[go: up one dir, main page]

JPH0828805A - Apparatus and method for supplying water to boiler - Google Patents

Apparatus and method for supplying water to boiler

Info

Publication number
JPH0828805A
JPH0828805A JP16647094A JP16647094A JPH0828805A JP H0828805 A JPH0828805 A JP H0828805A JP 16647094 A JP16647094 A JP 16647094A JP 16647094 A JP16647094 A JP 16647094A JP H0828805 A JPH0828805 A JP H0828805A
Authority
JP
Japan
Prior art keywords
pump
boiler
water supply
electric motor
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16647094A
Other languages
Japanese (ja)
Inventor
Katsuaki Kuribayashi
克明 栗林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16647094A priority Critical patent/JPH0828805A/en
Publication of JPH0828805A publication Critical patent/JPH0828805A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To extend the pressure control range of a motor-driven feed water pump and cover the pressure control range of a booster pump by controlling motors of A-system and B-system in such a manner that the discharge pressure of motor driven feed water pumps of the A-system and B-system respectively reaches specified pressures. CONSTITUTION:An A-system electric motor 1a is controlled by an A-system VVVF control apparatus 18a in such a manner that the discharge pressure of an A-system electric motor driven feed water pump 2a becomes equal to a suction pressure required for driving an A-system turbine driven feed water pump 4. A B-system electric motor 1b is controlled by a B-system VVVF control apparatus 18b in such a manner that the discharge pressure of a B-system electric motor driven feed water pump 2b becomes equal to a suction pressure required for driving a B-system turbine driven feed water pump 6. After then, the A-system turbine driven feed water pump 4 and the B-system turbine driven feed water pump 6 are driven and controlled by main steam fed to the A-system VVVF control apparatus 18a and the B-system VVVF control apparatus 18b by a boiler.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、火力発電プラントにお
けるボイラへの給水を制御する給水制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water supply controller for controlling water supply to a boiler in a thermal power plant.

【0002】[0002]

【従来の技術】火力発電プラントの起動にあっては、ボ
イラへ必要な水を供給する必要がある。このボイラへの
給水装置は、一般に図6に示すように構成されている。
すなわち、電動機1で駆動される電動機駆動給水ポンプ
2(以下M−BFP2)と、この電動機駆動給水ポンプ
2に並列に接続されたA系タービン3(A・BFP−T
3)で駆動されるA系タービン駆動給水ポンプ4(以下
A・T−BFP4)及びB系タービン5(B・BFP−
T5)で駆動されるB系タービン駆動給水ポンプ6(以
下B・T−BFP6)と、これらM−BFP2、A・T
−BFP4、B・T−BFP6に直列に接続されたブー
スタポンプ7、入口弁8及び出口弁9と、これらM−B
FP2、A・T−BFP4、B・T−BFP6に並列に
接続されたバイパス弁10とから構成されている。
2. Description of the Related Art When starting a thermal power plant, it is necessary to supply necessary water to a boiler. The water supply device for this boiler is generally configured as shown in FIG.
That is, an electric motor driven water feed pump 2 (hereinafter referred to as M-BFP2) driven by the electric motor 1 and an A system turbine 3 (A / BFP-T) connected in parallel to the electric motor driven water feed pump 2.
3) A-system turbine drive feed water pump 4 (hereinafter referred to as A-T-BFP4) and B-system turbine 5 (B-BFP-)
B system turbine drive feed water pump 6 (hereinafter referred to as B.T-BFP6) driven by T5), and these M-BFP2, A.T.
-BFP4, B-T-BFP6, booster pump 7, inlet valve 8 and outlet valve 9 connected in series, and these MB
The bypass valve 10 is connected in parallel to the FP2, the A-T-BFP4, and the B-T-BFP6.

【0003】図6において、プラント起動時のボイラへ
の給水は、脱気器から低圧給水として脱気器出口管10を
通って、各給水ポンプに供給される。この低圧給水は、
M−BFP用ブースタポンプ7mの起動により、M−B
FP2に必要な吸込圧力まで押し上げられる。この圧力
の給水は、M−BFP2の起動により高圧給水となり給
水ポンプ出口管12を通り、高圧給水加熱器、ボイラへ供
給される。
In FIG. 6, the water supply to the boiler at the time of plant startup is supplied from the deaerator as low-pressure feed water through the deaerator outlet pipe 10 to each water supply pump. This low pressure water supply
By starting the booster pump 7m for M-BFP,
It is pushed up to the suction pressure required for FP2. The supply water of this pressure becomes high-pressure supply water when the M-BFP 2 is started up and is supplied to the high-pressure supply water heater and the boiler through the water supply pump outlet pipe 12.

【0004】プラント起動して、運転を行うとボイラ又
は蒸気タービンからの主蒸気が安定し、その一部をA・
BFP−T3、B・BFP−T5に必要な圧力及び温度
の蒸気として抽出する。これにより、ボイラ又は蒸気タ
ービンからのA・BFP−T3及びB・BFP−T5駆
動用の蒸気は、A・BFP−T蒸気入口管13及びB・B
FP−T蒸気入口管14を通ってA・BFP−T3及びB
・BFP−T5に供給される。A・BFP−T3及びB
・BFP−T5の回転上昇より、それぞれのA・T−B
FP4及びB・T−BFP6が運転が可能になると脱気
器降水管11からの低圧給水はA・T−BFP用ブースタ
ポンプ7a及びB・T−BFP用ブースタポンプ7bを
通り、A・T−BFP4及びB・T−BFP6に必要な
吸込圧力まで押し上げられる。それぞれ押し上げられた
圧力の給水は、A・T−BFP4及びB・T−BFP6
によって高圧給水を給水ポンプ出口管12に送る。
When the plant is started and operated, the main steam from the boiler or steam turbine becomes stable, and part of it is
Extract as vapor of the pressure and temperature required for BFP-T3 and B.BFP-T5. As a result, the steam for driving the A / BFP-T3 and B / BFP-T5 from the boiler or the steam turbine is transferred to the A / BFP-T steam inlet pipe 13 and the B / B steam pipe.
A ・ B FP-T3 and B through the FP-T steam inlet pipe 14
-Supplied to BFP-T5. A ・ BFP-T3 and B
・ From the rotation increase of BFP-T5, each A ・ T-B
When the FP4 and BT-BFP6 become operable, the low-pressure water supply from the deaerator downcomer 11 passes through the BT-BFP booster pump 7a and the BT-BFP booster pump 7b, and the ATT- It is pushed up to the suction pressure required for BFP4 and B-T-BFP6. The water supply of the pressure that has been respectively raised is AT-BFP4 and AT-BFP6.
Sends high pressure feed water to the feed pump outlet pipe 12.

【0005】給水ポンプ出口管12から高圧給水加熱器及
びボイラへの高圧給水流量が確保されたら、M−BFP
2及びM−BFP用ブースタポンプ7mを停止する。M
−BFP2の制御は、図7に示す様に自動プラント制御
装置15(以下APC15)からの給水流量要求信号をトル
クコンバータ16に送り、これにより給水流量制御を行う
ものである。この様にプラントの通常運転において、給
水はA・T−BFP4及びB・T−BFP6で行い、バ
ックアップ及び起動時にM−BFP2を使用する。
When the high-pressure feed water flow rate from the feed water pump outlet pipe 12 to the high-pressure feed water heater and the boiler is secured, M-BFP
2 and the M-BFP booster pump 7m are stopped. M
As shown in FIG. 7, the BFP2 is controlled by sending a feedwater flow rate request signal from the automatic plant controller 15 (hereinafter referred to as APC15) to the torque converter 16 to control the feedwater flow rate. As described above, in the normal operation of the plant, the water supply is performed by the A-T-BFP4 and the B-T-BFP6, and the M-BFP2 is used for backup and startup.

【0006】[0006]

【発明が解決しようとする課題】以上のように、M−B
FP2は図7の様にAPC40からの給水流量要求信号を
受けたトルクコンバータ15による給水流量制御である。
M−BFP2は、定格回転数なので図8に示すようにM
−BFP2の圧力制御範囲Z2内で圧力制御をする。ま
た、M−BFP2、A・T−BFP4及びB・T−BF
P6の吸込圧力の確保のため、それぞれM−BFP用ブ
ースタポンプ7m、A・T−BFP用ブースタポンプ7
a及びA・T−BFP用ブースタポンプ7bが必要であ
った。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
FP2 is the water supply flow rate control by the torque converter 15 which receives the water supply flow rate request signal from the APC 40 as shown in FIG.
Since M-BFP2 is the rated speed, as shown in FIG.
-Pressure control is performed within the pressure control range Z2 of BFP2. In addition, M-BFP2, A-T-BFP4 and B-T-BF
In order to secure the suction pressure of P6, the booster pump 7m for M-BFP and the booster pump 7 for AT-BFP, respectively.
A and the booster pump 7b for AT-BFP were required.

【0007】本発明の目的は、M−BFPの圧力制御範
囲の拡大によりブースタポンプの圧力制御範囲もカバー
することができる給水装置およびその制御方法を提供す
ることである。
An object of the present invention is to provide a water supply apparatus and a control method thereof which can cover the pressure control range of the booster pump by expanding the pressure control range of the M-BFP.

【0008】[0008]

【課題を解決するための手段】本発明の請求項1に記載
のボイラ給水装置は、ボイラの起動時にボイラに給水を
供給する電動機駆動給水ポンプと、ボイラから所定の温
度圧力の主蒸気が確立するとその主蒸気で起動されボイ
ラに給水を供給するA系及びB系のタービン駆動給水ポ
ンプとを有したボイラ給水装置であって、A系タービン
駆動給水ポンプの吸込側に直列に設けられたA系電動機
駆動給水ポンプと、B系タービン駆動給水ポンプの吸込
側に直列に設けられたB系電動機駆動給水ポンプと、A
系電動機駆動給水ポンプを駆動する電動機の回転数を可
変電圧可変周波数で制御するA系VVVF制御装置と、
B系電動機駆動給水ポンプを駆動する電動機の回転数を
可変電圧可変周波数で制御するB系VVVF制御装置
と、A系タービン駆動給水ポンプをバイパスして設けら
れたA系バイパス弁と、B系タービン駆動給水ポンプを
バイパスして設けられたB系バイパス弁と、A系電動機
駆動給水ポンプの吐出側とB系電動機駆動給水ポンプの
吐出側とを接続する接続弁とを備えている。
According to a first aspect of the present invention, there is provided a boiler water supply apparatus, wherein an electric motor driven water supply pump for supplying water to the boiler when starting the boiler and a main steam having a predetermined temperature and pressure are established from the boiler. Then, it is a boiler water supply apparatus having A-system and B-system turbine-driven water supply pumps which are started by the main steam and supply water to the boiler, and which are provided in series on the suction side of the A-system turbine-driven water supply pump. System electric motor driven water supply pump, B system electric motor driven water supply pump provided in series on the suction side of B system turbine driven water supply pump,
An A-system VVVF control device for controlling the number of revolutions of an electric motor for driving a system electric motor driven water supply pump with a variable voltage variable frequency;
B-system VVVF control device for controlling the rotation speed of the electric motor for driving the B-system electric motor driven water supply pump with a variable voltage and variable frequency, an A-system bypass valve provided by bypassing the A-system turbine driven water supply pump, and a B-system turbine A B-system bypass valve provided by bypassing the drive water supply pump, and a connection valve that connects the discharge side of the A-system electric motor drive water supply pump and the discharge side of the B-system electric motor drive water supply pump are provided.

【0009】請求項2は、請求項1に記載のボイラ給水
装置を制御する制御方法であり、ボイラの起動時には接
続弁を閉じ、A系バイパス弁及びB系バイパス弁を開い
て、ボイラの給水流量要求信号に基づいて、A系電動機
駆動給水ポンプの吐出圧力が所定の圧力となるようにA
系VVVF制御装置でA系電動機駆動給水ポンプを駆動
制御し、B系電動機駆動給水ポンプの吐出圧力が所定の
圧力となるようにB系VVVF制御装置でB系電動機駆
動給水ポンプを駆動制御し、ボイラから所定の温度圧力
の主蒸気が確立したときはA系バイパス弁及びB系バイ
パス弁を閉じ、A系電動機駆動給水ポンプの吐出圧力が
A系タービン駆動給水ポンプの駆動に必要な吸込み圧力
になるようにA系VVVF制御装置でA系電動機駆動給
水ポンプを駆動制御し、B系電動機駆動給水ポンプの吐
出圧力がB系タービン駆動給水ポンプの駆動に必要な吸
込み圧力になるようにB系VVVF制御装置でB系電動
機駆動給水ポンプを駆動制御し、ボイラの給水流量要求
信号に基づいてA系タービン駆動給水ポンプ及びB系タ
ービン駆動給水ポンプをボイラからの主蒸気で駆動制御
する。
A second aspect of the present invention is a control method for controlling the boiler water supply device according to the first aspect, in which the connection valve is closed and the A-system bypass valve and the B-system bypass valve are opened at the time of starting the boiler to supply water to the boiler. Based on the flow rate request signal, the A system electric motor driven water supply pump is controlled so that the discharge pressure becomes a predetermined pressure.
The system VVVF control device drives and controls the A system electric motor driven water feed pump, and the B system VVVF controller drives and controls the B system electric motor driven water feed pump so that the discharge pressure of the B system electric motor driven water feed pump becomes a predetermined pressure. When main steam with a predetermined temperature and pressure is established from the boiler, the A system bypass valve and the B system bypass valve are closed, and the discharge pressure of the A system electric motor driven feed pump becomes the suction pressure required to drive the A system turbine driven feed water pump. The A system VVVF control device drives and controls the A system electric motor driven feed water pump so that the discharge pressure of the B system electric motor driven feed water pump becomes the suction pressure required to drive the B system turbine driven feed water pump. The control device drives and controls the B system electric motor driven water supply pump, and based on the boiler water supply flow rate request signal, the A system turbine driven water supply pump and the B system turbine driven water supply pump. Controlling the driving of the flop in main steam from the boiler.

【0010】請求項3は、請求項2に記載の制御方法に
おいて、A系タービン駆動給水ポンプが故障したときは
A系バイパス弁を開き、ボイラへの給水流量要求信号に
基づいて、A系VVVF制御装置でA系電動機駆動給水
ポンプを駆動制御する。
According to a third aspect of the present invention, in the control method according to the second aspect, when the A-system turbine drive feed water pump fails, the A-system bypass valve is opened, and the A-system VVVF is supplied based on the feed water flow rate demand signal to the boiler. The control unit drives and controls the system A electric motor driven water supply pump.

【0011】請求項4は、請求項2に記載の制御方法に
おいて、A系電動機駆動給水ポンプが故障したときは接
続弁を開き、B系電動機駆動給水ポンプの吐出圧力がA
系タービン駆動給水ポンプ及びB系タービン駆動給水ポ
ンプの双方の駆動に必要な吸込み圧力になるようにB系
VVVF制御装置でB系電動機駆動給水ポンプを駆動制
御する。
According to a fourth aspect of the present invention, in the control method according to the second aspect, the connection valve is opened when the A system electric motor driven feed water pump fails, and the discharge pressure of the B type electric motor driven feed water pump is A.
The B system VVVF controller drives and controls the B system electric motor driven water supply pump so that the suction pressures required to drive both the system turbine driven water supply pump and the B system turbine driven water supply pump are obtained.

【0012】請求項5のボイラ給水装置は、ボイラの起
動時にボイラに給水を供給する電動機駆動給水ポンプ
と、ボイラから所定の温度圧力の主蒸気が確立するとそ
の主蒸気で起動されボイラに給水を供給するA系及びB
系のタービン駆動給水ポンプとを有したボイラ給水装置
であって、並列に設けられたA系タービン駆動給水ポン
プとB系タービン駆動給水ポンプとの吸込側に直列に設
けられた電動機駆動給水ポンプと、電動機駆動給水ポン
プを駆動する電動機の回転数を可変電圧可変周波数で制
御するVVVF制御装置と、A系タービン駆動給水ポン
プ及び前記B系タービン駆動給水ポンプをバイパスして
設けられたバイパス弁とを備えている。
A boiler water supply apparatus according to a fifth aspect of the present invention supplies an electric motor driven water supply pump for supplying water to the boiler when the boiler is started up, and when main steam of a predetermined temperature and pressure is established from the boiler, the main steam is started to supply water to the boiler. Supply A system and B
A boiler water supply apparatus having a system turbine-driven water supply pump, and an electric motor-driven water supply pump provided in series on the suction side of the A-system turbine-driven water supply pump and the B-system turbine-driven water supply pump that are provided in parallel. A VVVF control device for controlling the rotation speed of an electric motor for driving the electric motor driven water supply pump with a variable voltage variable frequency; and a bypass valve provided by bypassing the A system turbine driven water supply pump and the B system turbine driven water supply pump. I have it.

【0013】請求項6は、請求項5に記載のボイラ給水
装置を制御する制御方法であって、ボイラの起動時には
バイパス弁を開いて、ボイラの給水流量要求信号に基づ
いて、電動機駆動給水ポンプの吐出圧力が所定の圧力と
なるようにVVVF制御装置で電動機駆動給水ポンプを
駆動制御し、ボイラから所定の温度圧力の主蒸気が確立
したときはバイパス弁を閉じ、電動機駆動給水ポンプの
吐出圧力がA系タービン駆動給水ポンプ及びB系電動機
駆動給水ポンプの双方の駆動に必要な吸込み圧力になる
ようにVVVF制御装置で電動機駆動給水ポンプを駆動
制御し、ボイラの給水流量要求信号に基づいてA系ター
ビン駆動給水ポンプ及びB系タービン駆動給水ポンプを
ボイラからの主蒸気で駆動制御する。
A sixth aspect of the present invention is a control method for controlling the boiler water supply apparatus according to the fifth aspect, wherein the bypass valve is opened at the time of starting the boiler, and the electric motor driven water supply pump is opened based on the water supply flow rate request signal of the boiler. The VVVF controller drives and controls the electric motor driven feed water pump so that the discharge pressure of the electric motor becomes a predetermined pressure, and when main steam of a predetermined temperature and pressure is established from the boiler, the bypass valve is closed, and the discharge pressure of the electric motor driven feed water pump. Is controlled by the VVVF controller so that the suction pressure required to drive both the A-system turbine-driven water supply pump and the B-system electric-motor driven water supply pump is controlled by the VVVF controller, and A is supplied based on the boiler water supply flow rate request signal. The system turbine driven feed water pump and the B system turbine driven feed water pump are drive-controlled by the main steam from the boiler.

【0014】請求項7のボイラ給水装置は、ボイラの起
動時にボイラに給水を供給する電動機駆動給水ポンプ
と、ボイラから所定の温度圧力の主蒸気が確立するとそ
の主蒸気で起動されボイラに給水を供給するA系及びB
系のタービン駆動給水ポンプとを並列に接続したボイラ
給水装置であって、A系タービン駆動給水ポンプの吸込
側に直列に設けられたA系ブースタポンプと、B系ター
ビン駆動給水ポンプの吸込側に直列に設けられたB系ブ
ースタポンプと、電動機駆動給水ポンプを駆動する電動
機の回転数を可変電圧可変周波数で制御するVVVF制
御装置とを備えている。
According to another aspect of the present invention, there is provided a boiler water supply apparatus, wherein an electric motor driven water supply pump for supplying water to the boiler at the time of starting the boiler and main steam having a predetermined temperature and pressure established from the boiler are started by the main steam to supply water to the boiler. Supply A system and B
It is a boiler water supply apparatus in which a turbine-driven feed water pump of a system is connected in parallel, and is provided in series on the suction side of the A-system turbine drive feed water pump and in series with the suction side of the B-system turbine drive feed water pump. It is provided with a B-system booster pump provided in series and a VVVF control device that controls the rotation speed of the electric motor that drives the electric motor drive water supply pump at a variable voltage variable frequency.

【0015】請求項8は、請求項7に記載のボイラ給水
装置を制御する制御方法であって、ボイラの起動時には
ボイラの給水流量要求信号に基づいて、電動機駆動給水
ポンプの吐出圧力が所定の圧力となるようにVVVF制
御装置で電動機駆動給水ポンプを駆動制御し、ボイラか
ら所定の温度圧力の主蒸気が確立したときは、A系のブ
ースタポンプの吐出圧力がA系タービン駆動給水ポンプ
の駆動に必要な吸込み圧力になるようにA系のブースタ
ポンプを駆動制御し、B系のブースタポンプの吐出圧力
がB系タービン駆動給水ポンプの駆動に必要な吸込み圧
力になるようにB系のブースタポンプを駆動制御し、ボ
イラの給水流量要求信号に基づいてA系タービン駆動給
水ポンプ及びB系タービン駆動給水ポンプをボイラから
の主蒸気で駆動制御する。
An eighth aspect of the present invention is a control method for controlling the boiler water supply device according to the seventh aspect, wherein the discharge pressure of the electric motor driven water supply pump is predetermined when the boiler is started based on the water supply flow rate request signal of the boiler. When the VVVF control device drives and controls the electric motor drive water feed pump so that the pressure becomes the pressure, and when main steam of a predetermined temperature and pressure is established from the boiler, the discharge pressure of the A system booster pump drives the A system turbine drive water feed pump. Drive control of the A system booster pump so that the suction pressure required for the B system booster pump is adjusted so that the discharge pressure of the B system booster pump becomes the suction pressure required to drive the B system turbine driven water supply pump. Drive control is performed, and the A system turbine drive water supply pump and the B system turbine drive water supply pump are driven and controlled by the main steam from the boiler based on the boiler feed water flow rate demand signal. To.

【0016】[0016]

【作用】請求項1に記載のボイラ給水装置では、ボイラ
の起動時には接続弁を閉じ、A系バイパス弁及びB系バ
イパス弁を開いて、A系電動機駆動給水ポンプの吐出圧
力が所定の圧力となるようにA系VVVF制御装置でA
系電動機駆動給水ポンプを駆動制御するとともに、同様
にB系電動機駆動給水ポンプの吐出圧力が所定の圧力と
なるようにB系VVVF制御装置でB系電動機駆動給水
ポンプを駆動制御する。そして、ボイラから所定の温度
圧力の主蒸気が確立したときはA系バイパス弁及びB系
バイパス弁を閉じ、A系電動機駆動給水ポンプの吐出圧
力がA系タービン駆動給水ポンプの駆動に必要な吸込み
圧力になるようにA系VVVF制御装置でA系電動機駆
動給水ポンプを駆動制御し、同様にB系電動機駆動給水
ポンプの吐出圧力がB系タービン駆動給水ポンプの駆動
に必要な吸込み圧力になるようにB系VVVF制御装置
でB系電動機駆動給水ポンプを駆動制御するとともに、
ボイラの給水流量要求信号に基づいてA系タービン駆動
給水ポンプ及びB系タービン駆動給水ポンプをボイラか
らの主蒸気で駆動制御する。
In the boiler water supply apparatus according to the first aspect of the present invention, the connection valve is closed and the A system bypass valve and the B system bypass valve are opened at the time of starting the boiler so that the discharge pressure of the A system electric motor driven water supply pump becomes a predetermined pressure. A system VVVF controller so that
The system electric motor drive water supply pump is drive-controlled, and similarly, the system B electric motor drive water supply pump is drive-controlled by the system B VVVF controller so that the discharge pressure of the system B electric motor drive water supply pump becomes a predetermined pressure. Then, when main steam of a predetermined temperature and pressure is established from the boiler, the A system bypass valve and the B system bypass valve are closed, and the discharge pressure of the A system electric motor driven water feed pump is the suction required to drive the A system turbine driven water feed pump. The A system VVVF control device drives and controls the A system electric motor driven water feed pump so that the pressure becomes the same, and similarly the discharge pressure of the B system electric motor driven water feed pump becomes the suction pressure required to drive the B system turbine driven water feed pump. In addition to controlling the drive of the B system electric motor driven water supply pump by the B system VVVF control device,
Based on the feed water flow rate request signal of the boiler, the A system turbine driven feed water pump and the B system turbine driven feed water pump are drive-controlled by the main steam from the boiler.

【0017】そして、A系タービン駆動給水ポンプが故
障したときはA系バイパス弁を開き、ボイラへの給水流
量要求信号に基づいて、A系VVVF制御装置でA系電
動機駆動給水ポンプを駆動制御する。また、A系電動機
駆動給水ポンプが故障したときは接続弁を開き、B系電
動機駆動給水ポンプの吐出圧力がA系タービン駆動給水
ポンプ及びB系タービン駆動給水ポンプの双方の駆動に
必要な吸込み圧力になるようにB系VVVF制御装置で
B系電動機駆動給水ポンプを駆動制御する。
When the A-system turbine drive feed water pump fails, the A-system bypass valve is opened, and the A-system VVVF control device drives and controls the A-system electric motor drive feed water pump based on the feed water flow rate request signal to the boiler. . Further, when the A system electric motor driven water supply pump fails, the connection valve is opened so that the discharge pressure of the B system electric motor driven water supply pump is the suction pressure required to drive both the A system turbine driven water supply pump and the B system turbine driven water supply pump. The B system VVVF control device drives and controls the B system electric motor driven water supply pump.

【0018】請求項5のボイラ給水装置では、ボイラの
起動時にはバイパス弁を開いて、電動機駆動給水ポンプ
の吐出圧力が所定の圧力となるようにVVVF制御装置
で電動機駆動給水ポンプを駆動制御し、ボイラから所定
の温度圧力の主蒸気が確立したときはバイパス弁を閉
じ、電動機駆動給水ポンプの吐出圧力がA系タービン駆
動給水ポンプ及びB系電動機駆動給水ポンプの双方の駆
動に必要な吸込み圧力になるようにVVVF制御装置で
電動機駆動給水ポンプを駆動制御するとともに、ボイラ
の給水流量要求信号に基づいてA系タービン駆動給水ポ
ンプ及びB系タービン駆動給水ポンプをボイラからの主
蒸気で駆動制御する。
In the boiler water supply apparatus of the fifth aspect, the bypass valve is opened at the time of starting the boiler, and the electric motor drive water supply pump is drive-controlled by the VVVF controller so that the discharge pressure of the electric motor drive water supply pump becomes a predetermined pressure. When main steam with a predetermined temperature and pressure is established from the boiler, the bypass valve is closed, and the discharge pressure of the electric motor driven water supply pump becomes the suction pressure required to drive both the A system turbine driven water supply pump and the B system electric motor driven water supply pump. As described above, the VVVF control device drives and controls the electric motor driven water supply pump, and drives and controls the A system turbine driven water supply pump and the B system turbine driven water supply pump by the main steam from the boiler based on the boiler water supply flow rate request signal.

【0019】請求項7のボイラ給水装置では、ボイラの
起動時にVVVF制御装置で電動機駆動給水ポンプを駆
動する電動機の回転数を可変電圧可変周波数で制御して
ボイラに給水を供給し、ボイラから所定の温度圧力の主
蒸気が確立するとA系及びB系タービン駆動給水ポンプ
の吸込側に設けられたA系及びB系ブースタポンプを駆
動するとともに、その主蒸気でボイラに給水を供給する
A系及びB系のタービン駆動給水ポンプを起動する。
According to another aspect of the boiler water supply device of the present invention, the VVVF control device controls the rotation speed of the electric motor for driving the electric motor driven water supply pump at a variable voltage variable frequency when the boiler is started to supply the water supply to the boiler. When the main steam having the temperature and pressure is established, the A system and B system booster pumps provided on the suction side of the A system and B system turbine drive feed water pumps are driven, and the main steam supplies the feed water to the boiler. Start the B system turbine drive water supply pump.

【0020】[0020]

【実施例】以下、本発明の実施例を説明する。図1は本
発明の第1の実施例の構成図である。A系タービン駆動
給水ポンプ4の吸込側にA系電動機駆動給水ポンプ2a
が直列に設けられ、また、B系タービン駆動給水ポンプ
5の吸込側にB系電動機駆動給水ポンプ6が直列に設け
られている。そして、A系タービン駆動給水ポンプ4の
吐出側は出口弁9aを介して給水ポンプ出口管12に接続
され、A系電動機駆動給水ポンプ2aの吸込側は入口弁
8aを介して脱気器降水管11に接続されている。同様に
A系タービン駆動給水ポンプ6の吐出側は出口弁9bを
介して給水ポンプ出口管12に接続され、B系電動機駆動
給水ポンプ2bの吸込側は入口弁8bを介して脱気器降
水管11に接続されている。
Embodiments of the present invention will be described below. FIG. 1 is a block diagram of the first embodiment of the present invention. A system electric motor driven water supply pump 2a is provided on the suction side of the A system turbine driven water supply pump 4.
Are provided in series, and the B system electric motor driven water supply pump 6 is provided in series on the suction side of the B system turbine driven water supply pump 5. The discharge side of the A system turbine driven water supply pump 4 is connected to the water supply pump outlet pipe 12 via the outlet valve 9a, and the suction side of the A system electric motor driven water supply pump 2a is connected to the deaerator precipitation pipe via the inlet valve 8a. Connected to 11. Similarly, the discharge side of the A system turbine driven water supply pump 6 is connected to the water supply pump outlet pipe 12 via the outlet valve 9b, and the suction side of the B system electric motor driven water supply pump 2b is connected to the deaerator precipitation pipe via the inlet valve 8b. Connected to 11.

【0021】次に、A系電動機駆動給水ポンプ2aはA
系電動機1aで駆動され、このA系電動機1aはA系V
VVF制御装置18aで制御される。すなわち、A系VV
VF制御装置1aはA系電動機1aの回転数を可変電圧
可変周波数で制御する。同様にB系電動機駆動給水ポン
プ2bはB系電動機1bで駆動され、このB系電動機1
bはB系VVVF制御装置18bで制御され、B系VV
VF制御装置1bはB系電動機1bの回転数を可変電圧
可変周波数で制御する。
Next, the A system electric motor driven water supply pump 2a is
Driven by the system electric motor 1a, the A system electric motor 1a is an A system V
It is controlled by the VVF controller 18a. That is, A system VV
The VF control device 1a controls the rotation speed of the A-system electric motor 1a with a variable voltage variable frequency. Similarly, the B system electric motor drive water supply pump 2b is driven by the B system electric motor 1b.
b is controlled by the B system VVVF controller 18b, and the B system VV
The VF control device 1b controls the rotation speed of the B-system electric motor 1b with a variable voltage variable frequency.

【0022】一方、A系タービン駆動給水ポンプ4をバ
イパスしてA系バイパス弁10aが設けられ、B系タービ
ン駆動給水ポンプ6をバイパスしてB系バイパス弁10b
が設けられている。また、A系電動機駆動給水ポンプ2
aの吐出側とB系電動機駆動給水ポンプ2bの吐出側と
を接続する接続弁17とを備えている。
On the other hand, an A system bypass valve 10a is provided to bypass the A system turbine drive feed water pump 4, and a B system bypass valve 10b is provided to bypass the B system turbine drive feed water pump 6.
Is provided. In addition, the A system electric motor driven water supply pump 2
The connection valve 17 connects the discharge side of a and the discharge side of the B-system electric motor drive feed pump 2b.

【0023】図2に示す様に図1のA系およびB系双方
のM−BFP2の電動機1にVVVF制御装置18を接続
し、プラント自動運転装置15(APC15)から給水流量
要求信号をVVVF制御装置18に入力する。このA系お
よびB系のM−BFP2a,2bを図1に示すように、
A系およびB系のT−BFP4,6の上流側に設置す
る。
As shown in FIG. 2, the VVVF controller 18 is connected to the electric motor 1 of the M-BFP 2 of both the A system and the B system of FIG. 1, and the feed water flow rate request signal is VVVF controlled from the plant automatic operation device 15 (APC15). Input to device 18. As shown in FIG. 1, the A-system and B-system M-BFPs 2a and 2b are
It is installed on the upstream side of T-BFP4, 6 of A system and B system.

【0024】APC22からの給水流量要求信号を受けた
A系およびB系のVVVF制御装置18a,18bは、それ
ぞれA・M−BFP2a及びB・M−BFP2bの電動
機1a,1bの回転数を変え、高圧給水を供給する。
Receiving the feed water flow rate request signal from the APC 22, the A-system and B-system VVVF controllers 18a and 18b change the rotational speeds of the electric motors 1a and 1b of the A-M-BFP2a and the B-M-BFP2b, respectively. Supply high pressure water supply.

【0025】また、図3に示す様に、A・M−BFP2
a及びB・M−BFP2bはA・VVVF制御装置18a
及びB・VVVF制御装置18bがM−BFP2の電動機
使用の回転数制御が可能なため、VVVFのM−BFP
2の圧力制御範囲Z1になり、これにより従来のM−B
FPの圧力制御範囲Z2よりも制御範囲が拡大し、BF
P用ブースタポンプの出口圧力P3も含む。
Further, as shown in FIG. 3, A-M-BFP2
a and B / M-BFP2b are A / VVVF controller 18a
Since the B / VVVF control device 18b can control the rotation speed of the M-BFP2 motor, the VVVF M-BFP can be controlled.
It becomes the pressure control range Z1 of 2, and the conventional MB
The control range is wider than the FP pressure control range Z2, and BF
It also includes the outlet pressure P3 of the booster pump for P.

【0026】これにより、A・M−BFP2a及びB・
M−BFP2bはBFP用ブースタポンプの同様の使用
が可能である。次に図1に示したボイラ給水装置の制御
方法を説明する。ボイラの起動時には接続弁17を閉じ
る。そして、A系バイパス弁10a及びB系バイパス弁10
bを開く。また、A系入り口弁8a及びB系入り口弁8
bを開く。この状態でAPC15からボイラの給水流量要
求信号がA系VVVF制御装置18a及びB系VVVF制
御装置18bに与えられる。A系VVVF制御装置18a及
びB系VVVF制御装置18bはそれぞれボイラの給水流
量要求信号に基づいて、A系電動機駆動給水ポンプ2a
及びB系電動機駆動給水ポンプ2bを駆動制御する。
As a result, A.M-BFP2a and B.
The M-BFP2b can be used similarly to a booster pump for BFP. Next, a method for controlling the boiler water supply device shown in FIG. 1 will be described. The connection valve 17 is closed when the boiler is activated. Then, the A-system bypass valve 10a and the B-system bypass valve 10
Open b. In addition, A system inlet valve 8a and B system inlet valve 8
Open b. In this state, the boiler feed water flow rate request signal is given from the APC 15 to the A system VVVF controller 18a and the B system VVVF controller 18b. The A system VVVF control device 18a and the B system VVVF control device 18b respectively use the A system electric motor driven water supply pump 2a based on the feed water flow rate request signal of the boiler.
Also, it drives and controls the B system electric motor driven water supply pump 2b.

【0027】つまり、A系VVVF制御装置18aでA系
電動機駆動給水ポンプ2aの吐出圧力が所定の圧力とな
るようにA系電動機1aを制御し、B系VVVF制御装
置18bでB系電動機駆動給水ポンプ2bの吐出圧力が所
定の圧力となるようにB系電動機1bを制御する。
That is, the A system VVVF control device 18a controls the A system electric motor 1a so that the discharge pressure of the A system electric motor drive feed pump 2a becomes a predetermined pressure, and the B system VVVF control device 18b controls the B system electric motor drive water supply. The B system electric motor 1b is controlled so that the discharge pressure of the pump 2b becomes a predetermined pressure.

【0028】そして、ボイラから所定の温度圧力の主蒸
気が確立したときは、A系バイパス弁10a及びB系バイ
パス弁10bを閉じる。また、A系電動機駆動給水ポンプ
2aの吐出圧力がA系タービン駆動給水ポンプ4の駆動
に必要な吸込み圧力になるようにA系VVVF制御装置
でA系電動機1aを制御する。同様に、B系電動機駆動
給水ポンプ2bの吐出圧力がB系タービン駆動給水ポン
プ6の駆動に必要な吸込み圧力になるようにB系VVV
F制御装置18bでB系電動機1bを制御する。この状態
になると、これ以降はA系タービン駆動給水ポンプ4及
びB系タービン駆動給水ポンプ6を、ボイラの給水流量
要求信号に基づいてボイラからの主蒸気で駆動制御す
る。
When the main steam having a predetermined temperature and pressure is established from the boiler, the A system bypass valve 10a and the B system bypass valve 10b are closed. Further, the A system VVVF controller controls the A system electric motor 1a so that the discharge pressure of the A system electric motor driven water supply pump 2a becomes the suction pressure required for driving the A system turbine driven water supply pump 4. Similarly, the B system VVV is adjusted so that the discharge pressure of the B system electric motor driven water supply pump 2b becomes the suction pressure required to drive the B system turbine driven water supply pump 6.
The F control device 18b controls the B system electric motor 1b. In this state, thereafter, the A system turbine drive feed water pump 4 and the B system turbine drive feed water pump 6 are driven and controlled by the main steam from the boiler based on the feed water flow rate request signal of the boiler.

【0029】すなわち、プラント起動時の場合、A・V
VVF制御装置18a又はB・VVVF制御装置18bで電
動機1a又は電動機1bを定格回転数又は最大回転数に
し、A・M−BFP2a又はB・M−BFP2bが脱気
器からの低圧給水をボイラに必要な高圧給水にし、A・
T−BFPバイパス弁10a又はB・T−BFPバイパス
弁10bを介して、BFP出口管12に供給する。
That is, when the plant is started, AV
The VVF control device 18a or the B / VVVF control device 18b sets the electric motor 1a or the electric motor 1b to the rated rotation speed or the maximum rotation speed, and the A / M-BFP2a or the B / M-BFP2b requires the boiler to supply low pressure water from the deaerator. A high pressure water supply,
It is supplied to the BFP outlet pipe 12 via the T-BFP bypass valve 10a or the B-T-BFP bypass valve 10b.

【0030】その後、蒸気タービンの主蒸気圧力及び温
度が安定したら通常運転に切換える。この場合、A・M
−BFP2a及びB・M−BFP2bをA・VVVF制
御装置18a又はB・VVVF制御装置18bで低負荷運転
にし、低圧給水をA・T−BFP4及びB・T−BFP
6に必要な吸込圧力にし、A・T−BFPバイパス弁10
a及びB・T−BFPバイパス弁10bを閉じ、A・T−
BFP4及びB・T−BFP6に供給する。
After that, when the main steam pressure and temperature of the steam turbine become stable, the operation is switched to normal operation. In this case, AM
-BFP2a and B-M-BFP2b are operated at a low load by the A-VVVF controller 18a or the B-VVVF controller 18b, and the low-pressure feed water is A-T-BFP4 and B-T-BFP.
Set the suction pressure required for 6 and the AT-BFP bypass valve 10
a and B-T-BFP bypass valve 10b is closed, A-T-
Supply to BFP4 and B-T-BFP6.

【0031】上記主蒸気の一部をA・BFP−T3及び
B・BFP−T5に送り、A・T−BFP4及びB・T
−BFP6を運転し、前記の供給された給水ボイラに必
要な高圧給水にする。
A part of the main steam is sent to A.BFP-T3 and B.BFP-T5, and A.T-BFP4 and B.T.
-Operate the BFP6 to obtain the high pressure water supply required for the supplied water supply boiler.

【0032】機能喪失のバックアップの場合として、A
・T−BFP4又はB・T−BFP6が故障時とA・M
−BFP2a又はB・T−BFP2bが故障時の実施例
を示す。
As a backup of loss of function, A
・ When T-BFP4 or B ・ T-BFP6 fails and A ・ M
An example is shown in which -BFP2a or BT-BFP2b fails.

【0033】A・T−BFP4又はB・T−BFP6が
故障時は、A・T−BFP4又はB・T−BFP6をA
・T−BFPバイパス弁10a又はB・T−BFPバイパ
ス弁10bを介しバイパスをし、A・M−BFP2a又は
B・M−BFP2bの出力をA・VVVF制御装置18a
又はB・VVVF制御装置18bで上げ、A・T−BFP
4又はB・M−BFP6のバックアップを行う。
When A.T-BFP4 or B.T-BFP6 fails, A.T-BFP4 or B.T-BFP6 is set to A.
-Bypassing through the T-BFP bypass valve 10a or the B-T-BFP bypass valve 10b, the output of A-M-BFP2a or B-M-BFP2b is A-VVVF control device 18a.
Or raise it with the B / VVVF control device 18b, then use the A / T-BFP
4 or B-M-BFP6 is backed up.

【0034】また、A・M−BFP2a又はB・M−B
FP2bが故障時の場合、接続弁17を開いて、A・T−
BFP4及びB・T−BFP6の吸込圧力を確保する様
にB・M−BFP2b又はA・M−BFP2aの出力を
A・VVVF制御装置18a又はB・VVVF制御装置18
bで調整し、A・M−BFP1a又はB・M−BFP2
aのバックアップを行う。
Also, A.M-BFP2a or B.M-B
If the FP2b fails, open the connection valve 17 and press AT
The output of the B.M-BFP2b or the A.M-BFP2a is controlled by the A.VVVF control device 18a or the B.VVVF control device 18 so as to secure the suction pressure of the BFP4 and the B.T-BFP6.
Adjust with b, A ・ M-BFP1a or B ・ M-BFP2
Backup a.

【0035】このように、この実施例ではVVVFでM
−BFPを制御する事で従来の技術で必要であったBF
P用のブースタポンプが不要となり、給水ポンプ系統全
体の小型化が実現し、機器の機能喪失のバックアップか
ら信頼性も向上する。
As described above, in this embodiment, M is VVVF.
-By controlling the BFP, the BF required by the conventional technology
The booster pump for P is not needed, the entire water supply pump system is downsized, and the reliability is improved by backing up the loss of function of the equipment.

【0036】次に、本発明の第2の実施例を図4に示
す。図4に示す様に図1に対してM−BFPを1台削減
したもので1台のM−BFP2から2台のA・T−BF
P4及びB・T−BFP6に接続されたものであり、M
−BFP2には図1の実施例と同様にVVVF制御装置
18が取付られる。
Next, a second embodiment of the present invention is shown in FIG. As shown in FIG. 4, one M-BFP is removed from that in FIG. 1, and one M-BFP2 to two A-T-BFs.
Connected to P4 and B-T-BFP6, M
-For the BFP2, the VVVF controller is used as in the embodiment of FIG.
18 is attached.

【0037】図1の実施例同様にVVVF制御装置18に
よるM−BFP2の回転数制御により、M−BFP2が
A・T−BFP4とB・T−BFP6の吸込圧力の確保
を行う。
As in the embodiment of FIG. 1, the M-BFP2 secures the suction pressure of A.T-BFP4 and B.T-BFP6 by controlling the rotation speed of the M-BFP2 by the VVVF controller 18.

【0038】効果は、従来技術に比べてブースタポンプ
が不要である給水装置を提供し、給水ポンプ系統の小型
化が実現できる。また、図5に本発明の第3の実施例を
示す。図5に示す様に従来例に対してM−BFP2にV
VVF制御装置18を取付け、M−BFP用ブースタポン
プを削減したものである。VVVF制御装置18が前記同
様に図3に示す様にM−BFP2は圧力制御範囲を拡大
したことにより、M−BFP用ブースタポンプが1台不
要な給水制御装置を提供することが可能となる。
The effect is to provide a water supply device which does not require a booster pump as compared with the prior art, and can realize downsizing of the water supply pump system. Further, FIG. 5 shows a third embodiment of the present invention. As shown in FIG. 5, V is applied to M-BFP2 as compared with the conventional example.
The VVF controller 18 is attached and the booster pump for M-BFP is eliminated. As the VVVF control device 18 has expanded the pressure control range of the M-BFP 2 as shown in FIG. 3 similarly to the above, it becomes possible to provide a water supply control device that does not require one M-BFP booster pump.

【0039】[0039]

【発明の効果】以上述べたように本発明によれば、BF
Pの吸込圧力を確保するためのBFP用ブースタポンプ
が必ずしも必要でなくなり、給水ポンプ系統の小型化を
実現する給水装置およびその制御方法を提供することが
できる。
As described above, according to the present invention, the BF
A BFP booster pump for securing the suction pressure of P is not necessarily required, and a water supply apparatus and a control method therefor that can realize downsizing of the water supply pump system can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す構成図FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】本発明の電動機駆動ポンプの駆動部分の説明図FIG. 2 is an explanatory diagram of a driving portion of an electric motor driven pump of the present invention.

【図3】本発明の第1の実施例の特性の説明図FIG. 3 is an explanatory diagram of characteristics of the first embodiment of the present invention.

【図4】本発明の第2の実施例を示す構成図FIG. 4 is a configuration diagram showing a second embodiment of the present invention.

【図5】本発明の第3の実施例を示す構成図FIG. 5 is a configuration diagram showing a third embodiment of the present invention.

【図6】従来例の構成図FIG. 6 is a block diagram of a conventional example

【図7】従来の電動機駆動ポンプの駆動部分の説明図FIG. 7 is an explanatory diagram of a drive portion of a conventional electric motor drive pump.

【図8】従来例の特性の説明図FIG. 8 is an explanatory diagram of characteristics of a conventional example.

【符号の説明】[Explanation of symbols]

1…電動機 2…電動機駆動ポンプ 3…A系タービン
4…A系タービン駆動給水ポンプ 5…B系タービン
6…B系タービン駆動給水ポンプ 7…ブースタポン
プ 8…入口弁 9…出口弁 10…バイパス弁 11…脱
気器降水管 12…給水ポンプ出口管 13,14…蒸気入口
管 15…自動プラント制御装置 16…トルクコンバータ
17…接続弁 18…VVVF制御装置
DESCRIPTION OF SYMBOLS 1 ... Electric motor 2 ... Electric motor drive pump 3 ... A system turbine 4 ... A system turbine drive feed water pump 5 ... B system turbine 6 ... B system turbine drive feed water pump 7 ... Booster pump 8 ... Inlet valve 9 ... Outlet valve 10 ... Bypass valve 11 ... Deaerator downfall pipe 12 ... Water supply pump outlet pipe 13, 14 ... Steam inlet pipe 15 ... Automatic plant control device 16 ... Torque converter
17 ... Connection valve 18 ... VVVF controller

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 ボイラの起動時に前記ボイラに給水を供
給する電動機駆動給水ポンプと、前記ボイラから所定の
温度圧力の主蒸気が確立するとその主蒸気で起動され前
記ボイラに給水を供給するA系及びB系のタービン駆動
給水ポンプとを有したボイラ給水装置において、前記A
系タービン駆動給水ポンプの吸込側に直列に設けられた
A系電動機駆動給水ポンプと、前記B系タービン駆動給
水ポンプの吸込側に直列に設けられたB系電動機駆動給
水ポンプと、前記A系電動機駆動給水ポンプを駆動する
電動機の回転数を可変電圧可変周波数で制御するA系V
VVF制御装置と、前記B系電動機駆動給水ポンプを駆
動する電動機の回転数を可変電圧可変周波数で制御する
B系VVVF制御装置と、前記A系タービン駆動給水ポ
ンプをバイパスして設けられたA系バイパス弁と、前記
B系タービン駆動給水ポンプをバイパスして設けられた
B系バイパス弁と、前記A系電動機駆動給水ポンプの吐
出側と前記B系電動機駆動給水ポンプの吐出側とを接続
する接続弁とを備えたことを特徴とするボイラ給水装
置。
1. A motor-driven water feed pump that supplies water to the boiler when the boiler is started up, and an A system that is started by the main steam when the main steam of a predetermined temperature and pressure is established from the boiler and supplies the water to the boiler. And a boiler water supply apparatus having a B-system turbine drive water supply pump,
A system electric motor driven feed water pump provided in series on the suction side of the system turbine driven feed water pump, B type electric motor driven feed water pump provided in series on the suction side of the B type turbine driven feed water pump, and said A system electric motor A system V that controls the rotation speed of the electric motor that drives the drive water supply pump with a variable voltage and variable frequency
A VVF control device, a B system VVVF control device that controls the number of revolutions of an electric motor that drives the B system electric motor driven water supply pump with a variable voltage variable frequency, and an A system provided by bypassing the A system turbine driven water supply pump. A bypass valve, a B-system bypass valve that is provided to bypass the B-system turbine drive feed water pump, a connection that connects the discharge side of the A-system electric motor drive feed water pump and the discharge side of the B-system electric motor drive feed water pump A boiler water supply device comprising a valve.
【請求項2】 前記ボイラの起動時には前記接続弁を閉
じ、前記A系バイパス弁及びB系バイパス弁を開いて、
前記ボイラの給水流量要求信号に基づいて、前記A系電
動機駆動給水ポンプの吐出圧力が所定の圧力となるよう
に前記A系VVVF制御装置で前記A系電動機駆動給水
ポンプを駆動制御し、前記B系電動機駆動給水ポンプの
吐出圧力が所定の圧力となるように前記B系VVVF制
御装置で前記B系電動機駆動給水ポンプを駆動制御し、
前記ボイラから所定の温度圧力の主蒸気が確立したとき
は前記A系バイパス弁及びB系バイパス弁を閉じ、前記
A系電動機駆動給水ポンプの吐出圧力が前記A系タービ
ン駆動給水ポンプの駆動に必要な吸込み圧力になるよう
に前記A系VVVF制御装置で前記A系電動機駆動給水
ポンプを駆動制御し、前記B系電動機駆動給水ポンプの
吐出圧力が前記B系タービン駆動給水ポンプの駆動に必
要な吸込み圧力になるように前記B系VVVF制御装置
で前記B系電動機駆動給水ポンプを駆動制御し、前記ボ
イラの給水流量要求信号に基づいて前記A系タービン駆
動給水ポンプ及び前記B系タービン駆動給水ポンプを前
記ボイラからの主蒸気で駆動制御するようにしたことを
特徴とする請求項1に記載のボイラ給水装置の制御方
法。
2. When the boiler is started, the connection valve is closed, and the A system bypass valve and the B system bypass valve are opened,
Based on the feed water flow rate request signal of the boiler, the A system VVVF control device drives and controls the A system electric motor drive water supply pump so that the discharge pressure of the A system electric motor drive water supply pump becomes a predetermined pressure. The B system VVVF controller drives and controls the B system electric motor driven water supply pump so that the discharge pressure of the system electric motor driven water supply pump becomes a predetermined pressure.
When main steam having a predetermined temperature and pressure is established from the boiler, the A-system bypass valve and the B-system bypass valve are closed, and the discharge pressure of the A-system electric motor driven water supply pump is required to drive the A-system turbine driven water supply pump. The A-system VVVF control device to drive and control the A-system electric motor drive feed water pump so that the suction pressure becomes a constant suction pressure, and the discharge pressure of the B-system electric motor drive feed water pump is the suction required to drive the B-system turbine drive feed water pump. The B system VVVF control device drives and controls the B system electric motor driven feed pump so that the pressure becomes a pressure, and the A system turbine driven feed pump and the B system turbine driven feed pump are controlled based on a feed water flow rate request signal of the boiler. The control method of the boiler water supply device according to claim 1, wherein the main steam from the boiler is used for drive control.
【請求項3】 前記A系タービン駆動給水ポンプが故障
したときは前記A系バイパス弁を開き、前記ボイラへの
給水流量要求信号に基づいて、前記A系VVVF制御装
置で前記A系電動機駆動給水ポンプを駆動制御するよう
にしたことを特徴とする請求項2に記載の制御方法。
3. When the A-system turbine drive water supply pump fails, the A-system bypass valve is opened, and the A-system VVVF controller controls the A-system electric motor drive water supply based on a supply water flow rate request signal to the boiler. The control method according to claim 2, wherein the pump is drive-controlled.
【請求項4】 前記A系電動機駆動給水ポンプが故障し
たときは前記接続弁を開き、前記B系電動機駆動給水ポ
ンプの吐出圧力が前記A系タービン駆動給水ポンプ及び
前記B系タービン駆動給水ポンプの双方の駆動に必要な
吸込み圧力になるように前記B系VVVF制御装置で前
記B系電動機駆動給水ポンプを駆動制御するようにした
ことを特徴とする請求項2に記載の制御方法。
4. When the A-system electric motor driven water feed pump fails, the connection valve is opened so that the discharge pressure of the B-system electric motor driven water feed pump is the same as that of the A-system turbine driven water feed pump and the B-system turbine driven water feed pump. 3. The control method according to claim 2, wherein the B-system VVVF control device drives and controls the B-system electric motor drive feed pump so that the suction pressures required for driving both of them are set.
【請求項5】 ボイラの起動時に前記ボイラに給水を供
給する電動機駆動給水ポンプと、前記ボイラから所定の
温度圧力の主蒸気が確立するとその主蒸気で起動され前
記ボイラに給水を供給するA系及びB系のタービン駆動
給水ポンプとを有したボイラ給水装置において、並列に
設けられた前記A系タービン駆動給水ポンプと前記B系
タービン駆動給水ポンプとの吸込側に直列に設けられた
電動機駆動給水ポンプと、前記電動機駆動給水ポンプを
駆動する電動機の回転数を可変電圧可変周波数で制御す
るVVVF制御装置と、前記A系タービン駆動給水ポン
プ及び前記B系タービン駆動給水ポンプをバイパスして
設けられたバイパス弁とを備えたことを特徴とするボイ
ラ給水装置。
5. A motor-driven water feed pump for supplying water to the boiler when the boiler is started up, and an A system for supplying water to the boiler when main steam having a predetermined temperature and pressure is established from the boiler. And a B-system turbine drive water supply pump, a motor-driven water supply system provided in series on the suction side of the A-system turbine drive water supply pump and the B-system turbine drive water supply pump that are provided in parallel. A pump, a VVVF control device for controlling the number of revolutions of an electric motor for driving the electric motor driven water supply pump with a variable voltage and a variable frequency, and a bypass for the A system turbine driven water supply pump and the B system turbine driven water supply pump. A boiler water supply device comprising a bypass valve.
【請求項6】 前記ボイラの起動時には前記バイパス弁
を開いて、前記ボイラの給水流量要求信号に基づいて、
前記電動機駆動給水ポンプの吐出圧力が所定の圧力とな
るように前記VVVF制御装置で前記電動機駆動給水ポ
ンプを駆動制御し、前記ボイラから所定の温度圧力の主
蒸気が確立したときは前記バイパス弁を閉じ、前記電動
機駆動給水ポンプの吐出圧力が前記A系タービン駆動給
水ポンプ及び前記B系電動機駆動給水ポンプの双方の駆
動に必要な吸込み圧力になるように前記VVVF制御装
置で前記電動機駆動給水ポンプを駆動制御し、前記ボイ
ラの給水流量要求信号に基づいて前記A系タービン駆動
給水ポンプ及び前記B系タービン駆動給水ポンプを前記
ボイラからの主蒸気で駆動制御するようにしたことを特
徴とする請求項5に記載のボイラ給水装置の制御方法。
6. The bypass valve is opened at the time of starting the boiler, and based on a feed water flow rate request signal of the boiler,
The electric motor drive water feed pump is drive-controlled by the VVVF control device so that the discharge pressure of the electric motor drive water feed pump becomes a predetermined pressure, and when the main steam having a predetermined temperature and pressure is established from the boiler, the bypass valve is opened. The VVVF control device closes the electric motor driven water supply pump so that the discharge pressure of the electric motor driven water supply pump becomes the suction pressure required to drive both the A system turbine driven water supply pump and the B system electric motor driven water supply pump. The drive control is performed, and the A system turbine drive feed water pump and the B system turbine drive feed water pump are drive-controlled by the main steam from the boiler based on a feed water flow rate request signal of the boiler. 5. The method for controlling the boiler water supply device according to 5.
【請求項7】 ボイラの起動時に前記ボイラに給水を供
給する電動機駆動給水ポンプと、前記ボイラから所定の
温度圧力の主蒸気が確立するとその主蒸気で起動され前
記ボイラに給水を供給するA系及びB系のタービン駆動
給水ポンプとを並列に接続したボイラ給水装置におい
て、前記A系タービン駆動給水ポンプの吸込側に直列に
設けられたA系ブースタポンプと、前記B系タービン駆
動給水ポンプの吸込側に直列に設けられたB系ブースタ
ポンプと、前記電動機駆動給水ポンプを駆動する電動機
の回転数を可変電圧可変周波数で制御するVVVF制御
装置とを備えたことを特徴とするボイラ給水装置。
7. An electric motor driven water supply pump for supplying water to the boiler when the boiler is started up, and an A system for starting the main steam when the main steam of a predetermined temperature and pressure is established from the boiler and supplying the water to the boiler. And a B-system turbine-driven feed water pump connected in parallel, in a boiler water supply apparatus, an A-system booster pump provided in series on the suction side of the A-system turbine drive feed water pump, and a suction of the B-system turbine drive feed water pump. A boiler water supply device comprising a B-system booster pump provided in series on the side, and a VVVF control device that controls the rotation speed of an electric motor that drives the electric motor drive water supply pump with a variable voltage variable frequency.
【請求項8】 前記ボイラの起動時には前記ボイラの給
水流量要求信号に基づいて、前記電動機駆動給水ポンプ
の吐出圧力が所定の圧力となるように前記VVVF制御
装置で前記電動機駆動給水ポンプを駆動制御し、前記ボ
イラから所定の温度圧力の主蒸気が確立したときは、前
記A系のブースタポンプの吐出圧力が前記A系タービン
駆動給水ポンプの駆動に必要な吸込み圧力になるように
前記A系のブースタポンプを駆動制御し、前記B系のブ
ースタポンプの吐出圧力が前記B系タービン駆動給水ポ
ンプの駆動に必要な吸込み圧力になるように前記B系の
ブースタポンプを駆動制御し、前記ボイラの給水流量要
求信号に基づいて前記A系タービン駆動給水ポンプ及び
前記B系タービン駆動給水ポンプを前記ボイラからの主
蒸気で駆動制御するようにしたことを特徴とする請求項
7に記載のボイラ給水装置の制御方法。
8. When the boiler is started, the VVVF control device drives and controls the electric motor driven water supply pump so that the discharge pressure of the electric motor driven water supply pump becomes a predetermined pressure based on a feed water flow rate request signal of the boiler. However, when the main steam having a predetermined temperature and pressure is established from the boiler, the discharge pressure of the booster pump of the A system is adjusted so that the discharge pressure of the A system booster pump becomes a suction pressure necessary for driving the A system turbine drive water supply pump. The booster pump is driven and controlled, and the booster pump of the B system is driven and controlled so that the discharge pressure of the booster pump of the B system becomes the suction pressure necessary for driving the turbine-driven feed water pump of the B system, and the feed water of the boiler is supplied. Based on the flow rate request signal, the A system turbine driven feed water pump and the B system turbine driven feed water pump are drive-controlled by the main steam from the boiler. The method for controlling the boiler water supply device according to claim 7, wherein the method is as described above.
JP16647094A 1994-07-19 1994-07-19 Apparatus and method for supplying water to boiler Pending JPH0828805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16647094A JPH0828805A (en) 1994-07-19 1994-07-19 Apparatus and method for supplying water to boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16647094A JPH0828805A (en) 1994-07-19 1994-07-19 Apparatus and method for supplying water to boiler

Publications (1)

Publication Number Publication Date
JPH0828805A true JPH0828805A (en) 1996-02-02

Family

ID=15831996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16647094A Pending JPH0828805A (en) 1994-07-19 1994-07-19 Apparatus and method for supplying water to boiler

Country Status (1)

Country Link
JP (1) JPH0828805A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101279838B1 (en) * 2011-08-31 2013-06-28 한국남부발전 주식회사 Apparatus for rising output of steam power plant
WO2014031526A1 (en) 2012-08-20 2014-02-27 Echogen Power Systems, L.L.C. Supercritical working fluid circuit with a turbo pump and a start pump in series configuration
US8857186B2 (en) 2010-11-29 2014-10-14 Echogen Power Systems, L.L.C. Heat engine cycles for high ambient conditions
US8869531B2 (en) 2009-09-17 2014-10-28 Echogen Power Systems, Llc Heat engines with cascade cycles
US8966901B2 (en) 2009-09-17 2015-03-03 Dresser-Rand Company Heat engine and heat to electricity systems and methods for working fluid fill system
US9014791B2 (en) 2009-04-17 2015-04-21 Echogen Power Systems, Llc System and method for managing thermal issues in gas turbine engines
WO2015075301A1 (en) * 2013-11-22 2015-05-28 Visorc Oy An energy converter
US9062898B2 (en) 2011-10-03 2015-06-23 Echogen Power Systems, Llc Carbon dioxide refrigeration cycle
US9118226B2 (en) 2012-10-12 2015-08-25 Echogen Power Systems, Llc Heat engine system with a supercritical working fluid and processes thereof
US9284855B2 (en) 2010-11-29 2016-03-15 Echogen Power Systems, Llc Parallel cycle heat engines
US9316404B2 (en) 2009-08-04 2016-04-19 Echogen Power Systems, Llc Heat pump with integral solar collector
US9341084B2 (en) 2012-10-12 2016-05-17 Echogen Power Systems, Llc Supercritical carbon dioxide power cycle for waste heat recovery
CN105649136A (en) * 2016-03-17 2016-06-08 金田集团(桐城)塑业有限公司 Intelligent energy-saving water supply device applied to BOPP production line
US9441504B2 (en) 2009-06-22 2016-09-13 Echogen Power Systems, Llc System and method for managing thermal issues in one or more industrial processes
US9458738B2 (en) 2009-09-17 2016-10-04 Echogen Power Systems, Llc Heat engine and heat to electricity systems and methods with working fluid mass management control
US9638065B2 (en) 2013-01-28 2017-05-02 Echogen Power Systems, Llc Methods for reducing wear on components of a heat engine system at startup
US9752460B2 (en) 2013-01-28 2017-09-05 Echogen Power Systems, Llc Process for controlling a power turbine throttle valve during a supercritical carbon dioxide rankine cycle
US9863282B2 (en) 2009-09-17 2018-01-09 Echogen Power System, LLC Automated mass management control
CN108730954A (en) * 2017-04-20 2018-11-02 中国电力工程顾问集团华东电力设计院有限公司 Primary frequency modulation control system and control method using water supply throttling
US10934895B2 (en) 2013-03-04 2021-03-02 Echogen Power Systems, Llc Heat engine systems with high net power supercritical carbon dioxide circuits
US11187112B2 (en) 2018-06-27 2021-11-30 Echogen Power Systems Llc Systems and methods for generating electricity via a pumped thermal energy storage system
US11293309B2 (en) 2014-11-03 2022-04-05 Echogen Power Systems, Llc Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system
US11435120B2 (en) 2020-05-05 2022-09-06 Echogen Power Systems (Delaware), Inc. Split expansion heat pump cycle
US11629638B2 (en) 2020-12-09 2023-04-18 Supercritical Storage Company, Inc. Three reservoir electric thermal energy storage system
WO2025107541A1 (en) * 2023-11-23 2025-05-30 西安热工研究院有限公司 Apparatus for optimizing and improving steam-driven feedwater pump and system thereof, and operation method of apparatus
US12331664B2 (en) 2023-02-07 2025-06-17 Supercritical Storage Company, Inc. Waste heat integration into pumped thermal energy storage

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9014791B2 (en) 2009-04-17 2015-04-21 Echogen Power Systems, Llc System and method for managing thermal issues in gas turbine engines
US9441504B2 (en) 2009-06-22 2016-09-13 Echogen Power Systems, Llc System and method for managing thermal issues in one or more industrial processes
US9316404B2 (en) 2009-08-04 2016-04-19 Echogen Power Systems, Llc Heat pump with integral solar collector
US9115605B2 (en) 2009-09-17 2015-08-25 Echogen Power Systems, Llc Thermal energy conversion device
US9863282B2 (en) 2009-09-17 2018-01-09 Echogen Power System, LLC Automated mass management control
US9458738B2 (en) 2009-09-17 2016-10-04 Echogen Power Systems, Llc Heat engine and heat to electricity systems and methods with working fluid mass management control
US8869531B2 (en) 2009-09-17 2014-10-28 Echogen Power Systems, Llc Heat engines with cascade cycles
US8966901B2 (en) 2009-09-17 2015-03-03 Dresser-Rand Company Heat engine and heat to electricity systems and methods for working fluid fill system
US9410449B2 (en) 2010-11-29 2016-08-09 Echogen Power Systems, Llc Driven starter pump and start sequence
US8857186B2 (en) 2010-11-29 2014-10-14 Echogen Power Systems, L.L.C. Heat engine cycles for high ambient conditions
US9284855B2 (en) 2010-11-29 2016-03-15 Echogen Power Systems, Llc Parallel cycle heat engines
KR101279838B1 (en) * 2011-08-31 2013-06-28 한국남부발전 주식회사 Apparatus for rising output of steam power plant
US9062898B2 (en) 2011-10-03 2015-06-23 Echogen Power Systems, Llc Carbon dioxide refrigeration cycle
WO2014031526A1 (en) 2012-08-20 2014-02-27 Echogen Power Systems, L.L.C. Supercritical working fluid circuit with a turbo pump and a start pump in series configuration
US9091278B2 (en) 2012-08-20 2015-07-28 Echogen Power Systems, Llc Supercritical working fluid circuit with a turbo pump and a start pump in series configuration
US9118226B2 (en) 2012-10-12 2015-08-25 Echogen Power Systems, Llc Heat engine system with a supercritical working fluid and processes thereof
US9341084B2 (en) 2012-10-12 2016-05-17 Echogen Power Systems, Llc Supercritical carbon dioxide power cycle for waste heat recovery
US9638065B2 (en) 2013-01-28 2017-05-02 Echogen Power Systems, Llc Methods for reducing wear on components of a heat engine system at startup
US9752460B2 (en) 2013-01-28 2017-09-05 Echogen Power Systems, Llc Process for controlling a power turbine throttle valve during a supercritical carbon dioxide rankine cycle
US10934895B2 (en) 2013-03-04 2021-03-02 Echogen Power Systems, Llc Heat engine systems with high net power supercritical carbon dioxide circuits
WO2015075301A1 (en) * 2013-11-22 2015-05-28 Visorc Oy An energy converter
US11293309B2 (en) 2014-11-03 2022-04-05 Echogen Power Systems, Llc Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system
CN105649136A (en) * 2016-03-17 2016-06-08 金田集团(桐城)塑业有限公司 Intelligent energy-saving water supply device applied to BOPP production line
CN108730954A (en) * 2017-04-20 2018-11-02 中国电力工程顾问集团华东电力设计院有限公司 Primary frequency modulation control system and control method using water supply throttling
CN108730954B (en) * 2017-04-20 2024-04-12 中国电力工程顾问集团华东电力设计院有限公司 Primary frequency modulation control system using water supply throttling and control method thereof
US11187112B2 (en) 2018-06-27 2021-11-30 Echogen Power Systems Llc Systems and methods for generating electricity via a pumped thermal energy storage system
US11435120B2 (en) 2020-05-05 2022-09-06 Echogen Power Systems (Delaware), Inc. Split expansion heat pump cycle
US11629638B2 (en) 2020-12-09 2023-04-18 Supercritical Storage Company, Inc. Three reservoir electric thermal energy storage system
US12331664B2 (en) 2023-02-07 2025-06-17 Supercritical Storage Company, Inc. Waste heat integration into pumped thermal energy storage
WO2025107541A1 (en) * 2023-11-23 2025-05-30 西安热工研究院有限公司 Apparatus for optimizing and improving steam-driven feedwater pump and system thereof, and operation method of apparatus

Similar Documents

Publication Publication Date Title
JPH0828805A (en) Apparatus and method for supplying water to boiler
JPS611886A (en) Controller for water sealing vacuum pump
US4316362A (en) Method and apparatus for operating a cross-compound turbine generator plant
JPS597016B2 (en) Gas turbine engine failure
JPS62261681A (en) Compressor plant
JP2885346B2 (en) Combined plant control method and apparatus
JPH06210140A (en) Membrane separator
JPH0842304A (en) Lubrication system for small gas turbine power generator
JPS6239655B2 (en)
JPH0565804A (en) Control method for two-stage gas mixing type turbo-generator
US20240165564A1 (en) Integrated central vfd and multiple-turbo system
JPS6191405A (en) Feedwater facility in thermal power plant
JP3019678B2 (en) Bleed mixed pressure steam turbine
JPH0668362B2 (en) Condensate control method and condensate control device for power plant
BE1007980A6 (en) Heat pump
JPH02146401A (en) Pump piping system for steam power generating station
JPH05106804A (en) Heater for deaerator
JPH0814502A (en) Water supply controller
JPS5865915A (en) Propulsive turbine device of ship
JPS6260603B2 (en)
JPH0335566B2 (en)
JPH08296809A (en) Controller for boiler water supply pump
JPH10325896A (en) Reactor feedwater device
JPS6060401A (en) Method of operating pump in steam generating plant
JPS5872802A (en) Boiler feed pump control device