を含有させた連続鋳造用
パウダーを用いるとともに、連続鋳造鋳型内の上部に設
置した電磁攪拌装置により、鋳型内溶鋼プール中の水平
断面内で攪拌流を形成し、かつその下方に幅方向に均一
な磁束密度分布を有する直流磁界を鋳片の厚み方向に印
加することで鋳型内溶鋼プール中に制動域を形成し、直
流磁界域の下方に浸漬ノズルにより溶鋼を供給しつつ鋳
造することで、合金元素の鋳片表層部の濃度が内層に比
べて高い複層状の鋳片を製造することを特徴とする連鋳
鋳片の製造方法。
1. A continuous casting powder containing a predetermined alloy element is used, and a stirring flow is formed in a horizontal cross section in the molten steel pool in the mold by an electromagnetic stirring device installed in the upper part of the continuous casting mold. And, a braking area is formed in the molten steel pool in the mold by applying a DC magnetic field having a uniform magnetic flux density distribution in the width direction below the molten steel by a dipping nozzle below the DC magnetic field area. The method for producing a continuous cast slab, which comprises producing a multi-layer slab having a higher concentration of alloy elements in the surface layer of the slab than that of the inner layer by casting while supplying the alloy element.
【請求項2】 浸漬ノズルのノズル吐出孔位置と直流磁
界との位置関係を調整することにより、鋳片の内層部へ
の合金元素の混入量を制御することを特徴とする請求項
1記載の連鋳鋳片の製造方法。
2. The amount of alloying elements mixed into the inner layer portion of the cast slab is controlled by adjusting the positional relationship between the nozzle discharge hole position of the immersion nozzle and the DC magnetic field. Continuous casting slab manufacturing method.
【請求項3】 電磁攪拌装置の攪拌強度をコントロール
することにより、鋳片表層部における鋳片厚み方向の合
金元素の濃度分布を制御することを特徴とする請求項1
記載の連鋳鋳片の製造方法。
3. The concentration distribution of alloy elements in the thickness direction of the cast piece in the surface layer of the cast piece is controlled by controlling the stirring strength of the electromagnetic stirrer.
A method for producing a continuous cast slab as described.
JP11528495A 1995-04-18 1995-04-18 Continuous cast slab manufacturing method Pending JPH08290236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11528495A JPH08290236A (en) 1995-04-18 1995-04-18 Continuous cast slab manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11528495A JPH08290236A (en) 1995-04-18 1995-04-18 Continuous cast slab manufacturing method

Publications (1)

Publication Number Publication Date
JPH08290236A true JPH08290236A (en) 1996-11-05

Family

ID=14658858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11528495A Pending JPH08290236A (en) 1995-04-18 1995-04-18 Continuous cast slab manufacturing method

Country Status (1)

Country Link
JP (1) JPH08290236A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180066175A (en) 2015-10-30 2018-06-18 신닛테츠스미킨 카부시키카이샤 Continuous casting equipment and continuous casting method of multi-layer casting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180066175A (en) 2015-10-30 2018-06-18 신닛테츠스미킨 카부시키카이샤 Continuous casting equipment and continuous casting method of multi-layer casting
US10987730B2 (en) 2015-10-30 2021-04-27 Nippon Steel Corporation Continuous casting apparatus and continuous casting method for multilayered slab

Similar Documents

Publication Publication Date Title
JP5014934B2 (en) Steel continuous casting method
CN1183064A (en) Strip continuous casting
KR20020013862A (en) Production method for continuous casting cast billet
EP0596134A1 (en) Method of obtaining double-layered cast piece
JP3593328B2 (en) Method for controlling flow of molten steel in mold and apparatus for forming electromagnetic field therefor
EP0523837B1 (en) Continuous casting method of steel slab
JPH08290236A (en) Continuous cast slab manufacturing method
JP3583955B2 (en) Continuous casting method
JPH08290235A (en) Continuous cast slab manufacturing method
JP3583954B2 (en) Continuous casting method
JP2001232450A (en) Method for manufacturing continuous cast slab
JP3111346B2 (en) Powder for continuous casting
JP2898199B2 (en) Manufacturing method of continuous cast slab
JPH08257692A (en) Continuous casting slab manufacturing method and continuous casting immersion nozzle
JP3538967B2 (en) Continuous casting method
JP2960288B2 (en) Manufacturing method of multilayer steel sheet by continuous casting
JPH07290195A (en) Continuous cast slab manufacturing method
JPH0839196A (en) Continuous cast slab manufacturing method
JP2969579B2 (en) Steel continuous casting method
JP3426383B2 (en) Steel continuous casting method
JP2000015404A (en) Method for producing continuous cast slab with few inclusion defects
JPH11320054A (en) Continuous casting machine and continuous casting method
JP3318451B2 (en) Continuous casting method of multilayer slab
JP2004042063A (en) Continuous casting apparatus and continuous casting method
JP2627136B2 (en) Continuous casting method of multilayer slab