JPH0828532B2 - Current leads for superconducting electromagnet devices - Google Patents
Current leads for superconducting electromagnet devicesInfo
- Publication number
- JPH0828532B2 JPH0828532B2 JP61165228A JP16522886A JPH0828532B2 JP H0828532 B2 JPH0828532 B2 JP H0828532B2 JP 61165228 A JP61165228 A JP 61165228A JP 16522886 A JP16522886 A JP 16522886A JP H0828532 B2 JPH0828532 B2 JP H0828532B2
- Authority
- JP
- Japan
- Prior art keywords
- lead
- superconducting electromagnet
- current lead
- conductor
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Description
【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は低温容器内の超電導電磁石へ外部電源より
電力を供給するための超電導電磁石装置用電流リードの
リード本体の構成に関する。Description: TECHNICAL FIELD The present invention relates to a structure of a lead body of a current lead for a superconducting electromagnet device for supplying electric power from an external power source to a superconducting electromagnet in a cryogenic container.
一般に超電導電磁石は液体ヘリウム等の極低温冷媒に
よって冷却されるため、液体窒素シールドや真空管によ
って断熱された容器の内部に収納されている。電流リー
ドは、極低温に保持される超電導電磁石に常温部から電
力を供給するもので、電流リードの導体に発生するジュ
ール熱と外部の常温部から内部の極低温部へ伝導により
侵入する熱を低減するために、液体ヘリウムが蒸発した
低温のヘリウムガスを使用して冷却する方式が採られて
いる。したがって侵入熱が大きすぎると高価な液体ヘリ
ウムの消費量が多大となるばかりでなく超電導電磁石の
特性にも悪影響を及ぼす虞れがある。Since the superconducting electromagnet is generally cooled by a cryogenic refrigerant such as liquid helium, it is housed inside a container insulated by a liquid nitrogen shield or a vacuum tube. The current lead supplies electric power to the superconducting electromagnet, which is maintained at a cryogenic temperature, from the room temperature part, and the Joule heat generated in the conductor of the current lead and the heat entering from the outside room temperature part to the inside cryogenic part by conduction. In order to reduce the amount, a method of cooling by using low-temperature helium gas in which liquid helium is evaporated is adopted. Therefore, if the invasion heat is too large, not only the amount of expensive liquid helium consumed will be large, but also the characteristics of the superconducting electromagnet may be adversely affected.
超電導電磁石装置の一般的な構造を第9図の断面図で
説明する。低温容器1の内部には液体ヘリウムHeが入っ
ており、その液中に超電導電磁石2が浸漬されている。
電流リード3は低温容器1の上蓋4に設けられたフラン
ジ5を貫通して取付けられ、低温容器1内部にあるリー
ド本体12の下端部は接続リード6を介して超電導電磁石
2に接続されている。液体ヘリウムHeの貯槽の外側に
は、外部からの侵入熱を遮断するために液体窒素シール
ドNが配置されている。また電流リード3の低温容器1
外部の上端部には、図示しない外部電源に接続するため
のブスバー7が設置されている。このような構成におい
て、低温容器1内で蒸発したヘリウムガスを電流リード
3の内部隙間に導き電流リード3の内部において熱交換
させ、極低温部への侵入熱を減少させている。A general structure of the superconducting electromagnet device will be described with reference to the sectional view of FIG. Liquid helium He is contained in the cryogenic container 1, and the superconducting electromagnet 2 is immersed in the liquid.
The current lead 3 is attached through the flange 5 provided on the upper lid 4 of the cryocontainer 1, and the lower end of the lead body 12 inside the cryocontainer 1 is connected to the superconducting electromagnet 2 via the connecting lead 6. . A liquid nitrogen shield N is arranged outside the liquid helium He storage tank in order to block heat entering from the outside. Also, the low temperature container 1 of the current lead 3
A bus bar 7 for connecting to an external power source (not shown) is installed at the upper end of the outside. In such a configuration, the helium gas evaporated in the cryogenic container 1 is guided to the internal gap of the current lead 3 to cause heat exchange inside the current lead 3 to reduce heat entering the cryogenic portion.
第10図は第9図における電流リード3のリード本体12
部分の横断面を示すもので中空状のリード配管8の中に
複数本の導体9を挿入してできた隙間10をヘリウムガス
の流路として利用している。またリード配管8の外周は
リード本体12を絶縁するために絶縁物11で取囲まれてい
る。本構成によれば通電用の導体を複数本に分割するこ
とにより導体の冷却表面積を増大させ冷却効率を向上さ
せる特徴がある。しかしながら、本構成による電流リー
ドを長尺形大電流用に使用する場合、導体の本数が多数
本(たとえば数百本)になり、それがため中空状のリー
ド配管へ挿入する作業性の関係上導体の直径を細くする
ことが自ら限定され導体の冷却効果が低下して常温部か
ら極低温部への侵入熱が増大し、液体ヘリウムの消費量
が増加するという欠点があった。FIG. 10 shows the lead body 12 of the current lead 3 shown in FIG.
A cross section of a portion is shown, and a gap 10 formed by inserting a plurality of conductors 9 into a hollow lead pipe 8 is used as a flow path of helium gas. The outer circumference of the lead pipe 8 is surrounded by an insulator 11 to insulate the lead body 12. According to this configuration, by dividing the conductor for energization into a plurality of conductors, the cooling surface area of the conductor is increased and the cooling efficiency is improved. However, when the current lead with this configuration is used for a long and large current, the number of conductors becomes large (for example, several hundreds), which causes the workability of inserting into a hollow lead pipe. There is a drawback in that the diameter of the conductor is limited by itself, the cooling effect of the conductor is lowered, the heat of penetration from the room temperature portion to the cryogenic portion is increased, and the consumption amount of liquid helium is increased.
この発明は上述した事情に鑑み、長尺形大電流用に使
用する電流リードで細い導体を多数本リード配管に収納
する場合、収納作業が容易であるようにリード本体を改
良することを目的とする。In view of the above-mentioned circumstances, an object of the present invention is to improve the lead body so that the housing work is easy when a large number of thin conductors are housed in a lead pipe for use with a long type large current. To do.
この発明では上述の目的達成のためリード本体の構成
を次のようにした。すなわち長手方向に2分割したケー
スに複数本の細い導体を収納し外圧をかけて形成したの
ち前記2分割したケースを気密的に接合した。In the present invention, in order to achieve the above object, the structure of the lead body is as follows. That is, a plurality of thin conductors were housed in a case that was divided into two in the longitudinal direction, external pressure was applied thereto, and then the case that was divided into two was airtightly joined.
第1図は本発明の第1の実施例を示す電流リード本体
の横断面図で、従来構造と同じ機能を有する部分につい
ては同一の符号を付し説明を省略する。ヘリウムガス流
路を有するリード配管に相当するケースはU字管(また
はコ字状管)13a,13bの組合わせで形成したものであ
る。第2図〜第4図でこの第1の実施例の組立て方法を
説明する。まず極低温において十分な強度を有し、かつ
熱伝導率の小さい材料(たとえばステンレス鋼)ででき
たU字管(またはコ字状管)13aの中に複数本の導体9
を配置し、この導体9の上部側よりU字管(またはコ字
状管)13bの底部をU字管13aの開口部より内側面に沿わ
せて挿入する。この際U字管13bの底部を外力Fによっ
て矢印方向に押し込み、U字管13a,13bをそれぞれ開口
側部分近傍P個所で熔接などの方法で気密的に接合すれ
ば各導体9間およびU字管13aと各導体9間に生ずる隙
間10で所要のヘリウムガス流量面積を得ることができ
る。なおU字管(またはコ字状管)13a,13bにて形成さ
れたリードケースの外周には絶縁物11が設けられてい
る。FIG. 1 is a transverse cross-sectional view of a current lead body showing a first embodiment of the present invention. The parts having the same functions as those of the conventional structure are designated by the same reference numerals and the description thereof will be omitted. The case corresponding to the lead pipe having the helium gas passage is formed by combining the U-shaped pipes (or U-shaped pipes) 13a and 13b. 2 to 4, the assembling method of the first embodiment will be described. First, a plurality of conductors 9 are provided in a U-shaped tube (or U-shaped tube) 13a made of a material (for example, stainless steel) having sufficient strength at extremely low temperatures and having low thermal conductivity.
Is arranged, and the bottom of the U-shaped tube (or U-shaped tube) 13b is inserted from the upper side of the conductor 9 along the inner side surface from the opening of the U-shaped tube 13a. At this time, the bottom portion of the U-shaped pipe 13b is pushed in the direction of the arrow by the external force F, and the U-shaped pipes 13a and 13b are hermetically joined by welding or the like at the P portions near the opening side portions, respectively. A required helium gas flow area can be obtained in the gap 10 formed between the pipe 13a and each conductor 9. An insulator 11 is provided on the outer circumference of the lead case formed by the U-shaped tubes (or U-shaped tubes) 13a and 13b.
第5図は本発明の第2の実施例を示す電流リード本体
の横断面図で、リードのケースとしてはU字管(または
コ字状管)13aの開口部を平板状の蓋13cで閉塞して形成
したものである。第6図は本発明の第3の実施例を示す
電流リード本体の横断面図で、リードケースとしてはC
字管(または半円状管)13dの開口部を平板状の蓋13cで
閉塞して形成したものである。第7図は本発明の第4の
実施例を示す電流リード本体の横断面図で、リードケー
スとしては2個のU字管(またはコ字状管)13aをその
開口部において接合して形成したものである。第8図は
本発明の第5の実施例を示す電流リード本体の横断面図
で、リードケースとしては2個のC字管(または半円状
管)13dをその開口部において接合して形成したもので
ある。FIG. 5 is a cross-sectional view of a current lead body showing a second embodiment of the present invention. As a lead case, the opening of a U-shaped tube (or U-shaped tube) 13a is closed by a flat lid 13c. It was formed by. FIG. 6 is a cross-sectional view of a current lead body showing a third embodiment of the present invention.
It is formed by closing the opening of the character tube (or semicircular tube) 13d with a flat plate-like lid 13c. FIG. 7 is a cross-sectional view of a current lead body showing a fourth embodiment of the present invention, in which two U-shaped tubes (or U-shaped tubes) 13a are formed as lead cases by joining them at their openings. It was done. FIG. 8 is a cross-sectional view of a current lead body showing a fifth embodiment of the present invention. As a lead case, two C-shaped tubes (or semi-circular tubes) 13d are joined at their openings. It was done.
この発明では、リードケースの構成として長手方向に
2分割したケースをその開口部において接合して形成し
たので、長尺で細い導体を多数本リード配管に収納する
ことが容易となり、導体の冷却表面積を大きくできるの
で冷却効率の向上が図れる。その結果極低温部への熱が
軽減でき、高価な液体ヘリウムの消費量を減少できる経
済的な電流リードを提供することができる。In the present invention, since the case formed by dividing the case into two in the longitudinal direction is joined at the opening as the structure of the lead case, it becomes easy to accommodate a large number of long and thin conductors in the lead pipe, and the cooling surface area of the conductor is reduced. The cooling efficiency can be improved because the cooling efficiency can be increased. As a result, heat to the cryogenic portion can be reduced, and an economical current lead can be provided which can reduce the consumption of expensive liquid helium.
第1図はこの発明の第1の実施例である電流リードのリ
ード本体の横断面図、第2図〜第4図は同上リード本体
の組立て順序を示す横断面図、第5図はこの発明の第2
の実施例である電流リードのリード本体の横断面図、第
6図はこの発明の第3の実施例である電流リードのリー
ド本体の横断面図、第7図はこの発明の第4の実施例で
ある電流リードのリード本体の横断面図、第8図はこの
発明の第5の実施例である電流リードのリード本体の横
断面図、第9図は超電導電磁石装置の縦断面図、第10図
は従来構成による超電導電磁石装置用電流リードのリー
ド本体の横断面図である。 1:低温容器、8:リード配管、9:導体、10:隙間、13a,13
b:ケース。FIG. 1 is a transverse sectional view of a lead body of a current lead according to a first embodiment of the present invention, FIGS. 2 to 4 are transverse sectional views showing an assembling order of the lead body, and FIG. Second
FIG. 6 is a cross sectional view of a lead body of a current lead which is an embodiment of the present invention, FIG. 6 is a cross sectional view of a lead body of a current lead which is a third embodiment of the present invention, and FIG. 7 is a fourth embodiment of the present invention. FIG. 8 is a transverse sectional view of a lead body of a current lead as an example, FIG. 8 is a transverse sectional view of a lead body of a current lead as a fifth embodiment of the present invention, and FIG. 9 is a longitudinal sectional view of a superconducting electromagnet device. FIG. 10 is a cross-sectional view of a lead body of a current lead for a superconducting electromagnet device according to a conventional configuration. 1: low temperature container, 8: lead piping, 9: conductor, 10: gap, 13a, 13
b: Case.
Claims (2)
導電磁石に外部電源より電力を供給するためにリード配
管内に複数本の導体を収納し、このリード配管内の隙間
に導体を冷却するヘリウムガスを流通してなる電流リー
ドにおいて、リード本体の構成は、長手方向に2分割し
た熱電導性の小さい材料からなるケースに複数本の細い
導体を収納し外圧をかけて形成したのち前記2分割した
ケースを気密的に接合したことを特徴とする超電導電磁
石装置用電流リード。1. A plurality of conductors are housed in a lead pipe for supplying electric power from an external power source to a superconducting electromagnet which is kept in a cryogenic state in a cryogenic container, and the conductor is cooled in a gap in the lead pipe. In the current lead in which the helium gas is circulated, the lead body is formed by housing a plurality of thin conductors in a case made of a material having a small thermal conductivity divided into two parts in the longitudinal direction and applying external pressure, and then forming the thin conductor. A current lead for a superconducting electromagnet device, characterized in that a case divided into two parts is hermetically joined.
て、熱電導性の小さい材料からなるケースが、ステンレ
ス鋼からなることを特徴とする超電導電磁石装置用電流
リード。2. The current lead for a superconducting electromagnet device according to claim 1, wherein the case made of a material having a small thermal conductivity is made of stainless steel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61165228A JPH0828532B2 (en) | 1986-07-14 | 1986-07-14 | Current leads for superconducting electromagnet devices |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61165228A JPH0828532B2 (en) | 1986-07-14 | 1986-07-14 | Current leads for superconducting electromagnet devices |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6320882A JPS6320882A (en) | 1988-01-28 |
JPH0828532B2 true JPH0828532B2 (en) | 1996-03-21 |
Family
ID=15808291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61165228A Expired - Lifetime JPH0828532B2 (en) | 1986-07-14 | 1986-07-14 | Current leads for superconducting electromagnet devices |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0828532B2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56161735U (en) * | 1980-05-01 | 1981-12-02 | ||
JPS612307A (en) * | 1984-06-15 | 1986-01-08 | Japan Atom Energy Res Inst | Gas cooling type current lead for superconductive machine |
-
1986
- 1986-07-14 JP JP61165228A patent/JPH0828532B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6320882A (en) | 1988-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4625192A (en) | Superconducting apparatus with improved current lead-in | |
US3626585A (en) | Method of fabricating a superconductive structure | |
JPH0828532B2 (en) | Current leads for superconducting electromagnet devices | |
JPS6350844B2 (en) | ||
JP4337253B2 (en) | Superconducting current lead | |
JPS6161715B2 (en) | ||
JP2581283B2 (en) | Current lead for superconducting coil | |
JPS63292610A (en) | Current supply lead for superconducting device | |
US20210233691A1 (en) | Superconducting magnet | |
JP2515813B2 (en) | Current lead for superconducting equipment | |
JP2538897Y2 (en) | Superconducting coil device | |
JPH0459763B2 (en) | ||
US3715451A (en) | Superconductor structure, and method of making the same | |
JP2686210B2 (en) | Superconducting coil device | |
JP3316986B2 (en) | Current leads for superconducting devices | |
JPS6328080A (en) | Cryogenic apparatus | |
JPH0459764B2 (en) | ||
JPS622446B2 (en) | ||
JPH0517853Y2 (en) | ||
JPS62106675A (en) | Lead out structure of electric wiring in cryogenic vacuum heat insulating container | |
JPS6289306A (en) | Cryogenic container for superconducting electromagnets | |
JPS63117409A (en) | Cryogenic container with freezer | |
JPS62144374A (en) | Current lead wire for superconducting equipment | |
JPH0686940A (en) | Element cooling heating test equipment | |
JPH1079303A (en) | Current lead |