[go: up one dir, main page]

JPH08288568A - Magnetic detection element - Google Patents

Magnetic detection element

Info

Publication number
JPH08288568A
JPH08288568A JP7086553A JP8655395A JPH08288568A JP H08288568 A JPH08288568 A JP H08288568A JP 7086553 A JP7086553 A JP 7086553A JP 8655395 A JP8655395 A JP 8655395A JP H08288568 A JPH08288568 A JP H08288568A
Authority
JP
Japan
Prior art keywords
magnetic
thin film
detection element
magnetic detection
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7086553A
Other languages
Japanese (ja)
Other versions
JP3218272B2 (en
Inventor
Michio Yanagi
道男 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP08655395A priority Critical patent/JP3218272B2/en
Publication of JPH08288568A publication Critical patent/JPH08288568A/en
Application granted granted Critical
Publication of JP3218272B2 publication Critical patent/JP3218272B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE: To obtain a high sensitivity magnetic detection element having high variation rate of impedance by composing a thin magnetic film having a specified compositional ratio. CONSTITUTION: The compositional formula of a thin magnetic film is represented by Fea Alb MIc MIId Ce Of , where a, b, c, d, e and f are the compositional ratio of atm%, MI is at least one kind of elements Zr, Hf, Nb, Ta, Mo and W, MII is at least one of elements Ag and Cu. The values of a, b, c, d, e and f satisfy the following relationships; a+b+c+d+e+f=100, 0.5<=b<=20, 2<=c<=25, 0.05<=d<=5, 0.5<=e<=25 and 0.2<=f<=6. When a magnetic detection element body comprising a thin magnetic film 1 and a ceramic substrate 2 is fixed to a printed board 3 and then the thin magnetic film 1 is soldered 4 at the opposite ends thereof, a high sensitivity magnetic detection element having high variation rate of impedance can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気インピーダンス効
果を利用した磁気検出素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic detecting element utilizing the magnetic impedance effect.

【0002】[0002]

【従来の技術】従来、磁気センサとしては、MR(磁気
抵抗効果)センサがあり、微弱磁界の検出が可能である
ことや、形状の微細化に適するなどの特徴を持ち、磁気
記録用ヘッドをはじめ各種計測用センサとして研究が進
められている。しかし、前記MRセンサに用いられる強
磁性体の異方性磁気抵抗効果ではMR比は5〜6%と低
く、このことは磁気記録の高密度化、各種磁気センサの
高分解能化の妨げとなってきた。近年、人工格子系の磁
性材料において、MR比が数10%となる現象が見出さ
れ、高感度磁気センサの実現が期待されているが、これ
らの動作には抵抗の外部磁界依存性にヒステリシスが現
れること、強磁界印加、極低温などが必要であることな
ど実用化に際して課題も多い。
2. Description of the Related Art Conventionally, as a magnetic sensor, there is an MR (magnetoresistive effect) sensor, which has features such as being capable of detecting a weak magnetic field and being suitable for miniaturization of a shape. First, research is progressing as various measuring sensors. However, due to the anisotropic magnetoresistive effect of the ferromagnetic material used in the MR sensor, the MR ratio is as low as 5 to 6%, which hinders high density magnetic recording and high resolution of various magnetic sensors. Came. In recent years, a phenomenon in which the MR ratio is several tens of percent has been found in artificial lattice magnetic materials, and it is expected to realize a high-sensitivity magnetic sensor. However, in these operations, hysteresis depends on external magnetic field dependence of resistance. There are many problems in practical application, such as the appearance of a magnetic field, the need for applying a strong magnetic field, and the need for extremely low temperatures.

【0003】[0003]

【発明が解決しようとする課題】最近、これらの磁性体
の磁気抵抗効果を用いた磁気センサとは別に、磁気イン
ピーダンス効果を利用した磁気検出素子(以下、MI素
子という)が提案されている。
Recently, in addition to the magnetic sensor using the magnetoresistive effect of these magnetic materials, a magnetic detecting element (hereinafter referred to as MI element) utilizing the magnetic impedance effect has been proposed.

【0004】磁気インピーダンス効果は、アモルファス
ワイヤに高周波電流を流すと、図4に示すように、ワイ
ヤ両端間電圧の振幅が数ガウスの微小な外部磁界で数1
0%増大する現象のことである。このMI素子の提案で
はほとんどがアモルファスワイヤを用いたものであり、
素子を構成する磁性材に薄膜を用いるものは少ない。
The magneto-impedance effect is that when a high-frequency current is passed through an amorphous wire, the amplitude of the voltage across the wire is equal to several 1 with a small external magnetic field of several Gauss, as shown in FIG.
It is a phenomenon that increases by 0%. Most of the proposals for this MI element use amorphous wires,
There are few cases where a thin film is used as a magnetic material forming an element.

【0005】発表されているものとして、1994年の
応用磁気学会における名古屋大学、内山剛、毛利佳年雄
氏らの「CoFeBアモルファススパッタ膜の磁気イン
ピーダンス効果」がある。この中でインピーダンスの変
化率は最大10%であり、感度は変化が最も急な場所で
0.8%/Oeであるとしている。MI素子の小型化や電
極,リード線の作製を考えるとワイヤよりも磁性薄膜の
方が有利であるが、磁性薄膜のタイプで最大10%の変
化率では小さい。
[0005] As one that has been announced, there is "Magnetic Impedance Effect of CoFeB Amorphous Sputtered Film" by Nagoya University, Tsuyoshi Uchiyama, Yoshitoshi Mori and others at the 1994 Applied Magnetics Society. Among them, the impedance change rate is 10% at maximum, and the sensitivity is 0.8% / Oe at the place where the change is the steepest. The magnetic thin film is more advantageous than the wire in consideration of the miniaturization of the MI element and the production of the electrodes and the lead wires, but the maximum change rate of 10% is small in the magnetic thin film type.

【0006】MI素子に用いられる薄膜としては、以下
の特性が要求される。
The thin film used for the MI element is required to have the following characteristics.

【0007】1.磁気ヘッド等の閉磁路回路に組込まれ
る場合、長手方向の透磁率が高いことはもちろん、素子
の小型化による磁束の飽和を避けるため、飽和磁束密度
が高いこと。
1. When incorporated in a closed magnetic circuit such as a magnetic head, the magnetic permeability in the longitudinal direction is high, and the saturation magnetic flux density is high in order to avoid saturation of magnetic flux due to miniaturization of the element.

【0008】2.高温、高湿下の条件で磁気特性の劣化
を生じない優れた耐食性を有すること。
2. It has excellent corrosion resistance that does not cause deterioration of magnetic properties under conditions of high temperature and high humidity.

【0009】3.ガラスボンディングの高温に耐えるこ
と。
3. Withstand the high temperatures of glass bonding.

【0010】4.誘導異方性を有する膜であること。4. A film having induced anisotropy.

【0011】そこで、本発明の課題は、これらの要求を
満足する磁性薄膜から構成され、インピーダンスの変化
率が大きく、高感度の磁気検出素子を提供することにあ
る。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a high-sensitivity magnetic detection element which is composed of a magnetic thin film satisfying these requirements and which has a large impedance change rate.

【0012】[0012]

【課題を解決するための手段】上記の課題を解決するた
め、本発明の第1の磁気検出素子では、a,b,c,
d,e,fは原子%の組成比の値を示し、MIは元素の
Zr,Hf,Nb,Ta,Mo,Wのうち少なくとも一
種類、MIIは元素のAg,Cuのうち少なくとも一方で
あるとして、組成が Fea Alb MIc MIId Ce Of の組成式で表され、前記a,b,c,d,e,fのそれ
ぞれの値は、 a+b+c+d+e+f=100 0.5≦b≦20 2≦c≦25 0.05≦d≦5 0.5≦e≦25 0.2≦f≦6 である磁性薄膜から構成した。
In order to solve the above-mentioned problems, in the first magnetic sensing element of the present invention, a, b, c,
d, e, and f represent the value of the composition ratio in atomic%, MI is at least one of the elements Zr, Hf, Nb, Ta, Mo, and W, and MII is at least one of the elements Ag and Cu. Is represented by a composition formula of Fea Alb MIc MIId Ce Of, and the respective values of a, b, c, d, e and f are: a + b + c + d + e + f = 100 0.5 ≦ b ≦ 20 2 ≦ c ≦ 25 The magnetic thin film was 0.05 ≦ d ≦ 5 0.5 ≦ e ≦ 25 0.2 ≦ f ≦ 6.

【0013】また、第2の磁気検出素子では、上記第1
の磁気検出素子の磁性薄膜の組成に更にCe,Dy,S
m等の希土類元素の少なくとも1種類を0.1〜5原子
%添加した組成の磁性薄膜から構成した。
In the second magnetic detecting element, the first magnetic element
The composition of the magnetic thin film of the magnetic detection element of
The magnetic thin film has a composition in which 0.1 to 5 atomic% of at least one kind of rare earth element such as m is added.

【0014】[0014]

【作用】上記磁気検出素子の磁性薄膜では、Zr,H
f,Nb,Ta,Mo,Wのうち少なくとも一種類(以
下、MIという)が添加されたFe−C−O系磁性薄膜
にAlを添加し、更にAg,Cuの少なくとも一方を添
加することにより、保磁力,磁歪等をあまり変化させる
ことなく、耐食性を向上させることができる。
In the magnetic thin film of the magnetic detecting element, Zr, H
By adding Al to the Fe—C—O magnetic thin film to which at least one kind (hereinafter referred to as MI) of f, Nb, Ta, Mo and W is added, and further adding at least one of Ag and Cu. It is possible to improve the corrosion resistance without changing the coercive force, the magnetostriction and the like so much.

【0015】さらに、Ce,Sm,Dy等の希土類元素
の少なくとも1種類を添加することにより耐食性がさら
に向上する。これは、Al,Cu,Ag,Ce,Sm,
Dy等がFeに対し直接酸化を抑える様に作用している
ことによるものと思われる。
Further, the corrosion resistance is further improved by adding at least one kind of rare earth element such as Ce, Sm and Dy. This is Al, Cu, Ag, Ce, Sm,
This is probably because Dy and the like act on Fe so as to directly suppress oxidation.

【0016】また、各元素の添加量を上記のようにした
理由は以下の通りである。
Further, the reason why the addition amount of each element is set as described above is as follows.

【0017】Alについては、耐食性を向上させ、磁気
特性を劣化させない範囲としては0.5〜20原子%、
望ましくは1〜10原子%である。20原子%を越える
と磁歪が30×10-7を越え大きくなってしまう。さら
に飽和磁束密度も低下する。また、0.5原子%より少
ないと耐食性向上の効果が表われない。
With respect to Al, the range of 0.5 to 20 atomic% is a range in which corrosion resistance is improved and magnetic characteristics are not deteriorated.
It is preferably 1 to 10 atom%. When it exceeds 20 atomic%, the magnetostriction exceeds 30 × 10 −7 and becomes large. Further, the saturation magnetic flux density also decreases. Further, if it is less than 0.5 atom%, the effect of improving the corrosion resistance cannot be obtained.

【0018】MI,Cについては、MIとCが炭化物の微
細結晶を作り、これがFeの粒成長を抑え、軟磁性を高
温まで維持する役割をするが、各々2原子%,0.5原
子%より少ないと、その効果が出ず、また25原子%を
越えると良好な軟磁気特性が得られない。したがってそ
れぞれ上記の添加量となるが、より望ましくはMI:3
〜15原子%,C:3〜15原子%である。
Regarding MI and C, MI and C form fine crystals of carbide, which suppress the grain growth of Fe and maintain soft magnetism up to a high temperature. If it is less, the effect is not exerted, and if it exceeds 25 atomic%, good soft magnetic properties cannot be obtained. Therefore, the above-mentioned amounts are added respectively, but more preferably MI: 3
˜15 atomic%, C: 3 to 15 atomic%.

【0019】Ag,Cuについては、0.05原子%よ
り少ないと磁気特性の向上、耐食性の改善が表われず、
5原子%より多いと磁気特性が劣化してしまう。Ag,
Cuは結晶粒を微細化させる効果があることにより、磁
気特性が向上するものと思われる。
When Ag and Cu are less than 0.05 atom%, the magnetic properties and corrosion resistance are not improved.
If it is more than 5 atomic%, the magnetic properties will deteriorate. Ag,
It is considered that Cu has an effect of refining crystal grains, and thus magnetic characteristics are improved.

【0020】Oは、膜の電気抵抗を上げ、高周波特性を
向上させるとともに、Al、(Ag,Cu)、(Ce,
Sm,Dy等)と共添することにより、耐食性を向上さ
せる役割をしているが、0.2原子%より少ないと、そ
の効果が表われず、6原子%を越えると軟磁気特性の劣
化が起る。
O increases the electric resistance of the film and improves the high frequency characteristics, and at the same time, Al, (Ag, Cu), (Ce,
Sm, Dy, etc.) have the role of improving the corrosion resistance, but if it is less than 0.2 at%, the effect is not exhibited, and if it exceeds 6 at%, the soft magnetic properties deteriorate. Occurs.

【0021】Ce,Sm,Dy等の希土類元素は、耐食
性を向上する効果があるが、0.1原子%ではその効果
が表われず、5原子%より多く添加すると、軟磁気特性
が劣化してしまう。
Although rare earth elements such as Ce, Sm, and Dy have the effect of improving the corrosion resistance, the effect is not exhibited at 0.1 atom%, and if added in excess of 5 atom%, the soft magnetic characteristics deteriorate. Will end up.

【0022】上記本発明の第1と第2の磁気検出素子の
磁性薄膜は、以上のような理由で決定した組成であるた
め、微結晶膜となり、良好な軟磁気特性、高飽和磁束密
度を有し、しかも耐食性にすぐれ、高温、高湿下の条件
で磁気特性の劣化を生じない。また高温まで軟磁気特性
を維持しガラスボンディングの高温に耐え、低磁歪でも
ある。そして、このような磁性薄膜から図5に示すよう
に、外部磁界Hexに応じたインピーダンス変化による出
力電圧の変化率V/V(Hex=0)が大きく、高感度の
磁気検出素子を構成できる。図5は、上記本発明の第1
の磁気検出素子の例として、Fe−Al−Nb−Ta−
Cu−C−O薄膜から構成した素子、Fe−Al−Nb
−Ta−Ag−C−O薄膜から構成した素子、及び比較
例としてセンダストのFe−Al−Si−N薄膜から構
成した素子、並びに参考として82Ni−FeのMR素
子のそれぞれの外部磁界による出力特性を示している。
Since the magnetic thin films of the first and second magnetic sensing elements of the present invention have the composition determined for the above reasons, they become microcrystalline films, exhibiting good soft magnetic characteristics and high saturation magnetic flux density. In addition, it has excellent corrosion resistance and does not cause deterioration of magnetic properties under conditions of high temperature and high humidity. It also maintains soft magnetic properties up to high temperatures, withstands high temperatures of glass bonding, and has low magnetostriction. As shown in FIG. 5, such a magnetic thin film has a large rate of change V / V (Hex = 0) in the output voltage due to the impedance change according to the external magnetic field Hex, and a highly sensitive magnetic detection element can be constructed. FIG. 5 shows the first aspect of the present invention.
Fe-Al-Nb-Ta-
Device composed of Cu—C—O thin film, Fe—Al—Nb
-Ta-Ag-C-O thin film element, and Sendust Fe-Al-Si-N thin film element as a comparative example, and 82Ni-Fe MR element as reference, respectively, output characteristics by external magnetic field Is shown.

【0023】[0023]

【実施例】以下、図を参照して本発明の実施例を説明す
る。本発明を適用したMI素子のサンプルを作製するた
め、非磁性のセラミックス基板(TiO,CaO系)
に、微結晶系Aタイプの磁性薄膜として、組成が Fe66.3Al9.5Ta5.0Nb1.611.85.6Ag0.2 である薄膜を対向ターゲットスパッタリング装置により
成膜した。
Embodiments of the present invention will be described below with reference to the drawings. A non-magnetic ceramic substrate (TiO, CaO-based) for producing a sample of an MI device to which the present invention is applied
As a microcrystalline A type magnetic thin film, a thin film having a composition of Fe 66.3 Al 9.5 Ta 5.0 Nb 1.6 C 11.8 O 5.6 Ag 0.2 was formed by a facing target sputtering apparatus.

【0024】また、他のセラミックス基板に、微結晶系
Bタイプの磁性薄膜として、組成が Fe64.3Al9.5Ta5.0Nb1.611.85.6Cu0.2
2 である薄膜を成膜した。
On another ceramic substrate, a composition of Fe 64.3 Al 9.5 Ta 5.0 Nb 1.6 C 11.8 O 5.6 Cu 0.2 D was prepared as a microcrystalline B type magnetic thin film.
A thin film of y 2 was deposited.

【0025】更に、比較例のサンプルを作製するため、
他のセラミックス基板に、センダスト系の磁性薄膜とし
て、組成が Fe68.5Si15.8Al9.46.3 である薄膜を成膜した。
Further, in order to prepare a sample of the comparative example,
On another ceramic substrate, a thin film having a composition of Fe 68.5 Si 15.8 Al 9.4 N 6.3 was formed as a Sendust-based magnetic thin film.

【0026】そして、それぞれのセラミックス基板を、
図1に示すように、磁性薄膜1を成膜した成膜面の大き
さを幅0.2mm×長さ8mmとし、高さを1mmとした長方
形に切断し、磁性薄膜1とセラミックス基板2からなる
MI素子本体を形成した。
Then, each ceramic substrate is
As shown in FIG. 1, the magnetic thin film 1 is formed into a rectangular shape with a width of 0.2 mm and a length of 8 mm and a height of 1 mm. Then, the MI element body was formed.

【0027】なお、同じ組成の磁性薄膜1で磁場中熱処
理により磁化容易軸方向が、磁気検出のために磁性薄膜
1に高周波の駆動電流が印加される方向(検出対象の外
部磁界が印加される方向であって薄膜1の長手方向)に
平行になるように誘導異方性をつけたものと、磁化容易
軸方向が駆動電流の印加方向に対し膜面内で直交する幅
方向となるように異方性をつけたものを用意し、さらに
その磁化容易軸方向と困難軸方向の異方性の強さHkを
異ならせたものを用意した。
The magnetic thin film 1 having the same composition has a direction of easy axis of magnetization by heat treatment in a magnetic field, and a direction in which a high frequency drive current is applied to the magnetic thin film 1 for magnetic detection (an external magnetic field to be detected is applied). Direction and parallel to the longitudinal direction of the thin film 1) with anisotropy, and the easy axis of magnetization is the width direction orthogonal to the direction of application of the drive current in the film plane. One having anisotropy was prepared, and one having different anisotropy strengths Hk in the easy axis direction and the hard axis direction was prepared.

【0028】このように用意したMI素子本体のそれぞ
れを、図2に示すように、プリント基板3に対し固定
し、磁性薄膜1の両端部のそれぞれを端子部として半田
4で接続して、MI素子のサンプルのそれぞれを作製し
た。各サンプルの磁性薄膜の組成、飽和磁束密度Bs、
膜厚、長手方向と幅方向の1MHzでの透磁率μ、異方
性の大きさHk、保磁力Hc、磁化容易軸方向を下記の
表1に示す。
As shown in FIG. 2, each of the MI element bodies prepared in this manner is fixed to the printed circuit board 3, and both ends of the magnetic thin film 1 are connected to each other by the solder 4 to form the MI. Each of the device samples was prepared. The composition of the magnetic thin film of each sample, the saturation magnetic flux density Bs,
Table 1 below shows the film thickness, the magnetic permeability μ at 1 MHz in the longitudinal direction and the width direction, the anisotropic magnitude Hk, the coercive force Hc, and the easy axis of magnetization.

【0029】[0029]

【表1】 [Table 1]

【0030】この表1からわかるように、微結晶系Aタ
イプのサンプル3〜6とBタイプのサンプル7〜12の
いずれにおいてもセンダスト薄膜のサンプル1,2より
飽和磁束密度Bs、透磁率μが高く、保磁力Hcが低
く、優れた磁気特性を有している。
As can be seen from Table 1, the saturation magnetic flux density Bs and the magnetic permeability μ are higher than those of the Sendust thin film samples 1 and 2 in all of the microcrystalline A type samples 3 to 6 and the B type samples 7 to 12. High, low coercive force Hc, and excellent magnetic properties.

【0031】この表1のサンプル1〜12について出力
特性を測定した。すなわち、図3に示すように、ヘルム
ホルツコイル5によりサンプル6の長手方向(磁性薄膜
1の長手方向)に外部磁界を印加するとともに、駆動電
流源7から周波数100MHzで30mAp-pの高周波駆
動電流を印加し、外部磁界を±10Oe変化させ、それに
よる両端の端子間の電圧変化を測定した。
The output characteristics of samples 1 to 12 in Table 1 were measured. That is, as shown in FIG. 3, an external magnetic field is applied in the longitudinal direction of the sample 6 (longitudinal direction of the magnetic thin film 1) by the Helmholtz coil 5, and a high frequency drive current of 30 mAp-p at a frequency of 100 MHz is applied from the drive current source 7. The applied voltage was changed by ± 10 Oe, and the voltage change between the terminals at both ends was measured.

【0032】その結果、電圧変化は図4の様なカーブに
なった。図4においてVMAXは外部磁界の±10Oeの変
化に対する最大電圧変化率、HMAXは最大電圧変化を示
す印加磁界、ΔVは単位磁界当たりの電圧変化率(%/
Oe)である。磁気センサーとして用いる場合、VMAXが
大きく、ΔVも大きい方が有利である。各サンプルのV
MAx,HMAX,ΔVを下記の表2に示す。
As a result, the voltage change has a curve as shown in FIG. In FIG. 4, VMAX is the maximum voltage change rate with respect to the change of the external magnetic field of ± 10 Oe, HMAX is the applied magnetic field showing the maximum voltage change, and ΔV is the voltage change rate per unit magnetic field (% /
Oe). When used as a magnetic sensor, it is advantageous that VMAX is large and ΔV is also large. V of each sample
MAx, HMAX and ΔV are shown in Table 2 below.

【0033】[0033]

【表2】 [Table 2]

【0034】この表2からわかるように、センダスト系
のサンプル1,2について、駆動電流印加方向に直交す
る幅方向に磁化容易軸をつけた場合と平行な長手方向に
容易軸をつけた場合で、VMAXはそれぞれ18.7%、
2.9%と明らかに前者の方が大きい。また、その変化
率ΔVも前者の方が大きい。最大電圧変化を示す印加磁
界HMAXは後者の方が小さい。
As can be seen from Table 2, for Sendust-based samples 1 and 2, when the easy axis of magnetization is provided in the width direction orthogonal to the drive current application direction and when the easy axis is provided in the longitudinal direction parallel to the direction. , VMAX is 18.7%,
The former is obviously larger with 2.9%. The rate of change ΔV is also larger in the former case. The applied magnetic field HMAX showing the maximum voltage change is smaller in the latter case.

【0035】次に、微結晶系タイプA,Bについてみる
と、サンプル3,7に示す様に駆動電流印加方向に直交
する幅方向に容易軸をつけた場合の方がやはりVMAX,
ΔVともに大きく、センダスト系のサンプル1,2に較
べ2倍〜3倍近いVMAXを示す。また、磁化容易軸方向
と困難軸方向の異方性の大きさHkとVMAXの関係を見る
と、 微結晶系タイプA: サンプル6 Hk 0.2Oe→VMAX 25.4% サンプル3 Hk 3.3Oe→VMAX 28.3% サンプル5 Hk10.0Oe→VMAX 21.4% 微結晶系タイプB: サンプル9 Hk 0.1Oe→VMAX 29.6% サンプル7 Hk 1.1Oe→VMAX 50.4% サンプル12 Hk 2.3Oe→VMAX 49.4% サンプル11 Hk 4.7Oe→VMAX 48.0% サンプル10 Hk12.0Oe→VMAX 41.0% の様に1〜5Oe位の範囲でVMAXが大きいことがわか
る。
Next, looking at the microcrystalline type A and B, as shown in Samples 3 and 7, VMAX, when the easy axis is attached in the width direction orthogonal to the driving current application direction,
Both ΔV are large, and VMAX is nearly 2 to 3 times that of Sendust-based samples 1 and 2. Looking at the relationship between the anisotropy magnitudes Hk and VMAX in the easy axis direction and the hard axis direction, a microcrystalline type A: sample 6 Hk 0.2 Oe → VMAX 25.4% sample 3 Hk 3.3 Oe → VMAX 28.3% Sample 5 Hk 10.0 Oe → VMAX 21.4% Microcrystalline system type B: Sample 9 Hk 0.1 Oe → VMAX 29.6% Sample 7 Hk 1.1 Oe → VMAX 50.4% Sample 12 Hk It can be seen that VMAX is large in the range of 1 to 5 Oe such as 2.3 Oe → VMAX 49.4% Sample 11 Hk 4.7 Oe → VMAX 48.0% Sample 10 Hk 12.0 Oe → VMAX 41.0%.

【0036】以上のように微結晶系タイプA,Bの磁性
薄膜で磁化容易軸方向が膜面内で駆動電流印加方向に直
交するように誘導異方性をつけ、かつその異方性の大き
さHkを1〜5Oeの範囲とすることにより、VMAxとΔV
を大きくでき、例えばサンプル7ではVMAX が50.4
%、ΔVが11.9%/Oeとなり、インピーダンス変化
率が大きく、高感度のMI素子を得ることができる。
As described above, in the magnetic thin films of microcrystalline type A and B, induced anisotropy is provided so that the direction of easy axis of magnetization is perpendicular to the drive current application direction in the film plane, and the magnitude of the anisotropy is large. By setting Hk in the range of 1 to 5 Oe, VMax and ΔV
Can be increased, for example, in sample 7, VMAX is 50.4
%, ΔV is 11.9% / Oe, the rate of impedance change is large, and a highly sensitive MI element can be obtained.

【0037】[0037]

【発明の効果】以上の説明から明らかなように、本発明
によれば、磁気インピーダンス効果を利用した磁気検出
素子において、良好な軟磁気特性、高飽和磁束密度を有
し、しかも耐食性にすぐれ、高温、高湿下の条件で磁気
特性の劣化を生じず、また高温まで軟磁気特性を維持し
ガラスボンディングの高温に耐え、低磁歪でもあるとい
う優れた磁性薄膜からインピーダンスの変化率が大き
く、高感度の磁気検出素子を構成できるという優れた効
果が得られる。
As is apparent from the above description, according to the present invention, in the magnetic sensing element utilizing the magneto-impedance effect, good soft magnetic characteristics, high saturation magnetic flux density, and excellent corrosion resistance, The magnetic characteristics do not deteriorate under high temperature and high humidity conditions, the soft magnetic characteristics are maintained up to high temperature, the glass bonding can withstand the high temperature, and the magnetostriction is excellent. An excellent effect that a magnetic detection element with high sensitivity can be configured is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例のMI素子本体のサンプルの構
造と寸法を示す斜視図である。
FIG. 1 is a perspective view showing a structure and dimensions of a sample of an MI device body according to an embodiment of the present invention.

【図2】同MI素子本体をプリント基板に固定してなる
MI素子のサンプルを示す斜視図である。
FIG. 2 is a perspective view showing a sample of an MI element in which the MI element body is fixed to a printed board.

【図3】同MI素子のサンプルの外部磁界による出力特
性の測定の様子を示す説明図である。
FIG. 3 is an explanatory diagram showing how output characteristics of a sample of the same MI element are measured by an external magnetic field.

【図4】MI素子の外部磁界に対する両端間電圧の変化
を示すグラフ図である。
FIG. 4 is a graph showing a change in voltage across the MI element with respect to an external magnetic field.

【図5】異なる組成の磁性薄膜から構成したMI素子の
それぞれとMR素子の外部磁界に対する電圧変化の特性
を示すグラフ図である。
FIG. 5 is a graph showing the characteristics of the voltage change with respect to the external magnetic field of each of the MI element and the MR element composed of magnetic thin films having different compositions.

【符号の説明】[Explanation of symbols]

1 磁性薄膜 2 セラミックス基板 3 プリント基板 4 半田 5 ヘルムホルツコイル 6 MI素子のサンプル 7 駆動電流源 1 Magnetic Thin Film 2 Ceramics Board 3 Printed Circuit Board 4 Solder 5 Helmholtz Coil 6 MI Element Sample 7 Driving Current Source

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 磁気インピーダンス効果を利用した磁気
検出素子において、 a,b,c,d,e,fは原子%の組成比の値を示し、
MIは元素のZr,Hf,Nb,Ta,Mo,Wのうち
少なくとも一種類、MIIは元素のAg,Cuのうち少な
くとも一方であるとして、組成が Fea Alb MIc MIId Ce Of の組成式で表され、前記a,b,c,d,e,fのそれ
ぞれの値は、 a+b+c+d+e+f=100 0.5≦b≦20 2≦c≦25 0.05≦d≦5 0.5≦e≦25 0.2≦f≦6 である磁性薄膜から構成したことを特徴とする磁気検出
素子。
1. A magnetic sensing element utilizing a magneto-impedance effect, wherein a, b, c, d, e, f represent the value of a composition ratio of atomic%,
Ml is at least one of Zr, Hf, Nb, Ta, Mo and W of elements, and MII is at least one of Ag and Cu of elements, and the composition is represented by a composition formula of Fea Alb MIc MIId Ce Of. , A, b, c, d, e, f are as follows: a + b + c + d + e + f = 100 0.5 ≦ b ≦ 20 2 ≦ c ≦ 25 0.05 ≦ d ≦ 5 0.5 ≦ e ≦ 250. A magnetic detection element comprising a magnetic thin film satisfying 2 ≦ f ≦ 6.
【請求項2】 磁気インピーダンス効果を利用した磁気
検出素子において、 a,b,c,d,e,f,gは原子%の組成比の値を示
し、MIは元素のZr,Hf,Nb,Ta,Mo,Wの
うち少なくとも一種類、MIIは元素のAg,Cuのうち
少なくとも一方、Lは希土類元素の少なくとも1種類で
あるとして、組成が Fea Alb MIc MIId Ce Of Lg の組成式で表され、前記a,b,c,d,e,f,gの
それぞれの値は、 a+b+c+d+e+f+g=100 0.5≦b≦20 2≦c≦25 0.05≦d≦5 0.5≦e≦25 0.2≦f≦6 0.1≦g≦5 である磁性薄膜から構成したことを特徴とする磁気検出
素子。
2. In a magnetic detection element utilizing the magneto-impedance effect, a, b, c, d, e, f and g represent the values of the composition ratio in atomic%, and MI represents the elements Zr, Hf, Nb, At least one of Ta, Mo, W, MII is at least one of the elements Ag and Cu, and L is at least one of rare earth elements, and the composition is represented by the composition formula Fea Alb MIc MIId Ce Of Lg. , A, b, c, d, e, f, and g are as follows: a + b + c + d + e + f + g = 100 0.5 ≦ b ≦ 20 2 ≦ c ≦ 25 0.05 ≦ d ≦ 5 0.5 ≦ e ≦ 25 A magnetic detection element comprising a magnetic thin film satisfying 0.2 ≦ f ≦ 6 0.1 ≦ g ≦ 5.
【請求項3】 前記磁性薄膜は、磁気検出のために高周
波電流が印加される方向に対して膜面内で直交する方向
が磁化容易軸方向となるように誘導異方性がつけられた
ことを特徴とする請求項1または2に記載の磁気検出素
子。
3. The magnetic thin film is provided with induced anisotropy so that a direction perpendicular to a direction in which a high frequency current is applied for magnetic detection is a direction of an easy axis of magnetization. The magnetic detection element according to claim 1 or 2, characterized in that.
【請求項4】 前記異方性の大きさHk が0.5Oe〜5
Oeの範囲であることを特徴とする請求項3に記載の磁気
検出素子。
4. The anisotropic magnitude Hk is 0.5 Oe-5.
The magnetic sensing element according to claim 3, wherein the magnetic sensing element is in the range of Oe.
JP08655395A 1995-04-12 1995-04-12 Magnetic sensing element Expired - Lifetime JP3218272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08655395A JP3218272B2 (en) 1995-04-12 1995-04-12 Magnetic sensing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08655395A JP3218272B2 (en) 1995-04-12 1995-04-12 Magnetic sensing element

Publications (2)

Publication Number Publication Date
JPH08288568A true JPH08288568A (en) 1996-11-01
JP3218272B2 JP3218272B2 (en) 2001-10-15

Family

ID=13890203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08655395A Expired - Lifetime JP3218272B2 (en) 1995-04-12 1995-04-12 Magnetic sensing element

Country Status (1)

Country Link
JP (1) JP3218272B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183889B1 (en) 1997-08-28 2001-02-06 Alps Electric Co., Ltd. Magneto-impedance element, and magnetic head, thin film magnetic head, azimuth sensor and autocanceler using the same
JP2004039837A (en) * 2002-07-03 2004-02-05 Japan Science & Technology Corp Magnetic field detecting element
JP2009002695A (en) * 2007-06-19 2009-01-08 Canon Inc Detector and detecting method for magnetic substance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183889B1 (en) 1997-08-28 2001-02-06 Alps Electric Co., Ltd. Magneto-impedance element, and magnetic head, thin film magnetic head, azimuth sensor and autocanceler using the same
JP2004039837A (en) * 2002-07-03 2004-02-05 Japan Science & Technology Corp Magnetic field detecting element
JP2009002695A (en) * 2007-06-19 2009-01-08 Canon Inc Detector and detecting method for magnetic substance
US8466675B2 (en) 2007-06-19 2013-06-18 Canon Kabushiki Kaisha Detection apparatus and detection method for a magnetic substance having a trap region and a non-trap region

Also Published As

Publication number Publication date
JP3218272B2 (en) 2001-10-15

Similar Documents

Publication Publication Date Title
EP0432890A2 (en) Magnetoresistive sensor
EP1126531A2 (en) Magnetoresistance effect device, and magnetoresistance effect type head, memory device, and amplifying device using the same
US5461308A (en) Magnetoresistive current sensor having high sensitivity
Klokholm et al. The saturation magnetostriction of thin polycrystalline films of iron, cobalt, and nickel
US6239594B1 (en) Mageto-impedance effect element
Jang et al. Annealing effect on microstructure and asymmetric giant magnetoimpedance in Co-based amorphous ribbon
JPH07235022A (en) Product containing improved magnetoresistance material
Honda et al. Magnetostriction of sputtered Sm-Fe thin films
JPH01235213A (en) Magnetic sensor, current sensor and apparatus using them
JP3218272B2 (en) Magnetic sensing element
JPH07202292A (en) Magnetoresistive film and its manufacture
JP3936137B2 (en) Magneto-impedance effect element
JP3247535B2 (en) Magnetoresistance effect element
EP0763748B1 (en) Magnetoresistive element having large low field magnetoresistance
US4212688A (en) Alloy for magnetoresistive element and method of manufacturing the same
JP3866467B2 (en) Magneto-impedance effect element
US5982177A (en) Magnetoresistive sensor magnetically biased in a region spaced from a sensing region
JP3656018B2 (en) Method for manufacturing magneto-impedance effect element
KR100392677B1 (en) A magneto-impedance effect element and method for manufacturing the same
EP1058324A1 (en) Magnetoresistant device and a magnetic sensor comprising the same
JP3226254B2 (en) Exchange coupling film, magnetoresistive element and magnetoresistive head
JP2001332779A (en) Magnetic impedance effect element and its manufacturing method
JP4171979B2 (en) Magneto-impedance element
JP3374984B2 (en) Material for MR element and method for manufacturing the same
JP3337732B2 (en) Magnetoresistance effect element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070803

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 12

EXPY Cancellation because of completion of term