JPH08290191A - Catalytic filter medium in catalytic oxidation type water purifying device - Google Patents
Catalytic filter medium in catalytic oxidation type water purifying deviceInfo
- Publication number
- JPH08290191A JPH08290191A JP7233565A JP23356595A JPH08290191A JP H08290191 A JPH08290191 A JP H08290191A JP 7233565 A JP7233565 A JP 7233565A JP 23356595 A JP23356595 A JP 23356595A JP H08290191 A JPH08290191 A JP H08290191A
- Authority
- JP
- Japan
- Prior art keywords
- carbon fiber
- strand
- filter medium
- type
- biofilm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 41
- 230000003647 oxidation Effects 0.000 title claims abstract description 18
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 18
- 230000003197 catalytic effect Effects 0.000 title claims abstract description 16
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 109
- 239000004917 carbon fiber Substances 0.000 claims abstract description 108
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 97
- 238000000746 purification Methods 0.000 claims description 13
- 244000007853 Sarothamnus scoparius Species 0.000 claims description 8
- 238000009940 knitting Methods 0.000 claims description 2
- 238000009941 weaving Methods 0.000 claims description 2
- 241001474374 Blennius Species 0.000 abstract description 4
- 239000010802 sludge Substances 0.000 description 31
- 239000004698 Polyethylene Substances 0.000 description 20
- -1 polyethylene Polymers 0.000 description 20
- 229920000573 polyethylene Polymers 0.000 description 20
- 244000005700 microbiome Species 0.000 description 15
- 239000000463 material Substances 0.000 description 14
- 238000010586 diagram Methods 0.000 description 11
- 238000002474 experimental method Methods 0.000 description 8
- 239000010865 sewage Substances 0.000 description 8
- 239000003575 carbonaceous material Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 239000011295 pitch Substances 0.000 description 6
- 239000004677 Nylon Substances 0.000 description 5
- 238000005273 aeration Methods 0.000 description 5
- 229920001778 nylon Polymers 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 238000004513 sizing Methods 0.000 description 4
- 239000012286 potassium permanganate Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 238000004448 titration Methods 0.000 description 3
- 241000195493 Cryptophyta Species 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000002440 industrial waste Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- 230000004584 weight gain Effects 0.000 description 2
- 235000019786 weight gain Nutrition 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000011304 carbon pitch Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 1
- 235000019797 dipotassium phosphate Nutrition 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000001727 glucose Nutrition 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- LWIHDJKSTIGBAC-UHFFFAOYSA-K potassium phosphate Substances [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、上下水道や河川や
湖沼等の水を生物膜を使って浄化する方法(以下、これ
を接触酸化法という)に使用される生物膜担体である接
触濾材に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a contact filter medium which is a biofilm carrier used in a method for purifying water such as water and sewage, rivers and lakes using a biofilm (hereinafter referred to as catalytic oxidation method). Regarding
【0002】[0002]
【従来の技術】生物膜担体に形成されたバクテリアや原
生動物や後生動物等からなる生物膜と排水を接触させる
ことにより、排水中のBODやCODや微細な有機質S
S・濁度成分等を除去する接触酸化法が知られている。
図7は、接触酸化法を使った河川の水浄化装置の一例を
示している。2. Description of the Related Art BOD, COD and fine organic matter S in wastewater are produced by contacting wastewater with a biofilm formed of bacteria, protozoa and metazoans formed on a biofilm carrier.
A catalytic oxidation method for removing S and turbidity components is known.
FIG. 7 shows an example of a river water purification apparatus using the catalytic oxidation method.
【0003】河川1の水は、スクリーン2によって浮遊
物を除去されて沈砂池3に送られ、ここで小石や砂等を
除去された後、ポンプPによって接触酸化水路4に送ら
れる。接触酸化水路4は、蛇行する水路内に、生物膜担
体である多数のプラスチック製の波板5が所定の隙間を
もって平行に積層されて構成された接触濾材が配設され
た構造で、水が波板5,5間の隙間を流れる際に、波板
5の表面に形成されている生物膜と接触して浄化され
る。接触酸化水路4を通ることで浄化された水は、排水
路6から河川1に放流される。The water of the river 1 is sent to a sand basin 3 after removing suspended matters by a screen 2, where pebbles and sand are removed, and then sent to a contact oxidation water channel 4 by a pump P. The contact oxidation channel 4 has a structure in which a contact filter medium composed of a number of corrugated plates 5 made of plastic, which is a biofilm carrier, is laminated in parallel with a predetermined gap in a meandering channel. When flowing through the gap between the corrugated plates 5 and 5, the biological film formed on the surface of the corrugated plate 5 comes into contact with and is purified. The water purified by passing through the contact oxidation water channel 4 is discharged from the drainage channel 6 to the river 1.
【0004】[0004]
【発明の解決しようとする課題】しかし前記した従来の
接触濾材を構成する生物膜担体としては、軽量にして加
工のし易い合成樹脂が広く用いられているが、合成樹脂
は、生体親和性および生物親和性が低く、さらにこれら
が大量に放置されると産業廃棄物ともなり、公害問題を
引き起こしかねないし、地球環境上においても好ましく
ない。また従来の生物膜担体は、接触表面積を大きくす
るべく波形とされているが、波板の表面積(生物膜の付
着形成される面積)にはどうしても限界があった。However, as a biofilm carrier which constitutes the above-mentioned conventional contact filter medium, a synthetic resin which is lightweight and easy to process is widely used. It has low biocompatibility, and if left in a large amount, it becomes industrial waste, which may cause pollution problems, and is not preferable in terms of the global environment. Further, the conventional biofilm carrier is corrugated to increase the contact surface area, but the surface area of the corrugated plate (area where the biofilm is adhered and formed) is inevitably limited.
【0005】そこで発明者は、自然界に存在する難分解
性物質である炭素材に注目した。即ち、まず第1に、炭
素材は生体親和性および生物親和性に非常に優れてい
る。第2に、炭素材はプラスの電荷をもつことから、主
としてマイナスの電荷をもつ微生物にとっては非常に定
着し易い場所であると考えられる。また炭素材には、各
種黒鉛材,ガラス状炭素材,カーボンブラック,活性
炭,木炭,コークス等様々なものがある。炭素材を使用
する際には、用途に応じた形状に成形加工して使用す
る。そして炭素材の1つに炭素繊維がある。炭素繊維
は、比強度,比弾性率および耐薬品性等に優れているこ
とから、宇宙・航空産業やスポーツ用品等に広く使用さ
れている。第3に、炭素繊維は、樹脂やコンクリートと
複合化することで成形できることは勿論、炭素繊維単独
でも、炭素繊維自体に可撓性があることから任意の形態
に成形でき、かつ耐久性にも優れている。さらに、炭素
繊維によって成形した生物膜担体への微生物(生物膜)
の定着度を実験で調べたところ、非常に良好な結果が得
られ、この結果を基に、発明者は本発明を提案するにい
たったものである。Therefore, the inventor has paid attention to a carbon material which is a hardly decomposable substance existing in nature. That is, first of all, the carbon material is very excellent in biocompatibility and biocompatibility. Second, since the carbonaceous material has a positive charge, it is considered to be a very easy place to settle for a microorganism having a negative charge. In addition, various carbon materials include various graphite materials, glassy carbon materials, carbon black, activated carbon, charcoal, coke and the like. When using a carbon material, it is formed into a shape suitable for the intended use. And carbon fiber is one of the carbon materials. Carbon fiber is widely used in the aerospace industry, sports equipment, etc. because it has excellent specific strength, specific elastic modulus and chemical resistance. Thirdly, carbon fiber can be molded by compounding it with resin or concrete, or can be molded into any shape due to the flexibility of carbon fiber itself, and also in terms of durability. Are better. Furthermore, microorganisms (biofilm) on the biofilm carrier formed by carbon fiber
When the fixing degree of was investigated by an experiment, a very good result was obtained, and based on this result, the inventor proposed the present invention.
【0006】本発明は前記従来技術の問題点および前記
した発明者による考察のもとになされたもので、その目
的は、生体親和性および生物親和性に優れ、安価にして
耐久性があり、かつ浄化作用に優れた接触酸化式水浄化
装置における接触濾材を提供することにある。The present invention has been made on the basis of the above-mentioned problems of the prior art and the above-mentioned consideration by the inventor, and an object thereof is to have excellent biocompatibility and biocompatibility, to be inexpensive and durable. Another object of the present invention is to provide a contact filter medium in a catalytic oxidation type water purification device which is excellent in purification action.
【0007】[0007]
【課題を解決するための手段】前記目的を達成するため
に、請求項1に係わるに接触酸化式水浄化装置における
接触濾材おいては、生物膜担体を炭素繊維によって構成
するようにしたもので、生物膜担体を構成する炭素繊維
は生体親和性および生物親和性が高く、自然環境に逆行
しない。また炭素繊維はプラスの電荷を帯び易く、マイ
ナスの電荷を帯び易い微生物が付着し易い。従って炭素
繊維への生物膜の定着度が高い。請求項2においては、
請求項1記載の接触酸化式水浄化装置における接触濾材
において、生物膜担体を、多数の柔軟かつ可撓な炭素繊
維フィラメントを結束したり,圧縮したり,編んだり,
織ったりして、水中下で揺動できる所定の形態に成形し
た成形体によって構成するようにしたもので、柔軟かつ
可撓な炭素繊維フィラメントが結束されたり圧縮された
り編まれたり織られたりして所定形状に成形された成形
体は、水中下では天然の海草や藻のように揺動すること
で、生物膜を構成する微生物に微生物の活動を促進させ
る上で不可欠な酸素を供給する。請求項3においては、
請求項2記載の接触酸化式水浄化装置における接触濾材
において、炭素繊維フィラメントから構成された成形体
を、両端部を結束したストランド状,ネット状,組紐
状,ふさ付ストランド状,枝付ストランド状,ちょうち
ん型ストランド状,ほうき型ストランド状,秋田のかん
とう型ストランド状,フェルト状等、水中下での炭素繊
維フィラメントの露出表面積が大きくなる所定の形態に
成形するようにしたもので、水中下では成形体を構成す
る炭素繊維フィラメントがそれぞれ揺動して、炭素繊維
フィラメントの露出表面積(生物膜の定着できる面積)
が大きくなる。In order to achieve the above-mentioned object, in the contact filter medium in the catalytic oxidation type water purifying apparatus according to claim 1, the biofilm carrier is made of carbon fiber. The carbon fiber that constitutes the biofilm carrier has high biocompatibility and biocompatibility, and does not go back to the natural environment. In addition, carbon fibers are easily charged with a positive charge, and microorganisms that are easily charged with a negative charge are easily attached thereto. Therefore, the degree of fixation of the biofilm on the carbon fiber is high. In claim 2,
The contact filter medium in the catalytic oxidation type water purification device according to claim 1, wherein the biofilm carrier is bound, compressed, or knitted with a large number of flexible and flexible carbon fiber filaments.
It is woven or constructed by a molded body molded into a predetermined shape that can be swung in water, and flexible and flexible carbon fiber filaments are bound, compressed, knitted or woven. The molded body molded into a predetermined shape by oscillating like underwater underwater like natural seaweed or algae supplies oxygen, which is indispensable for promoting the activity of the microorganisms, to the microorganisms forming the biofilm. In claim 3,
The contact filter medium in the catalytic oxidation type water purifying apparatus according to claim 2, wherein a molded body composed of carbon fiber filaments is bound at both ends into a strand shape, a net shape, a braided shape, a tethered strand shape, and a branched strand shape. , Lantern-type strands, broom-type strands, Akita's kanto-type strands, felt-types, etc. are formed into a predetermined shape that increases the exposed surface area of carbon fiber filaments in water. Then, the carbon fiber filaments that make up the molded body each oscillate, and the exposed surface area of the carbon fiber filaments (area where the biofilm can be fixed)
Grows larger.
【0008】[0008]
【発明の実施の形態】次に、本発明の実施の形態を、図
面に基づいて説明する。図1は本発明の第1の実施例で
ある接触濾材を示す図である。符号10は、例えば直径
7μm〜15μmの炭素繊維フィラメント12の多数本
(数万本)が束ねられて、両端部が結束された炭素繊維
ストランドから構成された生物膜担体である。この生物
膜担体10の一端部は、例えば図7に示すような接触酸
化水路4の底に固定されたアンカーボルト13に支持さ
れたロープ等の紐状連結部材14に連結支持され、他端
部はフロート15にロープ等の紐状連結部材16を介し
連結されたパイプ17に連結支持されて、生物膜担体1
0が所定間隔に配列された構造の接触濾材が構成されて
いる。BEST MODE FOR CARRYING OUT THE INVENTION Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a view showing a contact filter medium which is a first embodiment of the present invention. Reference numeral 10 is a biofilm carrier composed of carbon fiber strands in which both ends are bound by bundling a large number (tens of thousands) of carbon fiber filaments 12 having a diameter of 7 μm to 15 μm, for example. One end of the biofilm carrier 10 is connected and supported to a cord-like connecting member 14 such as a rope supported by an anchor bolt 13 fixed to the bottom of the contact oxidation water channel 4 as shown in FIG. Is connected to and supported by a pipe 17 which is connected to the float 15 via a cord-like connecting member 16 such as a rope.
The contact filter medium has a structure in which 0s are arranged at a predetermined interval.
【0009】生物膜担体10は、各フィラメント12の
表面に塗布されている結束剤の粘性によって、空気中で
は見掛け上一本の束となっているが、海中や水中では、
各フィラメント12は互いにばらけた紡錘型となって、
潮の動きに応じて海草の如く揺動できる。このため水中
においては、生物膜担体10(炭素繊維フィラメント1
2)の微生物との接触表面積が増えて、それだけ微生物
が生物膜担体10(生物膜担体10を構成する炭素繊維
フィラメント12)に付着し易く、生物膜の定着速度お
よび定着量も多い。The biofilm carrier 10 is apparently one bundle in the air due to the viscosity of the binding agent applied to the surface of each filament 12, but in the sea or water,
Each filament 12 is a spindle type which is separated from each other,
It can swing like seaweed according to the movement of the tide. Therefore, in water, the biofilm carrier 10 (carbon fiber filament 1
Since the contact surface area with the microorganism of 2) increases, the microorganism easily attaches to the biofilm carrier 10 (the carbon fiber filaments 12 constituting the biofilm carrier 10), and the biofilm fixing rate and the fixing amount are large.
【0010】また生物膜担体としては、図1に示すよう
な両端を結束したストランド状成形体の他に、図2
(a)〜(g)に示す様な種々の形態が考えられる。図
2(a)は、炭素繊維フィラメント12を編んで組紐状
となし、長手方向所定間隔にフィラメント12をふさ状
に膨出させた組紐状ストランド成形体である。Further, as the biofilm carrier, in addition to the strand-shaped molded body in which both ends are bound as shown in FIG.
Various forms as shown in (a) to (g) are possible. FIG. 2A shows a braided strand formed body in which the carbon fiber filaments 12 are knitted into a braided shape, and the filaments 12 are bulged in a tuft shape at predetermined intervals in the longitudinal direction.
【0011】図2(b)は、炭素繊維フィラメント12
のストランド基幹部12aから幾本にもストランドを枝
分かれさせた樹枝状ストランド成形体である。図2
(c)は、炭素繊維フィラメント12のストランド基幹
部12aに複数本の炭素繊維ストランド12bを連結一
体化したほうき型ストランド成形体である。FIG. 2B shows a carbon fiber filament 12
This is a dendritic strand formed body in which multiple strands are branched from the strand base portion 12a. Figure 2
(C) is a broom type strand molded body in which a plurality of carbon fiber strands 12b are connected and integrated with a strand base portion 12a of the carbon fiber filament 12.
【0012】図2(d)は、炭素繊維フィラメント12
のストランド基幹部12aの途中に複数本の円弧型のス
トランド12cを形成したちょうちん型ストランド成形
体である。図2(e)は、炭素繊維フィラメント12の
ストランド基幹部12aに長手方向所定間隔に炭素繊維
ストランド12bを連結一体化した秋田のかんとう型ス
トランド成形体である。FIG. 2D shows a carbon fiber filament 12
A plurality of arc-shaped strands 12c are formed in the middle of the strand main portion 12a of the above, which is a lantern-shaped strand formed body. FIG. 2 (e) is an Akita kanto type strand formed product in which the carbon fiber strands 12 b are integrally connected to the strand base portions 12 a of the carbon fiber filaments 12 at predetermined longitudinal intervals.
【0013】図2(f)は、所定間隔にロープ等の紐状
連結部材22を配設し、炭素繊維ストランド12bを捩
じって各ロープ間にストランドがリング状となる様に連
結一体化したものである。符号24は、連結部を示す。
図2(g)は、炭素繊維ストランド12bを亀甲状に編
んだネット状ストランド成形体である。In FIG. 2 (f), string-like connecting members 22 such as ropes are arranged at a predetermined interval, and the carbon fiber strands 12b are twisted to be connected and integrated so that the strands become ring-shaped between the ropes. It was done. Reference numeral 24 indicates a connecting portion.
FIG. 2 (g) is a net-shaped strand formed body in which the carbon fiber strands 12b are knitted in a hexagonal shape.
【0014】また炭素繊維フィラメントの成形体のその
他の例としては、ストランドをフェルト状に圧縮成形し
たもの、ストランドに巻きぐせをつけてコイル状にした
もの、撚り糸状にしたもの、平織あるいは朱子織等の各
種様式で織った織物状成形体等が考えられる。なお生物
膜担体としては、生物膜担体構成部材である炭素繊維フ
ィラメント12が海中や水中でばらけて揺動できるとと
もに、生物膜担体である炭素繊維フィラメント12の微
生物との接触表面積が大きくなる形態の成形体であれ
ば、前記した形態の成形体に限るものではない。Other examples of the carbon fiber filament molded body include those obtained by compression-molding a strand into a felt shape, winding the strand into a coil to form a twisted thread, plain weave or satin weave. Textile shaped articles woven in various ways such as In addition, as the biofilm carrier, the carbon fiber filaments 12 that are the biofilm carrier constituents can be scattered and swung in the sea or water, and the contact surface area of the carbon fiber filaments 12 that is the biofilm carrier with the microorganism becomes large. The molded product of (1) is not limited to the molded product of the above-mentioned form.
【0015】図3は、生物膜担体の試材として、組紐状
の炭素繊維ストランド(以下、組紐という),図1に示
すような形態の紐状の炭素繊維ストランド(以下、揺動
直線型ストランドという),フェルト状炭素繊維(以
下、フェルトという),ナイロン紐およびポリエチレン
テープをそれぞれ人工下水を入れた水槽に吊るして、人
工下水中のCOD(化学的酸素要求量)の変化特性を調
べた結果を示す図表である。FIG. 3 shows a braid-like carbon fiber strand (hereinafter referred to as a braid) as a test material for a biofilm carrier, and a cord-like carbon fiber strand having a form as shown in FIG. 1 (hereinafter referred to as a swing linear strand). ), Felt-like carbon fiber (hereinafter referred to as “felt”), nylon string and polyethylene tape were hung in water tanks containing artificial sewage, respectively, and the results of examining the change characteristics of COD (chemical oxygen demand) in artificial sewage FIG.
【0016】試材である組紐,揺動直線型ストランド,
フェルト,ナイロン紐およびポリエチレンテープは、い
ずれも同一重量(18.9g)で、図1に示すように、
水中で揺動できるように上下両端を固定した。透明水槽
に入れる人工下水は、まず水1リットルの中に試薬(グ
ルコース,硫酸アンモニウム,リン酸二カリウム,塩化
ナトリウム,硫酸マグネシウム,塩化カリウム等)を溶
かしてBOD500ppm相当の人工下水をつくり、こ
の人工下水に対し10倍容の池水を加え、全容を約80
リットルとした水を用いた。そして前記した各試材(組
紐,揺動直線型ストランド,フェルト,ナイロン紐およ
びポリエチレンテープ)を水槽内に吊るし、曝気を行い
ながら、約1週間日向でこれらの試材に微生物を定着さ
せる実験を行った。そして人工下水中のCODの変化を
過マンガン酸カリウム滴定法により測定した。[0016] Braid, which is a test material, swing straight type strand,
The felt, nylon string and polyethylene tape all have the same weight (18.9 g), and as shown in FIG.
Both upper and lower ends were fixed so that they could be rocked in water. The artificial sewage to be placed in a transparent water tank is first prepared by dissolving reagents (glucose, ammonium sulfate, dipotassium phosphate, sodium chloride, magnesium sulfate, potassium chloride, etc.) in 1 liter of water to make artificial sewage equivalent to BOD 500 ppm. 10 times the volume of pond water is added to the total volume of about 80
Water made up to 1 liter was used. Then, each sample material (braided braid, oscillating linear strand, felt, nylon string and polyethylene tape) was hung in a water tank, and aeration was performed for about one week in the sun to carry out an experiment to fix microorganisms to these sample materials. went. Then, the change in COD in the artificial sewage was measured by the potassium permanganate titration method.
【0017】図3(a)は第1回目の実験結果(3日
後)、図3(b)は第2回目の実験結果(1日後)をそ
れぞれ示すものである。第1回目の実験(図3(a))
によれば、いずれの試材においてもCOD値の差があま
り見られないが、第2回目の実験(図3(b))によれ
ば、試材の違いによりCOD値に大きな差が見られる。
即ち、炭素繊維材料で、しかも表面積の大きいもの(フ
ェルト)を用いた場合に最もCOD値の減少が著しい。FIG. 3 (a) shows the result of the first experiment (after 3 days), and FIG. 3 (b) shows the result of the second experiment (after 1 day). First experiment (Fig. 3 (a))
According to the results, there is not much difference in COD value in any of the test materials, but according to the second experiment (Fig. 3 (b)), a large difference in COD value is found due to the difference in the test materials. .
That is, when a carbon fiber material having a large surface area (felt) is used, the COD value is most significantly reduced.
【0018】図4は、試材であるPAN系の炭素繊維ス
トランド(12K揺動直線型ストランド)と比較材料で
あるテープ状ポリエチレンをそれぞれ活性汚泥中で曝気
し、これらの試材への生物膜の定着度の比較を行い、材
料の違いによる生物膜定着度を検討した図表で、図4
(a)は1日間放置後30分沈降させたときの汚泥量
を、図4(b)はCODの経時変化を、図4(c)は試
材の重量の変化をそれぞれ示している。FIG. 4 shows that the PAN-based carbon fiber strands (12K oscillating linear strands) which are the test materials and the tape-shaped polyethylene which is the comparative material were aerated in the activated sludge, respectively, and the biofilms were applied to these test materials. Fig. 4 is a table that compares the degree of fixation of
FIG. 4A shows the amount of sludge when left to stand for 1 day and then settled for 30 minutes, FIG. 4B shows the change with time of COD, and FIG. 4C shows the change of the weight of the test material.
【0019】揺動直線型の炭素繊維ストランド成形体
は、炭素繊維ストランド(12K)を5本(12K×5
=60K)束ねて、上端部と下端部をそれぞれ結束一体
化した図1に示すような成形体を用いた。炭素繊維スト
ランドの長さは30cmで、5本束ねた炭素繊維ストラ
ンド成形体全体の重量は約0.3gであった。この炭素
繊維ストランド成形体を5組用意し、一組毎に重量を測
定しておいた。The oscillating linear type carbon fiber strand molded body comprises five carbon fiber strands (12K) (12K × 5).
= 60K), and a molded product as shown in FIG. 1 was used in which the upper end and the lower end were bound and integrated. The length of the carbon fiber strand was 30 cm, and the total weight of the carbon fiber strand formed by bundling five carbon fibers was about 0.3 g. Five sets of this carbon fiber strand formed body were prepared, and the weight of each set was measured.
【0020】また、2つの5リットル集気瓶に活性汚泥
をそれぞれ約500mlずつ加え、水で全容を約3リッ
トルとした。集気瓶の内容物はよく攪拌し、30分間自
然沈降させ、沈積した汚泥量の測定を行った(0分後の
沈降汚泥量)。次に、重量を測定してある炭素繊維スト
ランド成形体5組を活性汚泥の入った集気瓶中に吊る
し、曝気した。またBODを1000ppm相当に調整
した人工下水を、微生物の養分として全容の約5%を加
えた。曝気で攪拌されている集気瓶中の液を採取し、3
0分汚泥を沈降させたのち、上澄み液のCODを過マン
ガン酸カリウム滴定法により測定した。一方、重量が
0.3g〜0.4gの範囲に調整されたポリエチレンテ
ープ(幅5cm)5組についても、上記と同様の処理を
行い、共に1日間日向で曝気しながら放置した。About 500 ml of activated sludge was added to each of the two 5-liter air collecting bottles, and the total volume was made up to about 3 liters with water. The contents of the air collection bottle were well stirred and allowed to spontaneously settle for 30 minutes, and the amount of sludge deposited was measured (settling sludge amount after 0 minutes). Next, 5 sets of carbon fiber strand molded bodies whose weights were measured were suspended in an air collection bottle containing activated sludge and aerated. Further, about 5% of the total volume of artificial sewage whose BOD was adjusted to 1000 ppm was added as a nutrient for microorganisms. Collect the liquid in the air collection bottle that is being stirred by aeration, and
After the sludge was allowed to settle for 0 minutes, the COD of the supernatant was measured by the potassium permanganate titration method. On the other hand, 5 sets of polyethylene tapes (width 5 cm) whose weight was adjusted to the range of 0.3 g to 0.4 g were also treated in the same manner as above, and both were left for 1 day while aerating in the sun.
【0021】1日間放置後、30分自然沈降させて沈積
した汚泥量の測定を行った。さらに、上澄み液を採取し
CODを測定した。また、各試材を取り出してその重量
を測定し、重量の増加量を生物膜の定着量として、各試
材における生物膜定着度を検討した。図4(a)では、
ポリエチレンテープの場合には、全く沈降汚泥量に変化
が見られないのに対し、揺動直線型炭素繊維ストランド
成形体の場合には、沈降汚泥量が著しく減少している。
これは炭素繊維に生物膜が定着したことによるもので、
炭素繊維ストランドに、849cm3相当の汚泥、即
ち、微生物が定着したと言える。また視覚的観察による
と、炭素繊維ストランド成形体には、球形状の大きな塊
が付着しているのに対し、ポリエチレンテープには付着
物がほとんど見られない。このことからもポリエチレン
テープへの生物膜定着度に比べて炭素繊維への生物膜定
着度が著しく高いと言える。After standing for 1 day, the amount of sludge deposited was measured by spontaneously sedimenting for 30 minutes. Furthermore, the supernatant was collected and COD was measured. In addition, each sample was taken out and its weight was measured, and the increase in weight was taken as the amount of biofilm fixation, and the degree of biofilm fixation in each sample was examined. In FIG. 4 (a),
In the case of polyethylene tape, no change was observed in the settled sludge amount, whereas in the case of the rocking linear carbon fiber strand molded body, the settled sludge amount was remarkably reduced.
This is because the biofilm has settled on carbon fiber,
It can be said that 849 cm 3 of sludge, that is, microorganisms, has settled on the carbon fiber strands. In addition, according to visual observation, a large spherical mass is attached to the carbon fiber strand molded body, while almost no deposit is seen on the polyethylene tape. From this, it can be said that the degree of biofilm fixation on carbon fiber is significantly higher than that on polyethylene tape.
【0022】また、図4(c)では、炭素繊維ストラン
ド成形体とポリエチレンテープにおける付着物を含む総
重量の変化が示されており、両者の間には、極めて大き
な差があった。即ち、前者の場合には、1日後に、9.
20g〜31.1g(平均16.32g)の重量増(付
着物による重量増)があった。これに対し、後者におけ
る重量増(付着物による重量増)は0.1g以下であっ
た。Further, FIG. 4 (c) shows the change in the total weight of the carbon fiber strand molded product and the polyethylene tape including the deposits, and there was an extremely large difference between the two. That is, in the former case, one day later, 9.
There was a weight gain of 20 g to 31.1 g (average 16.32 g) (weight gain due to deposits). On the other hand, the weight increase in the latter case (weight increase due to deposits) was 0.1 g or less.
【0023】次に、炭素繊維ストランド成形体の形態の
生物膜定着度への影響について、同様の実験を行った。
実験に用いた炭素繊維ストランド成形体は、図2(d)
に示すちょうちん型と、図2(c)に示すほうき型と、
図2(e)に示す秋田のかんとう型を用いた。またポリ
エチレンテープを、炭素繊維ストランド成形体と同重量
を量りとり、比較試材とした。4個の5リットル集気瓶
に活性汚泥をそれぞれ約500mlずつ加え、水で全容
を約4リットルとした。各集気瓶の内容物はよく攪拌
し、30分間自然沈降させ沈積した汚泥量の測定を行っ
た(0分後の沈降汚泥量)。Next, a similar experiment was conducted on the influence of the form of the carbon fiber strand molded body on the degree of biofilm fixation.
The carbon fiber strand compact used in the experiment is shown in FIG.
The lantern type shown in Fig. 2 and the broom type shown in Fig. 2 (c),
The Akita Kanto type shown in FIG. 2 (e) was used. The polyethylene tape was weighed in the same weight as the carbon fiber strand molded body, and used as a comparative test material. About 500 ml of activated sludge was added to each of four 5 liter air collecting bottles, and the total volume was made up to about 4 liters with water. The contents of each air collection bottle were well stirred and allowed to spontaneously settle for 30 minutes to measure the amount of sludge deposited (the amount of settled sludge after 0 minutes).
【0024】重量測定をした各試材を活性汚泥の入った
それぞれの集気瓶内に吊るし、曝気で酸素を送りなが
ら、またCOD1000ppm相当に調整した人工下水
を、微生物の養分として全容の約5%を加えた。曝気で
攪拌されている集気瓶中の液を採取し、30分汚泥を沈
降させた後、上澄み液のCODを過マンガン酸カリウム
滴定法により測定した。ポリエチレンテープについても
上記と同様の処理を行い、共に1日間日向で曝気しなが
ら放置した。Each of the weight-measured test materials was hung in each air-collecting bottle containing activated sludge, oxygen was sent by aeration, and artificial sewage adjusted to a COD of 1000 ppm was used as a nutrient for microorganisms to a total amount of about 5%. % Was added. The liquid in the aeration bottle which was stirred by aeration was sampled, the sludge was allowed to settle for 30 minutes, and the COD of the supernatant was measured by potassium permanganate titration method. The polyethylene tape was also treated in the same manner as above, and both were left for one day while aerating in the sun.
【0025】図5(a)は、沈降汚泥量を示すもので、
1日後の沈降汚泥量は、炭素繊維ストランドを用いた場
合には742〜884cm3であることから、炭素繊維
ストランドには、247〜407cm3の汚泥が付着し
たこととなる。一方、ポリエチレンテープの場合には、
付着汚泥量がわずか8cm3で、炭素繊維ストランドの
場合の約1/30〜1/50程度である。また炭素繊維
ストランドの形態による付着量への影響では、「秋田の
かんとう型」が最も効果大(汚泥付着量大)であった。FIG. 5 (a) shows the amount of settled sludge,
The amount of settled sludge after one day was 742 to 884 cm 3 when the carbon fiber strand was used, which means that 247 to 407 cm 3 of sludge was attached to the carbon fiber strand. On the other hand, in the case of polyethylene tape,
The amount of attached sludge is only 8 cm 3 , which is about 1/30 to 1/50 of that of carbon fiber strands. In addition, in terms of the influence of the form of carbon fiber strands on the amount of adhesion, "Akita's Kanto type" was the most effective (large amount of sludge adhesion).
【0026】図5(b)は、CODの測定結果を示すも
ので、いずれの場合にも、一日でCOD値は7〜11p
pm程度減少しており、試材の種類および炭素繊維スト
ランドの形態の違いによる顕著な差異は見られなかっ
た。図5(c)は、炭素繊維ストランドおよびポリエチ
レンテープに付着した汚泥量を示すもので、試材の種類
と形態の違いによって顕著な差異が見られた。即ち、炭
素繊維ストランドの場合には、22〜38gも増加した
のに対し、ポリエチレンテープの場合にはわずか9g程
度の増加で、炭素繊維ストランドの付着汚泥量は、ポリ
エチレンテープの場合の2.7〜4.2倍であった。炭
素繊維ストランドの形態による付着量への影響では、
「ほうき型」の場合が最も大であった。この結果は、図
5(b)のCOD減少量とも一致していた。また図5
(a)の沈降汚泥量の結果とも矛盾しない。FIG. 5 (b) shows the results of COD measurement. In any case, the COD value is 7 to 11 p / day.
It was decreased by about pm, and no significant difference was observed due to the difference in the type of sample material and the morphology of carbon fiber strands. FIG. 5C shows the amount of sludge attached to the carbon fiber strands and the polyethylene tape, and a remarkable difference was observed depending on the type and shape of the test material. That is, in the case of the carbon fiber strand, the amount increased by 22 to 38 g, whereas in the case of the polyethylene tape, the increase was only about 9 g, and the amount of the sludge adhered to the carbon fiber strand was 2.7 in the case of the polyethylene tape. Was about 4.2 times. The influence of the morphology of carbon fiber strands on the adhesion amount is
The case of "broom type" was the largest. This result was in agreement with the COD reduction amount shown in FIG. Also in FIG.
It does not contradict the result of the amount of settled sludge in (a).
【0027】次に炭素繊維の種類およびストランドの形
による生物膜定着度への影響について検討した。炭素繊
維はPAN系炭素繊維ストランド(12K,東レ,T−
300であって、塗布されたサイジング剤を除去したも
の)とピッチ系炭素繊維の撚糸(2本のファイバーを撚
ったもの)の2種類を用いた。炭素繊維表面にサイジン
グ剤層が形成されていると、生物膜の炭素繊維への付着
率が悪いので、炭素繊維ストランドにサイジング剤が塗
布されている場合には、予めサイジング剤を除去してお
くことが必要である。また炭素繊維の形態としては、図
1に示す「揺動直線型」および図2(c)に示す「ほう
き型」であった。前者の場合は、長さ45cm(重さ約
0.3g)の炭素繊維ストランドを5本束ねて用いた。
後者「ほうき型」では、長さ30cmの12Kストラン
ド5本を束ねて、重さを約1.6gとした。図6(a)
は、一日後の沈降汚泥量の変化を示すが、PAN系炭素
繊維ストランドの場合には、「揺動直線型」の方が「ほ
うき型」よりも定着量が多い。また図6(b)は、CO
D量の変化を示すが、PAN系の方がピッチ系より大き
く、しかも「揺動直線型」よりも「ほうき型」の方が大
であった。Next, the influence of the type of carbon fiber and the shape of the strand on the degree of biofilm fixation was examined. Carbon fiber is PAN-based carbon fiber strand (12K, Toray, T-
300, which was obtained by removing the applied sizing agent), and two types of pitch-based carbon fiber twisted yarn (twisted two fibers). If the sizing agent layer is formed on the carbon fiber surface, the adhesion rate of the biofilm to the carbon fibers is poor.If the sizing agent is applied to the carbon fiber strands, remove the sizing agent in advance. It is necessary. In addition, the form of the carbon fiber was the "swinging straight type" shown in FIG. 1 and the "broom type" shown in FIG. 2 (c). In the former case, five carbon fiber strands having a length of 45 cm (weight of about 0.3 g) were bundled and used.
In the latter "broom type", five 12K strands having a length of 30 cm were bundled to have a weight of about 1.6 g. Figure 6 (a)
Shows the change in the amount of settled sludge after one day, but in the case of PAN-based carbon fiber strands, the “rocking linear type” has a larger fixed amount than the “broom type”. Further, FIG. 6B shows CO
The change in the D amount is shown. The PAN system is larger than the pitch system, and the "broom type" is larger than the "oscillating linear type".
【0028】また図6(c)は一日後における炭素繊維
ストランドの重量変化を示す。PAN系の方が、ピッチ
系よりも効果は大(汚泥付着量、即ち、生物膜定着度
大)であった。PAN系の場合のデータの中に、重量の
増加が1.5gしかないものがあるが、これは試材が捩
じれてしまった場合であり、データ外のものである。ま
たピッチ系よりもPAN系の炭素繊維の方が汚泥の付着
量(生物膜の定着度)は大であるが、これはピッチ系か
PAN系かという炭素繊維の種類のちがいというより
も、PNA系の炭素繊維がストランド状であるのに対し
ピッチ系の炭素繊維では撚り糸状態になっており、この
撚り糸状態が炭素繊維の接触表面積を小さくして付着汚
泥量を低下させた理由と考えられる。FIG. 6C shows the change in weight of the carbon fiber strand after one day. The effect of the PAN system was greater than that of the pitch system (the amount of sludge adhered, that is, the degree of biofilm fixation). Some of the data in the case of the PAN system has a weight increase of only 1.5 g, but this is when the test material is twisted and is outside the data. Also, the amount of sludge attached (the degree of fixation of biofilm) is larger in PAN-based carbon fibers than in pitch-based carbon fibers, but this is not the difference between pitch-based and PAN-based carbon fiber types, but rather PNA. It is considered that the pitch-based carbon fiber is in a twisted yarn state, whereas the twisted yarn state is small, and this twisted yarn state reduces the contact surface area of the carbon fiber and reduces the amount of attached sludge.
【0029】前記した図3〜6に示す実験結果から、炭
素繊維は、ナイロンやポリエチレンと比べて短時間のう
ちに多量の微生物が付着する、即ち、非常に生物膜定着
度に優れているといえる。しかも、炭素繊維フィラメン
トがばらけて表面積が大きい形態である程、生物膜定着
度が高いといえる。From the experimental results shown in FIGS. 3 to 6 described above, it is found that a large amount of microorganisms adhere to the carbon fiber in a shorter time than that of nylon or polyethylene, that is, the carbon fiber has a very high degree of biofilm fixation. I can say. Moreover, it can be said that the more the carbon fiber filaments are scattered and the larger the surface area is, the higher the degree of biofilm fixation is.
【0030】なお前記した実施例では、PAN系炭素繊
維とピッチ系炭素繊維についてのみ言及したが、炭素繊
維には、その他にフェノール系炭素繊維およびセルロー
ス系炭素繊維もあって、これらも所定の形態に成形する
ことで、本発明を同様に適用することができることは勿
論、表面に多数の微細孔を構築した活性炭素繊維にも同
様に適用することができる。In the above-mentioned examples, only PAN-based carbon fibers and pitch-based carbon fibers are mentioned. However, other carbon fibers include phenol-based carbon fibers and cellulose-based carbon fibers, and these also have a predetermined form. The present invention can be applied in the same manner by molding into, and can also be applied to activated carbon fibers having a large number of fine pores formed on the surface.
【0031】また前記第1の実施例における接触濾材は
本発明の一実施例にすぎず、アンカーボルト13に代え
て重りを使用することで、生物膜担体10を常に一定の
水深位置に保持できる構造とする等、生物膜担体10の
配設の仕様により種々の構造のものが考えられることは
いうまでもない。The contact filter medium in the first embodiment is only one embodiment of the present invention. By using a weight instead of the anchor bolt 13, the biofilm carrier 10 can be always maintained at a constant water depth position. It goes without saying that various structures such as a structure may be considered depending on the specifications of the arrangement of the biofilm carrier 10.
【0032】[0032]
【発明の効果】以上の説明から明らかなように、請求項
1に係る接触酸化式水浄化装置における接触濾材によれ
ば、生物膜担体が、生体親和性および生物親和性が高く
産業廃棄物となるおそれのない炭素繊維によって構成さ
れているので、自然環境に合致する。また炭素繊維はプ
ラスの電荷を帯び易いので、マイナスの電荷を帯び易い
微生物にとっては非常に付着し易く、従って炭素繊維に
よって構成された生物膜担体への生物膜の定着度は高
く、それだけ水質の浄化作用に優れたものとなる。また
炭素繊維は安価であることから、水質浄化作用に優れた
水浄化装置を安価に提供できることとなる。請求項2で
は、柔軟かつ可撓な炭素繊維フィラメントが結束された
り圧縮されたり編まれたり織られたりして所定形状に成
形された成形体は、水中下では天然の海草や藻のように
揺動して、生物膜を構成する微生物に積極的に酸素が供
給されるので、生物膜の定着度が促進され、水質の浄化
が促進される。請求項3では、水中下では成形体を構成
する炭素繊維フィラメントがそれぞれ揺動してフィラメ
ントの露出表面積(生物膜の定着できる面積)が大きく
なるので、生物膜の定着度が高められ、さらに水質の浄
化作用が向上する。As is apparent from the above description, according to the contact filter medium in the catalytic oxidation type water purification device of the first aspect, the biofilm carrier has high biocompatibility and biocompatibility, and is regarded as industrial waste. Consistent with the natural environment because it is composed of carbon fiber that is unlikely to become In addition, since carbon fiber is easily charged with a positive charge, it is very easy to attach to microorganisms that are easily charged with a negative charge. Therefore, the degree of fixation of the biofilm on the biofilm carrier composed of carbon fiber is high, and the water quality It has an excellent purification effect. In addition, since carbon fiber is inexpensive, it is possible to inexpensively provide a water purification device having an excellent water purification effect. In the second aspect, the formed body formed by binding, compressing, knitting, and weaving the flexible and flexible carbon fiber filaments into a predetermined shape shakes under water like natural seaweed or algae. As a result, oxygen is actively supplied to the microorganisms forming the biofilm, so that the degree of fixation of the biofilm is promoted and the purification of water quality is promoted. In claim 3, under water, the carbon fiber filaments forming the molded body each oscillate to increase the exposed surface area of the filaments (area where the biofilm can be fixed), so that the degree of fixation of the biofilm is increased and the water quality is further improved. The purification action of is improved.
【図1】本発明の第1の実施例である接触濾材を構成す
る生物膜担体の概要図FIG. 1 is a schematic view of a biofilm carrier that constitutes a contact filter medium that is a first embodiment of the present invention.
【図2】本発明の接触濾材を構成する各種生物膜担体の
概要図FIG. 2 is a schematic diagram of various biofilm carriers constituting the contact filter medium of the present invention.
【図3】炭素繊維ストランド,ナイロン紐およびポリエ
チレンテープにおけるCODの変化を示す図FIG. 3 is a diagram showing changes in COD in carbon fiber strands, nylon strings, and polyethylene tapes.
【図4】(a) 炭素繊維ストランドとポリエチレンテ
ープにおける沈降汚泥量の変化特性図 (b) 炭素繊維ストランドとポリエチレンテープにお
けるCODの経時変化特性図 (c) 炭素繊維ストランドとポリエチレンテープにお
ける重量変化特性図Fig. 4 (a) Characteristic diagram of change in amount of settled sludge in carbon fiber strand and polyethylene tape (b) Characteristic diagram of COD change with time in carbon fiber strand and polyethylene tape (c) Weight change characteristic of carbon fiber strand and polyethylene tape Figure
【図5】(a) 炭素繊維ストランドの形態別沈降汚泥
量の変化特性図 (b) 炭素繊維ストランドの形態別COD経時変化特
性図 (c) 炭素繊維ストランドの形態別重量変化特性図FIG. 5: (a) Characteristic diagram of change in settled sludge amount by form of carbon fiber strands (b) Characteristic diagram of COD change with time of form of carbon fiber strands (c) Characteristic diagram of change by weight of carbon fiber strands by form
【図6】(a) 炭素繊維の種類別沈降汚泥量の変化特
性図 (b) 炭素繊維の種類別COD経時変化特性図 (c) 炭素繊維の種類別重量変化特性図FIG. 6 (a) Characteristic diagram of change in settled sludge amount by type of carbon fiber (b) Characteristic diagram of COD change with time of type of carbon fiber (c) Characteristic diagram of weight change by type of carbon fiber
【図7】従来の接触酸化法による水浄化装置の全体構成
図FIG. 7 is an overall configuration diagram of a conventional water purification device by a catalytic oxidation method.
10 生物膜担体である炭素繊維ストランド 12 炭素繊維フィラメント 10 Carbon fiber strands that are biofilm carriers 12 Carbon fiber filaments
Claims (3)
たことを特徴とする接触酸化式水浄化装置における接触
濾材。1. A contact filter medium in a catalytic oxidation type water purification device, wherein the biofilm carrier is composed of carbon fibers.
な炭素繊維フィラメントが結束されたり圧縮されたり編
まれたり織られたりして、水中下で揺動できる所定の形
態に成形された成形体によって構成されたことを特徴と
する請求項1記載の接触酸化式水浄化装置における接触
濾材。2. The biofilm carrier is formed by binding a large number of flexible and flexible carbon fiber filaments, bundling it, compressing it, knitting it, weaving it, and forming it into a predetermined shape that can be swung in water. The contact filter medium in the catalytic oxidation type water purification device according to claim 1, wherein the contact filter medium is formed of a molded body.
た成形体は、両端部が結束されたストランド状,ネット
状,組紐状,ふさ付ストランド状,枝付ストランド状,
ちょうちん型ストランド状,ほうき型ストランド状,秋
田のかんとう型ストランド状,フェルト状等、水中下で
の炭素繊維フィラメントの露出表面積が大きくなる所定
の形態に成形されてなることを特徴とする請求項2記載
の接触酸化式水浄化装置における接触濾材。3. A molded product composed of the carbon fiber filaments has a strand shape in which both ends are bound together, a net shape, a braided shape, a tethered strand shape, a branched strand shape,
A lantern type strand, a broom type strand, an Akita kanto type strand, a felt type or the like, which is formed into a predetermined shape that increases the exposed surface area of the carbon fiber filament in water. A contact filter medium in the contact oxidation type water purifier according to 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7233565A JP2954509B2 (en) | 1995-02-20 | 1995-09-12 | Contact filter media in catalytic oxidation water purifier |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7-30926 | 1995-02-20 | ||
JP3092695 | 1995-02-20 | ||
JP7233565A JP2954509B2 (en) | 1995-02-20 | 1995-09-12 | Contact filter media in catalytic oxidation water purifier |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08290191A true JPH08290191A (en) | 1996-11-05 |
JP2954509B2 JP2954509B2 (en) | 1999-09-27 |
Family
ID=26369370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7233565A Expired - Fee Related JP2954509B2 (en) | 1995-02-20 | 1995-09-12 | Contact filter media in catalytic oxidation water purifier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2954509B2 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998055407A1 (en) * | 1997-06-06 | 1998-12-10 | Norihiko Hirano | Method and apparatus for treating wastewater |
KR100327126B1 (en) * | 1999-03-04 | 2002-03-13 | 김녕완 | Filter medium for cultivating microorganisms for disposal of sewage and waste water |
JP2007007527A (en) * | 2005-06-29 | 2007-01-18 | Bridgestone Flowtech Corp | Structure for water quality improvement |
JP2007330198A (en) * | 2006-06-16 | 2007-12-27 | Bridgestone Flowtech Corp | Structure for improving water quality |
JP2008029945A (en) * | 2006-07-27 | 2008-02-14 | Spring Field Kk | Microbial carrier for waste water treatment, and waste water treatment apparatus |
JP2008029943A (en) * | 2006-07-27 | 2008-02-14 | Kanazawa Univ | Microbial carrier and waste water treatment equipment |
JP2009136737A (en) * | 2007-12-05 | 2009-06-25 | Eco Work Co Ltd | Water treatment contact filter and water treatment apparatus |
JP2009195848A (en) * | 2008-02-22 | 2009-09-03 | Soen Co Ltd | Water purifying structure |
JP2009195850A (en) * | 2008-02-22 | 2009-09-03 | Soen Co Ltd | Water purifying unit and system |
JP2009195849A (en) * | 2008-02-22 | 2009-09-03 | Soen Co Ltd | Water purifying structure |
JP2010264340A (en) * | 2009-05-12 | 2010-11-25 | Tsuchiya Tsco Co Ltd | Contact material for water cleaning |
JP2011255249A (en) * | 2010-06-04 | 2011-12-22 | Akira Kojima | Method for cleaning environmental water |
WO2012081484A1 (en) * | 2010-12-17 | 2012-06-21 | 小松精練株式会社 | Water purifier |
JP2012125741A (en) * | 2010-12-17 | 2012-07-05 | Komatsu Seiren Co Ltd | Water purification material |
JP2012125740A (en) * | 2010-12-17 | 2012-07-05 | Komatsu Seiren Co Ltd | Water purification material |
WO2013022026A1 (en) * | 2011-08-09 | 2013-02-14 | 小松精練株式会社 | Water purification apparatus and water purification method |
JP2017516655A (en) * | 2014-05-23 | 2017-06-22 | シャンハイ ファンチーン エンバイロンメンタル エンジニアリング カンパニー,リミティド | Fiber bundles for supporting microorganisms |
CN110745952A (en) * | 2019-11-18 | 2020-02-04 | 华电水务工程有限公司 | Biological and ecological integrated aeration floating island device |
CN113003876A (en) * | 2021-03-08 | 2021-06-22 | 生态环境部环境规划院 | Solar energy carbon fiber integration membrane biological reaction device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3123557U (en) | 2006-05-09 | 2006-07-20 | 日鉄コンポジット株式会社 | Contact filter media |
HU4712U (en) * | 2016-02-26 | 2017-04-28 | Biopolus Intezet Nonprofit Zrt | Biofilm carrier |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52122560U (en) * | 1976-03-16 | 1977-09-17 | ||
JPS5311864U (en) * | 1976-07-13 | 1978-01-31 | ||
JPS59112816A (en) * | 1982-12-17 | 1984-06-29 | Unitika Ltd | Preparation of fiber lump |
JPS6297695A (en) * | 1985-10-23 | 1987-05-07 | Unitika Ltd | Contact material for water treatment |
JPH05220497A (en) * | 1992-02-10 | 1993-08-31 | Nippon Solid Co Ltd | Improving and clarifying material of water-quality environment |
JPH06277058A (en) * | 1993-03-26 | 1994-10-04 | Shigen Seibutsu Kenkyusho:Kk | Microbial carrier and cleaning of sewage using the carrier |
JPH0724489A (en) * | 1993-07-07 | 1995-01-27 | Japan Organo Co Ltd | Biological treatment device and water treatment using this device |
-
1995
- 1995-09-12 JP JP7233565A patent/JP2954509B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52122560U (en) * | 1976-03-16 | 1977-09-17 | ||
JPS5311864U (en) * | 1976-07-13 | 1978-01-31 | ||
JPS59112816A (en) * | 1982-12-17 | 1984-06-29 | Unitika Ltd | Preparation of fiber lump |
JPS6297695A (en) * | 1985-10-23 | 1987-05-07 | Unitika Ltd | Contact material for water treatment |
JPH05220497A (en) * | 1992-02-10 | 1993-08-31 | Nippon Solid Co Ltd | Improving and clarifying material of water-quality environment |
JPH06277058A (en) * | 1993-03-26 | 1994-10-04 | Shigen Seibutsu Kenkyusho:Kk | Microbial carrier and cleaning of sewage using the carrier |
JPH0724489A (en) * | 1993-07-07 | 1995-01-27 | Japan Organo Co Ltd | Biological treatment device and water treatment using this device |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998055407A1 (en) * | 1997-06-06 | 1998-12-10 | Norihiko Hirano | Method and apparatus for treating wastewater |
AU725812B2 (en) * | 1997-06-06 | 2000-10-19 | Norihiko Hirano | Method and apparatus for treating wastewater |
KR100327126B1 (en) * | 1999-03-04 | 2002-03-13 | 김녕완 | Filter medium for cultivating microorganisms for disposal of sewage and waste water |
JP2007007527A (en) * | 2005-06-29 | 2007-01-18 | Bridgestone Flowtech Corp | Structure for water quality improvement |
JP4603431B2 (en) * | 2005-06-29 | 2010-12-22 | ブリヂストンフローテック株式会社 | Water quality improvement structure |
JP2007330198A (en) * | 2006-06-16 | 2007-12-27 | Bridgestone Flowtech Corp | Structure for improving water quality |
JP2008029945A (en) * | 2006-07-27 | 2008-02-14 | Spring Field Kk | Microbial carrier for waste water treatment, and waste water treatment apparatus |
JP2008029943A (en) * | 2006-07-27 | 2008-02-14 | Kanazawa Univ | Microbial carrier and waste water treatment equipment |
JP2009136737A (en) * | 2007-12-05 | 2009-06-25 | Eco Work Co Ltd | Water treatment contact filter and water treatment apparatus |
JP2009195849A (en) * | 2008-02-22 | 2009-09-03 | Soen Co Ltd | Water purifying structure |
JP2009195850A (en) * | 2008-02-22 | 2009-09-03 | Soen Co Ltd | Water purifying unit and system |
JP2009195848A (en) * | 2008-02-22 | 2009-09-03 | Soen Co Ltd | Water purifying structure |
JP2010264340A (en) * | 2009-05-12 | 2010-11-25 | Tsuchiya Tsco Co Ltd | Contact material for water cleaning |
JP2011255249A (en) * | 2010-06-04 | 2011-12-22 | Akira Kojima | Method for cleaning environmental water |
WO2012081484A1 (en) * | 2010-12-17 | 2012-06-21 | 小松精練株式会社 | Water purifier |
JP2012125741A (en) * | 2010-12-17 | 2012-07-05 | Komatsu Seiren Co Ltd | Water purification material |
JP2012125740A (en) * | 2010-12-17 | 2012-07-05 | Komatsu Seiren Co Ltd | Water purification material |
WO2013022026A1 (en) * | 2011-08-09 | 2013-02-14 | 小松精練株式会社 | Water purification apparatus and water purification method |
JP2017516655A (en) * | 2014-05-23 | 2017-06-22 | シャンハイ ファンチーン エンバイロンメンタル エンジニアリング カンパニー,リミティド | Fiber bundles for supporting microorganisms |
US10392280B2 (en) | 2014-05-23 | 2019-08-27 | Shanghai Fanqing Environmental Engineering Co., Ltd. | Fiber bundle for bearing microorganisms |
CN110745952A (en) * | 2019-11-18 | 2020-02-04 | 华电水务工程有限公司 | Biological and ecological integrated aeration floating island device |
CN113003876A (en) * | 2021-03-08 | 2021-06-22 | 生态环境部环境规划院 | Solar energy carbon fiber integration membrane biological reaction device |
Also Published As
Publication number | Publication date |
---|---|
JP2954509B2 (en) | 1999-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2954509B2 (en) | Contact filter media in catalytic oxidation water purifier | |
JP2942757B1 (en) | Water purification method using wetland | |
JP2007196221A (en) | Biological treatment apparatus of organic matter-containing wastewater | |
WO1996026161A1 (en) | Catalytic filtering material for water purifier of catalytic oxidation type | |
CN209024278U (en) | A kind of microbe carrier net for earth's surface Water warfare | |
TWI386375B (en) | Biological processing mehtod and apparatus for organic sewage | |
CN209412011U (en) | A kind of life sewage treatment and reuse system | |
KR101023479B1 (en) | Continuous batch aerobic denitrification method and apparatus for sewage, wastewater and livestock wastewater treatment plant using micro sand biocarriers and chemicals | |
JP3184905B2 (en) | Biofilm carrier, and water purification device, seaweed bed, water purification method, seaweed bed formation method, feed production method, and fertilizer production method using the biofilm carrier | |
JP3080567B2 (en) | Artificial seaweed bed | |
WO2010035800A1 (en) | System for water purification and method of increasing dissolved-oxygen concentration in water to be purified | |
JP5052654B2 (en) | Biofilm forming material | |
JPH11188378A (en) | Organism fixing carrier for drainage treatment and drainage treatment apparatus | |
WO1996023405A1 (en) | Artificial seaweed farm | |
JP2004330156A (en) | Fringe pattern biological membrane carrier and biological membrane contact oxidation water cleaning method | |
JP2004074004A (en) | Method of cleaning water in closed water area by using fibrous material | |
JP2006289327A (en) | Batch biological treatment apparatus | |
JP3474491B2 (en) | Water purification method and water purification apparatus for attaching metal species to carbon fiber | |
JP2001054796A (en) | Septic tank | |
JP2936067B1 (en) | Sludge treatment method using tidal wetland | |
CN111559843A (en) | Inclined sludge digestion filler and weaving method thereof | |
JP2004322047A (en) | Water cleaning method and water cleaning apparatus | |
JP2000157991A (en) | Contact filter medium and waste water treating device | |
JP4401508B2 (en) | Composite network for biofilm carrier and method using the same | |
JPH0747389A (en) | Waste water treating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080716 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080716 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090716 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100716 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110716 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110716 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120716 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120716 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130716 Year of fee payment: 14 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |